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[1] We analyze flow in heterogeneous media composed of multiple materials whose hydraulic
properties and geometries are uncertain. Our analysis relies on the composite media theory of
Winter and Tartakovsky [2000, 2002], which allows one to derive and solve moment equations even
when the medium is highly heterogeneous. We use numerical solutions of Darcy flows through a
representative composite medium to investigate the robustness of perturbation approximations in
porous medium with total log conductivity variances as high as 20. We also investigate the relative
importance of the two sources of uncertainty in composite media, material properties, and
geometry. In our examples the uncertain geometry by itself captures the main features of the mean
head estimated by the full composite model even when the within-material conductivities are
deterministic. However, neglecting randomness within materials leads to head variance estimates
that are qualitatively and quantitatively wrong. We compare the composite media approach to
approximations that replace statistically inhomogeneous conductivity fields with
pseudohomogeneous random fields with deterministic trends. We demonstrate that models with a
deterministic trend can be expected to give a poor estimate of the statistics of head. INDEX
TERMS: 1869 Hydrology: Stochastic processes; 1829 Hydrology: Groundwater hydrology; 1832
Hydrology: Groundwater transport; 3210 Mathematical Geophysics: Modeling; KEYWORDS:
random, stochastic, uncertainty, domain decomposition

1. Introduction

[2] As stochastic hydrology is used to quantify uncertainty in

increasingly complicated geological structures, models must

accommodate higher levels of material heterogeneity. Winter and

Tartakovsky [2000, 2002] introduced a composite medium model of

groundwater flows to explicitly account for the spatial distribution

of multiple materials. A composite medium is a union of disjoint

‘‘blocks’’ made up of internally uniform materials. We use the word

block loosely to indicate volumes with arbitrary shapes. Common

examples of composite media are layered systems, aquifers that

contain inclusions of locally impermeable material, and fractured

media. More technically, a composite medium is a bivariate

stochastic process depending on (1) the random geometry of the

blocks and (2) the statistically homogeneous distribution of

hydraulic conductivity within a material block. Highly heteroge-

neous media can also be represented as statistically homogeneous,

but at the cost of large sY
2, the variance of Y(x) = ln K(x), and a

mixed distribution that is often multimodal [Gómez-Hernández and

Wen, 1998; Rubin and Journel, 1991; Rubin, 1995]. Computation-

ally efficient solutions of stochastic groundwater flow models

usually rely on small sY
2. This is true whether the solution method

is Monte Carlo simulation or deterministic equations for the

moments of pressure head, h(x), and Darcian flux, q(x). The essence

of Winter and Tartakovsky [2000, 2002] is that perturbation

expansions based on the composite medium approach rely only

on small within-block variances of conductivity s2YM , where YM is

the logarithm of conductivity in the Mth material. Thus

the individual materials of a composite medium can satisfy the

requirements for perturbation expansions, s2YM (x) � 1, while the

overall system may not, sY
2 (x) � 1. The composite medium

model substitutes the relatively tractable problem of determining the

spatial distribution of disjoint blocks of homogeneous material for

the difficult problem of dealing with large perturbation variances.

[3] The composite medium model is similar in its goals to the

Boolean algorithms used in geostatistical simulations of heteroge-

neous random fields [Deutsch and Journel, 1992]; however, the

methods and results are completely different. Moment equations

yield explicit expressions for the statistics of head that can be

examined qualitatively to understand the general behavior of the

averaged flow system. That, of course, is not possible with a

simulation-based approach. Several authors have analyzed special

classes of composite media. Matheron and de Marsily [1980] and

Gelhar et al. [1979] suppose that the block geometry is known

exactly, but the conductivities within blocks are statistically homo-

geneous random fields. The exchange of mass and momentum

between blocks is especially easy to assess in this case since the

block geometry is assumed known. The opposite case, where the

conductivity of a given material is a known constant, but the block

geometry is uncertain, has been investigated by Levermore et al.

[1986], who considered block boundaries set by a Poisson process,

and Fontes et al. [1999], who analyzed systems equivalent to

porous media composed of two materials. When the difference

between materials is the result of a gradual change in the formation

of a geological material, it may suffice to model hydrologic

variability as a homogeneous process superimposed on a deter-

ministic trend [Neuman and Jacobsen, 1984; Indelman and Rubin,
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1995; Li and McLaughlin, 1991]. In these analyses the logarithm

of conductivity is assumed to consist of a known trend added to a

statistically homogeneous random process. Since these models

assume that the covariance structure of conductivity is the same

throughout a porous medium, they do not apply to highly hetero-

geneous media composed of blocks of different materials.

