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[1] We introduce a stochastic model of flow through highly heterogeneous, composite
porous media that greatly improves estimates of pressure head statistics. Composite
porous media consist of disjoint blocks of permeable materials, each block comprising a
single material type. Within a composite medium, hydraulic conductivity can be
represented through a pair of random processes: (1) a boundary process that determines
block arrangement and extent and (2) a stationary process that defines conductivity within
a given block. We obtain second-order statistics for hydraulic conductivity in the
composite model and then contrast them with statistics obtained from a standard univariate
model that ignores the boundary process and treats a composite medium as if it were
statistically homogeneous. Next, we develop perturbation expansions for the first two
moments of head and contrast them with expansions based on the homogeneous
approximation. In most cases the bivariate model leads to much sharper perturbation
approximations than does the usual model of flow through an undifferentiated material
when both are applied to highly heterogeneous media. We make this statement precise. We
illustrate the composite model with examples of one-dimensional flows which are
interesting in their own right and which allow us to compare the accuracy of perturbation
approximations of head statistics to exact analytical solutions. We also show the boundary
process of our bivariate model is equivalent to the indicator functions often used to
represent composite media in Monte Carlo simulations. INDEX TERMS: 1869 Hydrology:

Stochastic processes; 1829 Hydrology: Groundwater hydrology; 1832 Hydrology: Groundwater transport;

3210 Mathematical Geophysics: Modeling; KEYWORDS: random, stochastic, nonstationary, effective,

upscaled, decomposition

1. Introduction

[2] It has become common to quantify uncertainty in
groundwater flow models by treating hydraulic conductiv-
ity, K, and derived quantities like hydraulic head, h, as
random fields. For steady state flows the statistics of h can
be obtained from the stochastic flow equation

r � K xð Þrh xð Þ½ � þ f xð Þ ¼ 0 ð1Þ

when boundary conditions are given and the statistics of K
and the (random) source function f (x) are known. Usually
boundary and initial conditions are also uncertain, but their
effects are additive, so we limit our attention here to the
effects of highly variable conductivity.
[3] Following Winter and Tartakovsky [2000], we con-

centrate in this paper on flow through composite porous
media. A composite medium consists of disjoint facies, or
blocks of internally homogeneous materials. An obvious
example is a stratified porous medium in which the indi-
vidual layers correspond to different materials, for instance
sandstones and limestones. Winter and Tartakovsky [2000]
models composite media as a bivariate stochastic process
that depends on (1) the random geometry of the blocks,

primarily the locations of their boundaries, and (2) on the
random spatial distribution of hydraulic conductivity within
a block.
[4] We use the Reynolds decomposition A(x) = A(x) +

A0(x) to represent a random field A as the sum of a mean,
A(x), and a zero-mean random deviation, A0(x), with
variance sA

2(x). The average steady state flow equation
becomes

r � K xð Þrh xð Þ
� �

�r � r xð Þ þ f xð Þ ¼ 0 ð2Þ

which consists of a deterministic mean part, Krh, and a
deterministic residual flux, r ¼ �K 0rh0.
[5] Solutions of (2) require the mean conductivity, K(x),

and in most cases, a method for closing an expansion of
r(x). Usually r(x) is approximated through perturbation
expansions based on sY2, the variance of Y = ln K, the
logarithm of conductivity. This approach works well so long
as sY

2 is small. Suppose that the usual assumptions of
stochastic hydrology hold: (1) The statistics of conductivity
within individual blocks of material are known, (2) the
conductivity of each material is statistically homogeneous,
and (3) the variance of conductivity within a material is
small, along with (4) the statistics of the block geometry are
known and (5) the scale used to measure conductivity is
much smaller than the scale of the blocks. Then our
composite medium model can be applied and solutions for
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h(x) can be sharpened by developing expressions for K(x)
and r(x) that reflect heterogeneity at the larger, across-block
scale. Additionally, we can approximate sh

2(x) and thus
obtain reasonably tight bounds on h(x).
[6] A considerable literature has grown up that analyzes

Darcy flows in statistically homogeneous media [Shvidler,
1964; Dagan, 1989; Gelhar, 1993; Dagan and Neuman,
1997]. It has wide utility because many applications of
Darcy’s Law deal with horizontal flow in a single layer of
a stratified medium and there it is reasonable to assume
that sY

2 is small. The case is different at larger scales
where conductivity statistics are affected by variations
among blocks of various materials. In particular, McMillan
and Gutjahr [1986] and Desbarats and Bachu [1994]
found that vertical correlation scales of hydraulic conduc-
tivity are meaningless for many stratified aquifers, while
Gómez-Hernández and Wen [1998] questioned the multi-
Gaussian nature of conductivity fields in fractured geo-
logic environments.
[7] One approach for dealing with composite media is to

superimpose a deterministic trend on a homogeneous ran-
dom field of (log) hydraulic conductivity [Neuman and
Jacobsen, 1984; Rajaram and McLaughlin, 1990; Indelman
and Rubin, 1995]. While this approach incorporates some
information about the geological structure of a medium, it
has important disadvantages. First, it assumes a homoge-
neous correlation structure throughout a composite medium.
Consequently, it becomes necessary to assume that the
conductivity variances in different geological blocks are
the same (a dubious assumption) and correlations between
points in one block are the same as correlations between
points in different blocks (a very dubious assumption).
Secondly, this approach does not provide a means for
quantifying structural uncertainty of the medium.
[8] Another approach to describing hydraulic conductiv-

ity in composite media is to represent conductivity as a
multi-component random field, but without regard to the
material membership of specific points. Rubin and Journel
[1991] used indicator functions to simulate multi-modal
distributions of random conductivity fields. Desbarats
[1987, 1990] numerically analyzed flow and transport in
log conductivity fields with bimodal distributions. Rubin
[1995] derived an analytical expression for the effective
conductivity of bimodal formations. Although superficially
similar to the model proposed by Winter and Tartakovsky
[2000] and analyzed here, multi-modal models differ from
the composite model in several important respects. In
particular, they do not use geometrical information about
the arrangement of blocks. Instead, these models lump
observations of conductivity together and then estimate
statistics as if the medium were homogeneous. In most
cases such an approach leads to very coarse estimates of
K(x), values of sY2 that are large, and hence expansions for
r(x) that are inaccurate. Since they result in constant mean
conductivity and variance, we refer to such models as
homogeneous approximations.
[9] Winter and Tartakovsky [2000] discusses mean flow

in composite porous media. We extend that analysis in
several directions. In section 2 we derive second order
statistics and densities for K(x) in composite media. Then
we are in a position to compare the homogeneous approx-
imation to the composite medium model in section 3.Winter

and Tartakovsky [2000] points out that the homogeneous
approximation can lead to artificially high variances of log
conductivity. We derive the results on which that conclusion
is based and also give precise criteria for when one model is
to be preferred to another. We develop perturbation approx-
imations in section 4 and are able thereby to justify the
claim of Winter and Tartakovsky [2000] that the composite
medium model leads to sharper perturbation expansions
than other models, specifically the homogeneous approx-
imation. Equally important, we also determine the variance
of h in section 4. We illustrate the composite medium model
with a one-dimensional example in section 5. Since we can
obtain an analytic solution in this case, we can evaluate the
accuracy of perturbation approximations. Winter et al.
[2002] give numerous examples of flows through higher
dimensional composite media. We examine the relationship
between the random boundary representation and indicator
probabilities in Appendix A. Since our Green’s Function
solutions for the first two moment of h require integration
over the random boundary process which much of our
theory is based on, it is important to see their equivalence.

2. Statistics of Composite Media

[10] In general, a porous medium contains units of many
types of material. In the composite model, units are disjoint
blocks and each unit is itself a statistically homogeneous
medium of specific material type Mi. We follow Winter and
Tartakovsky [2000] and consider porous media composed of
only two types of material (M1 and M2) for the moment.
Extensions to multiple materials are obvious, and we give
them at the end of this section. A point, x, of the medium lies
inM1 with probability P[x 2M1] = P1(x) and in materialM2

with probability P[x 2 M2] = 1 � P[x 2 M1] = P2(x). As
noted, Winter and Tartakovsky [2000] supposes that the
random field K has homogeneous densities pi(k(x)), pi(k(x),
k(y)),. . .within the units i = 1, 2. Usually, but not necessarily,
pi(k) is log-normal. The discussion in this section does not
require small s2Yi , although perturbation approximations of
heads will be much more robust when the s2Yi are small.
[11] Since the conductivity density, p(k), is the marginal

over M of p(k, M ) = p(k|M )PM (x) = pM (k)P[x 2 M ], Winter
and Tartakovsky [2000] easily shows that for any point x,

p kð Þ ¼ P1 xð Þp1 kð Þ þ P2 xð Þp2 kð Þ ð3Þ

is the location-dependent mixture of the within-unit
densities, p1 and p2, where the weighting function is the
probability of block membership. When the point x is deep
within block i (far from the corresponding boundaries), Pi 
1 and p(k)  pi(k). As x approaches a boundary between the
materials, p(k) approaches the average of p1 and p2.
[12] The joint distribution p(k(x), k(y)) � p(kx, ky) is also