[4] We formulate the problem of flow through composite media

in section 2. Then we investigate perturbation approximations for

the first two moments of hydraulic head in section 3. We analyze

the relative importance of uncertain geometry and uncertain con-

ductivity in section 4 by comparing special cases in which (1) the

block geometry is random, but the hydrogeologic properties of

each material are fixed, versus (2) the block geometry is fixed but

material properties vary. Finally, we compare the composite

medium model to models with deterministic trends in section 5.

2. Problem Formulation

[5] We consider steady state Darcian flow, r � [Krh] = 0, in a

flow domain (Figure 1) composed of an inner square with random

hydraulic conductivity K(x) = K2(x) embedded in an outer square

with conductivity K(x) = K1(x). Both conductivities are statistically

homogeneous lognormally distributed random fields with corre-

sponding means, K1 � K2 and variances, s2K1
and s2K2

. Log

conductivities are uncorrelated when they are from different

materials, while points within the same block are exponentially

correlated,

CYi rð Þ ¼ s2Yi e
�r=li ; ð1Þ

where r is the separation distance within material i and li is the

correlation length. To further simplify the presentation, we

consider cases where s2Y1 = s2Y2 = s2 and l1 = l2 = l. We set 2a

= 12l. Although we assume that each material is internally

homogeneous, we emphasize that the resulting conductivity field is

statistically inhomogeneous since its mean, variance, and correla-

tion function are all space dependent.

[6] While the size of the outer square, 2a, is deterministic, the

half-length of the inner square, b, is treated as a random variable to

reflect uncertainty about the geometry of such inclusions. For

purposes of illustration, we take b to be lognormally distributed,

with mean b and variance sb
2. In our analysis of the flow we impose

constant heads on the vertical sides of the outer square,

h 0; x2ð Þ ¼ H1 ¼ 10 h 2a; x2ð Þ ¼ H2 ¼ 0; ð2Þ

while assuming that the other two sides are impermeable.

Continuity of both hydraulic head and Darcian flux across the

random boundary separating materials completes the mathematical

description of the problem.

3. Head Statistics

[7] Winter and Tartakovsky [2000, 2002] use a Reynolds

decomposition to write K(x) = K(x) + K0(x) as the sum of an

ensemble mean function, K(x), and a zero-mean random deviate,

K0(x). Similarly, h(x) = h(x) + h0(x) with h0(x) = 0. For steady state

flow without sources or sinks, h(x) can be approximated by closing

the averaged flow equation:

r � Krh
� �

�r � r ¼ 0 ð3Þ

consisting of a deterministic mean flux, Krh, and the mean of a

random residual flux, r = �K0rh0. Similar techniques lead to

approximations for the variance of head.

[8] Solutions of equation (3) require the mean conductivity K(x)

and r(x). For nM materials the ensemble mean

K xð Þ ¼
XnM
M¼1

KM P x 2 M½ � ð4Þ

and variance,

s2Y xð Þ ¼
XnM
M¼1

s2YM P x 2 M½ �

þ
XnM
M¼1

XnM
m¼1

KM � Km

� �2
P x 2 M½ � P x 2 M½ �; ð5Þ

can be written in terms of the probability P[x 2 M] that the point x

is in a unit of material type M. Obviously, K(x) and sY
2 (x) vary

from point to point, so the conductivity field is statistically

inhomogeneous.

[9] Equations (4) and (5) also apply when the spatial distribution

of materials is ignored, except P[x 2 M] is replaced by QM, the

volume fraction of material M. We call this the ‘‘homogeneous

model’’ because it treats the medium as a homogeneous random

field (despite the fact that it is not). Usually, r is approximated

through perturbation expansions based on sY
2 (x), an approach that

works well so long as sY
2 (x) is small. Note that sY

2 is usually large at

every point in the homegeneous model even if component varian-

ces s2YM are small. For instance, with the parametrization we are

using, the homogeneous version of equation (5) leads to sY
2 � 20.