easy to derive. Using Pij(x, y) = P[x 2 Mi, y 2 Mj] and
pij(kx, ky) = p(kx, ky|x 2 Mi, y 2 Mj) to simplify the notation,

p k xð Þ; k yð Þð Þ ¼ P11 x; yð Þp11 kx; ky
� �

þ P12 x; yð Þp1 kxð Þp2 ky
� �

þ P21 x; yð Þp2 kxð Þp1 ky
� �

þ P22 x; yð Þp22 kx; ky
� �

ð4Þ

if we make the reasonable physical assumption that K(x)
and K(y) are independent when x and y are in different
materials, i.e., pij(kx, ky) = pi(kx)pj(ky). Higher order densities
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can be similarly derived, but are not needed in the
remainder of our discussion.
[13] Let the constants, Kj and sj, be the mean and stand-

ard deviation respectively of conductivity in material j. It
follows from (3) and elementary properties of mixtures that
the ensemble average of K(x) is a weighted sum of means in
the two material types [Winter and Tartakovsky, 2000],

K xð Þ ¼ P1 xð ÞK1 þ P2 xð ÞK2: ð5Þ

Since the weights depend on the location, x, it is clear that K
is not constant. Of course, K(x)  Ki when x is deep in Mi.
[14] The ensemble variance,

s2K xð Þ ¼ P1 xð Þs21 þ P2 xð Þs22 þ P1 xð ÞP2 xð Þ K1 � K2

� �2
; ð6Þ

is small far from a boundary (where either P1  1 or P2  1)
so long as smax = max(s1, s2) is small; but its magnitude
near a boundary depends on (K1 � K2)

2 and can become
quite large.
[15] Given conductivity covariance Ci(r) within the mate-

rial Mi, it is easy to show that the covariance of conductiv-
ities K(x) and K(y) separated by a distance r = ||x � y|| is

CK x; yð Þ ¼ P11 x; yð ÞC1 rð Þ þ P22 x; yð ÞC2 rð Þ þ
�
P11 x; yð Þ

� P1 xð ÞP1 yð Þ
�
K

2

1 þ P22 x; yð Þ � P2 xð ÞP2 yð Þ½ �K2

2

þ
�
P12 x; yð Þ þ P21 x; yð Þ � P1 xð ÞP2 yð Þ

� P2 xð ÞP1 yð Þ
�
K1K2: ð7Þ

Clearly (7) reduces to sK
2(x) when x = y. Also, CK (x, y) = 0

when ||x � y|| is large enough that K(x) and K(y) are
effectively independent.
[16] Formulae for geological formations consisting of

multiple facies, M = 1,. . . , n are analogous,

p kð Þ ¼
Xn
i¼1

pi kð ÞPi xð Þ ; ð8Þ

K xð Þ ¼
Xn
i¼1

Pi xð ÞKi ; ð9Þ

s2K xð Þ ¼
Xn
i¼1

Pi xð Þs2i þ
Xn
i¼1

Xn
j>i

Pi xð ÞPj xð Þ Ki � Kj

� �2
; ð10Þ

and

CK x; yð Þ ¼
Xn
i¼1

Pii x; yð ÞCi rð Þ þ
Xn
i¼1

Pii x; yð Þ � Pi xð ÞPi yð Þ½ �K2

i

þ
Xn
i¼1

Xn
j>i

�
Pij x; yð Þ þ Pji x; yð Þ � Pi xð ÞPj yð Þ

� Pj xð ÞPi yð Þ
�
KiKj: ð11Þ

Formulae for log hydraulic conductivity can be obtained by
substituting Y for K in (3)–(11).

3. Homogeneous Approximation

[17] We compare our inhomogeneous model to models in
which an inherently inhomogeneous composite medium, �,
is treated as a homogeneous random field. We examine the

case of two blocks, M1 and M2, since extensions to multiple
blocks are obvious. The homogeneous approximation arises
when we take a random sample from � of measurements of
K without regard to their membership in material M1 or M2.
The constant probability, Qi, that a point drawn without
knowledge of the medium’s structure lies in Mi is obviously