[10] In the absence of a better yardstick we demonstrate the

accuracy of our approximations by comparing them to Monte

Carlo simulations. The Galerkin finite elements scheme of

[Guadagnini and Neuman, 1999a, 1999b] is used to solve

Darcy’s equation with the same boundary conditions and grids

as our solutions for the moment equations. We generated 5000

realizations of b on a grid of 3600 square elements (60 rows and

Figure 1. Composite flow domain.
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60 columns) of uniform size �x1 = �x2 = 0.2l for our Monte

Carlo simulations. We prescribed mean b = 1.2l and variance sb
2

of b = ln b. We analyzed the effect of uncertainty in the location

of the inner boundary by considering sb = 0.3, 0.5, and 1.0,

which corresponds to sb = 0.36, 0.64, and 1.6, respectively. For

each realization of b we generated 2000 realizations of each of

the two random materials on the grid spanning the outer square.

We used Y 1 = �4.6, Y 2 = �13.8, and l = 1 in these simulations.

We analyzed the effect of uncertainty in hydraulic conductivity of

each material by considering sY
2 = 0.1 and 1.0. Conditional

realizations of our composite media were obtained by superimpos-

ing the inner square of the size 2b on the outer square. Guadagnini

and Neuman [1999a, 1999b] noted that a complete stabilization of

the Monte Carlo statistics is not necessary for a comparison between

the solutions obtained from moment equations and from Monte

Carlo simulations to be meaningful. Therefore we limit the number

of our Monte Carlo simulations to 5000 for b and 2000 for each of

Yi. Since these 5000 realizations of b fell within 30 discrete classes

related to the cell size, we performed a total of 30 � 2000 = 60,000

Monte Carlo simulations of the flow equations.

3.1. Mean Hydraulic Head

[11] We present our solution for mean hydraulic head as an

asymptotic expansion in the conditional log conductivity variance

sY
2,

h xð Þ ¼ h
0ð Þ

xð Þ þ h
1ð Þ

xð Þ þ O s4Y
� �

; ð6Þ

where the superscript denotes terms of the ith order in sY
2. Then,

the first-order approximation of mean hydraulic head, h[1](x) =

h(0)(x) + h(1)(x), is obtained from

h
0ð Þ

x bjð Þ ¼ Kg1 H1 Gb 0; 2a; xð Þ � Gb 0; xð Þ½ � ð7Þ

h
1ð Þ

x bjð Þ ¼
X2
i¼1

Z
�i

rGb y; xð Þ

� r
1ð Þ
i x bjð Þ � Kgi

s2Yi
2

rh
0ð Þ

x bjð Þ
" #

dy; ð8Þ

where Kgi is the geometric mean of the ith conductivity and Gb is

the Green’s function corresponding to the fixed boundary b and

Kgi . The first-order approximation of the conditional mean

residual flux is

r
1ð Þ
j x bjð Þ ¼ K2

gj

Z
�j bð Þ

CYj x; yð ÞryrT
xGb y; xð Þryh

0ð Þ
y bjð Þdy: ð9Þ

See Winter and Tartakovsky [2000, 2002] for details of the

derivation.
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Figure 2. The cross section x2 = 6 of conditional mean hydraulic
head �h[1](x1|b), for several realizations of b.
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Figure 3. The cross section x2 = 6 of mean hydraulic head,
�h[1](x1), for various degrees of uncertainty in the size of the
inclusion.
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Figure 4. The cross section x2 = 6 of the first-order approxima-
tion of the conditional hydraulic head variance, sh

2(x1|b), for several
realizations of b.
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[12] Note that the first-order approximation, h[1](x|b) = h(0)(x|b)

+ h(1)(x|b), depends on integrating over domains �j(b) fixed by

conditioning on b. The dependence on b is removed by integrating

h
1½ �
xð Þ ¼

R
h
1½ �
x bjð Þp bð Þdb. We evaluated this integral by means of

the law of large numbers,

h
1½ �
xð Þ � 1

nb

Xnb
n¼1

h
1½ �
x bnjð Þ ð10Þ

because we had already generated the large data sets it requires.

Taylor series [cf. Tartakovsky and Winter, 2001] or other methods

can be used to approximate this integral in realisitic cases, where

multiple realizations are not available.

[13] We demonstrate an example of such calculations in Figure 2,

where the median cross section (x2 = 6) of the conditional mean

head, h[1](x1|b), is computed by equations (7) and (8) for several

realizations of the inclusion’s size, b = 0.2, 1.0, and 4.0. The results

of Monte Carlo simulations coincide with mean head distribution

obtained from our moments equations and thus are not reported in

Figure 2.

[14] Figure 3 shows the distribution of mean hydraulic head,

h[1](x1), along the longitudinal cross section x2 = 6 for several

values of sb. As before, head distributions obtained from Monte

Carlo simulations and from our moments equations are indistin-

guishable. Hence only the moments equation solution is repre-

sented. The effect of uncertainty in the internal boundary on one’s

ability to estimate hydraulic head is apparent. As sb increases, the
mean head distribution approaches a straight line that corresponds

to the uniform head distribution. Winter and Tartakovsky [2002]

noted a similar behavior for one-dimensional flow in composite

media.

3.2. Hydraulic Head Variance

[15] Similar to evaluating mean hydraulic head, we compute

hydraulic head variance in two stages [Winter and Tartakovsky,

2000]. First, we evaluate the first-order approximation of head

variance conditioned on b,

s2h x bjð Þ
� 	 1ð Þ

¼ �
X2
i¼1

Z
�i bð Þ

C
1ð Þ
Kih

y; x bjð Þry h
0ð Þ

y bjð Þ � ry Gb y; xð Þdy ð11Þ

where the first-order approximation of the cross covariance CKih(y,

x) = K 0
i yð Þh0 xð Þ is found as

C
1ð Þ
Kih

y; x bjð Þ ¼ �K2
gi

Z
�i bð Þ

CYi y; zð Þ rz � h
0ð Þ

z bjð Þrz Gb

� z; xð Þ dz: ð12Þ

Figure 4 shows the results of this calculation for three realizations

of the inner square’s size, b/l = 0.2, 1.0, and 4.0.

[16] Then, we use the law of large numbers to obtain

s2h xð Þ
� 	 1½ �� 1

nb

X
b

s2h x bjð Þ
� 	 1½ �

: ð13Þ

The resulting hydraulic head variance for sb = 0.5 is depicted in

Figure 5. Note that our composite media approach produces the

local minimum in head variance at the center of the inclusion. This

is in contrast with standard, statistically homogeneous models that

for similar flow domains would result in the maximum of head

variance at the domain center [e.g., Tartakovsky and Mitkov, 1999].

A similar effect has been noted when head statistics are

Figure 5. The first-order approximation of hydraulic head variance, sh
2(x), for sb = 0.5.
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conditioned on local measurements of hydraulic conductivity

[Neuman, 1997, and references therein].

[17] Figure 6 explores the effects of the uncertain size of

inclusions on one’s ability to accurately approximate hydraulic head

variance. Figure 6 shows the longitudinal cross section, x2 = 6, of

the first-order approximation of hydraulic head variance, sh
2(x1), for

several values of variance of the inner square size. The perfectly

known (deterministic) geometry of the inclusion corresponds to

sb
2 = 0. The increasing degree of uncertainty about the size of the

inner square corresponds to a larger value of sb
2.

[18] The actual values of head variance depend on a combina-

tion of factors: (1) the extent of the conditional inner domain which

defines the domain of integration in equations (11) and (12), thus

affecting the weight of the conditional conductivity covariance;

and (2) the relative (empirical) frequency of realizable inner

domain’s sizes, which corresponds to the probabilistic weighted

average in equation (13). Inclusions whose size has a low proba-

bility contribute very little to the total head variance, even though

the corresponding conditional variance might be quite large.

[19] The accuracy of the solutions of our moments equations is

demonstrated by comparing them with Monte Carlo simulations in

Figure 7 for sb = 1. This comparison is nearly perfect.

4. Uncertain Geometry Versus Uncertain
Conductivity

[20] In this section we compare the relative importance of the

two sources of uncertainty for the flow configuration of Figure 1.

The case of random boundaries separating media with determin-

istic properties is conceptually similar to problems considered by

Shvidler [1986] and Levermore et al. [1986]. On the other hand,

the conditional simulations in section 3 of this paper serve as an

example of flow domains consisting of materials with random

properties that are separated by deterministic boundaries.

[21] We start by considering flow where the hydraulic properties

of the two materials are deterministic, while the inclusion size is

random. Statistics of the hydraulic head distribution were com-

puted by Monte Carlo simulations. The previously generated 5000

values of b were used in the Monte Carlo framework.

[22] We then compare these results with the head statistics

obtained for the case where the hydraulic properties of the two

materials are random, while the inclusion size is deterministic. We

set b = 1.2, while using the same conductivity statistics as in the

previous section. The resulting head statistics are the same as the

conditional statistics for the b = 1.2 realization obtained in section 3.

[23] Next we examine the relative effects of each source,

geometry or conductivity, of uncertainty. Figure 8 compares the

longitudinal cross section at x2 = 6 of mean hydraulic head,
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Figure 6. The longitudinal cross section x2 = 6 of the first-order
approximation of hydraulic head variance, sh

2(x1), for various
degrees of uncertainty in the size of the inclusion.

Figure 7. The contour map of the hydraulic head variance
computed by the moments equations (solid lines) and by Monte
Carlo simulations (dashed lines).
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Figure 8. Comparison between the longitudinal cross-section of
mean hydraulic head computed for (1) uncertain geometry and
uncertain hydraulic conductivities (solid line), (2) uncertain
geometry but known conductivities (dashed line), and (3) known
geometry but uncertain conductivities (dotted line).
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h[1](x1), resulting from (1) uncertainty in both the inclusion size

and hydraulic conductivities, i.e., the full composite media model,

(2) uncertainty only in the inclusion size, and (3) uncertainty only

in hydraulic conductivities of the two materials. It is clear from

Figure 8 that the uncertain geometry smoothes mean head profiles

and captures the main features of the mean head estimated by the

full composite model.

[24] Uncertainty associated with our head estimators in Figure 8

is quantified by the head variance shown in Figure 9. Both

simplified models, when either the boundary is fixed and conduc-

tivity is random or when the boundary is random and conductivity is

fixed, underestimate the actual head variance of the composite

system. This is to be expected since each ignores a source of

uncertainty. When the boundary is random but conductivities are

fixed, head variance peaks in the region of uncertainty of the

boundary location but approaches zero at the domain center, where

the probability of being in the inner material is almost 1. Although

this model replicates the mean behavior of the composite model

almost perfectly, it greatly underestimates head uncertainty. Fur-

thermore, the shape of the variance estimate is qualitatively wrong.

On the other hand, the model with the fixed boundary and random

conductivity, which failed to replicate the mean behavior of the

composite model, provides a better estimate of head variance, both

qualitatively and quantitatively. Nonetheless, this model still intro-

duces local minima in the variance at the fixed boundary locations.

5. Comparison With Deterministic Trend Models

[25] Previous attempts to analyze statistically inhomogeneous

fields have relied on models with deterministic trends in the mean

imposed on a homogeneous random field [e.g., Neuman and Jacob-

sen, 1984; Rajaram and McLaughlin, 1991; Li and McLaughlin,

1995]. In essence, this type of random field is statistically homoge-

neous once the mean trend has been removed. The fundamental

weakness of such models is that a formation composed of different

materials must nonetheless display the same second-order moments

at every point. That is at best an approximation. When applied to a

layered medium, for instance, the trend model requires the same

covariance structure in every layer, a very dubious assumption.

[26] This raises the question of how accurate such approxima-

tions are in general. We begin to address this question by compar-

ing head statistics from two different trend models (model 1 and

model 2) with that from the composite model. We use the setup in

Figure 1 as our test case. In model 1 we represent the trend by a

step function, i.e., Y = �4.6 inside the square inclusion and Y =

�13.8 otherwise. The half-length of the inner square is known and

taken to be b = 1.2. In model 2 we use our extensive samples of
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Figure 9. Comparison between the longitudinal cross-section of
hydraulic head variance computed for (1) uncertain geometry and
uncertain hydraulic conductivities (solid line), (2) uncertain
geometry but known conductivities (dashed line), and (3) known
geometry but uncertain conductivities (dotted line).

Figure 10. Deterministic trend in log conductivity for Model 2,
which is obtained by using local values corresponding to sb = 1.
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Figure 11. Mean head distributions for our composite media
model and for two statistically homogeneous models with
deterministic trends.
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Y(x|b) and b to compute the sample mean Y (x), which we then use

as a deterministic trend. Note that actually implementing model 2

would require either a large number of realizations from an

ensemble of natural porous media or a level of ergodicity, which

cannot be justified when the composite model is appropriate, i.e.,

when we have a statistically inhomogeneous field characterized by

uncertain geometry. Clearly, each model is an approximation of the

actual field that substitutes a pseudohomogeneous field with

deterministic trend for the truly inhomogeneous field.

[27] Figure 10 depicts a two-dimensional image of the resulting

Y (x), obtained by using the local values corresponding to the case

with unit variance of the inner square’s half-side. Similar plots

were obtained for all tested values of the inner domain’s size

variance.

[28] Figure 11 compares the longitudinal cross-sections of mean

hydraulic head, h[1](x1), at x2 = 6 resulting from our composite

model with sb = 1 to the models with deterministic trends (models

1 and 2). Both mean head profiles obtained from the deterministic

trend models show unrealistically sharp contrasts between regions

belonging to different materials. The trend models introduce a level

of specificity that is not justified by geometrically uncertain data.

The much more linear mean head estimate obtained from the

composite model reflects both kinds of uncertainty. This degree

of linearity increases with increasing uncertainty in location of the

inner material boundary, reflecting the loss of information. It must

be stressed that this level of uncertainty cannot be removed by

recourse to an arbitrary and almost certainly incorrect deterministic

boundary specification.

[29] Figure 12 depicts the corresponding cross section of

hydraulic head variance, sh
2, for our composite model and for the

two statistically homogeneous models with deterministic trends

(models 1 and 2). As expected, the pattern of head variance for the

homogeneous increment model with trend of Y corresponding to

model 1 closely resembles the composite model variance condi-

tioned on b = 1.2. The discrepancies among the curves can be

explained on the basis of equation (1), by taking into account the

different spatial patterns of Kgi , log conductivity correlations, and

mean hydraulic head gradients.

[30] This preliminary analysis shows that when flow is affected

by structural nonstationarity, models with a deterministic trend can

be expected to give a poor estimate of the statistics of head. Indeed,

trend models provide a false sense of accuracy while instead

consistently underestimating the variance of head.

6. Summary

[31] When porous media are composed of diverse materials,

statistical analysis of flow dynamics requires a systematic

approach to nonstationarity. The composite medium model of

Winter and Tartakovsky [2000, 2002] is a straightforward repre-

sentation of the kinds of nonstationarity usually encountered in

groundwater hydrology. It is based on two scales of heteroge-

neity: The large-scale distribution of units of uniform materials is

represented by an arrangement of random volumes (‘‘blocks’’) of

different materials. Each block is composed of a single material;

blocks do not overlap. Local variability within a block is

represented by statistically homogeneous distributions of param-

eters, especially conductivity, specific to the block’s material

type.

[32] We used a very large number of Monte Carlo simulations to

examine several aspects of the theory of composite media that are

not easily investigated analytically. We investigated the properties

of the composite medium model in the setting of Figure 1, which

corresponds to an impermeable lens embedded in a permeable

medium. The significance of this relatively simple setting is

twofold. It allowed us to demonstrate the practical applicability

of the composite media approach developed by Winter and

Tartakovsky [2000, 2002]. Moreover, in numerical models of flow

and transport, complex geological structures are commonly repre-

sented in numerical models of flow and transport as a collection of

rectangular blocks with homogeneous hydraulic properties.

[33] First, we evaluated the accuracy of the low-order perturba-

tion expansions that are the motivation for much of the theory. In

principle, the composite medium theory allows expansions in small

parameters s2YM , instead of in sY
2, the total variance across all

materials of log conductivity. The variances s2YM are specific to

each material, M, and are much smaller than sY
2. We compared the

small variance expansions of the first two moments of head in

Winter and Tartakovsky [2000, 2002] to Monte Carlo simulations.

The agreement is excellent in all cases, suggesting that first-order

in s2YM expansions lead to reliable approximations of the first two

moments.

[34] Second, we compared the relative importance of large-scale

and local variability in the composite medium model. Our prelimi-

nary results make it clear that large-scale block variability can have

a significant effect on the moments of head.

[35] Third, we compared the complete composite medium

model to linear trend approximations that represent heterogeneity

as a deterministic trend in log conductivity. Models that represent

nonstationarity as a deterministic trend in mean conductivity

underestimate the state of uncertainty because they do not account

for uncertainty in the block geometry. They indicate an unwar-

ranted certainty about the spatial distribution of mean head and

they usually underestimate head variance.
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