Qi ¼ Vi

V


R
� P x 2 Mi½ � dxR

� dx
; ð12Þ

where V is the total volume of � and Vi is the volume
occupied by material Mi. Since the homogeneous model
ignores facts about the spatial distribution of the two
materials, p(k) = Q1p1(k) + Q2p2(k).
[18] For a sample of size n the expected value of the

sample mean, Ŷ , is

Yhom�E Ŷ
� �

¼ 1

n

Xn
j¼1

E Yj
� �

¼ 1

n

Xn
j¼1

½Q1Y 1þQ2Y 2

�
¼Q1Y 1þQ2Y 2:

ð13Þ

The maximum error, E(x) = |Q1� P1(x)|Y 1 + |Q2� P2(x)|Y 2,
in the homogeneous approximation of the mean is zero only
at points where Qi = Pi(x).
[19] More importantly, Rubin [1995] and Winter and

Tartakovsky [2000] show that the expected value of the
sample variance, s2, is

s2Yhom � E s2
� �

¼ Q1s2Y1 þ Q2s2Y2 þ Q1Q2 Y 1 � Y 2

� �2
: ð14Þ

Here we discuss the implications of this fact. In most
cases (Y 1 � Y 2)

2 � 1 so s2Yhom > 1. In fact, for small
variances s2Yi ; s

2
Yhom

will only be small when (1) either Q1 
0 or Q2  0, or (2) Y 1  Y 2. In each of those cases a
homogeneous model is obviously a good approximation.
In other cases the homogeneous model yields large sY

2

and thus will lead to incorrect perturbation approximations
for r(x).
[20] To make this precise, we examine the variance

s2YhomðQÞ as a function of Q = (Q1, Q2)
T. Its maximum for

Q1 2 [0, 1],

s2max ¼
s2Y1 þ s2Y2

2
þ

s2Y1 � s2Y2
h i2
4 Y 1 � Y 2

� �2 þ Y 1 � Y 2

� �2
4

ð15Þ

occurs at

Qmax
1 ¼ 1

2
þ

s2Y1 � s2Y2
2 Y 1 � Y 2

� �2 ð16Þ

so long as js2Y1 � s2Y2 j < Y 1 � Y 2

� �2
; otherwise it occurs at

the end-points where s2max ¼ s2Y1 ¼ s2Y2
	 


when Q1
max = 1

(= 0).
[21] Whens2Y1 > s2Y2

�
s2Y1 < s2Y2

�
there will be values ofQ1

forwhichs2Y1 > s2Yhom
�
s2Y2 > s2Yhom

�
. Hence therewill be cases

in which the homogeneous approximation leads to tighter
perturbation expansions than the heterogeneous model. This
obviously occurs when Q1

max = 1 (Q1
max = 0). Otherwise,

WINTER AND TARTAKOVSKY: FLOW IN COMPOSITE AQUIFERS 23 - 3



s2Y1 > s2Yhom
�
s2Y2 > s2Yhom

�
when Q1< Q0

1 ¼ ½s2Y1 �s2Y2 �=
�
Y 1�Y 2

�2�
Q2 < Q0

2 ¼
�
s2Y2 � s2Y1

�
=
�
Y 1 � Y 2

�2Þ. It is worth noting that
Q1

max � Q1
0 = Q2

max. When Q1  1, a homogeneous model
based on material 1 is obviously called for, and a homoge-
neous model in material 2 is probably appropriate when 0 <
Q1 < Q1

0. When Q1
0 < Q1, a heterogeneous model is in order.

4. Statistics for Flow in Composite Media

[22] Once K(x) has been found, the flow problem reduces
to finding r xð Þ ¼ �K 0 xð Þrh0 xð Þ for given P[x 2 Mi] or,
equivalently for given boundary process p(b). The residual
fluxes within a unit, ri(x), can be obtained in a variety of
ways. In this paper we use an approach based on random
Green’s functions [cf. Neuman and Orr, 1993; and Tarta-
kovsky and Neuman, 1998].
[23] We consider flow in a domain, � = �1 [ �2,

composed of two disjoint units �1 and �2, with an uncertain
boundary, �12(x), between them. More complicated cases
are easy to derive from this one, and in fact, most problems
collapse to this one anyway since the influence of boundary
uncertainty is usually restricted to boundaries between two
units.
[24] In this case, the random hydraulic conductivity K(x)

belongs to either of the distinct populations

K xð Þ ¼ K1 xð Þ x 2 �1

K2 xð Þ x 2 �2;

�
ð17Þ

and the steady state flow problem (1) can be rewritten as

r � Ki xð Þrhi xð Þ½ � þ f xð Þ ¼ 0 x 2 �i ð18Þ

subject to the boundary

hi xð Þ ¼ H xð Þ x 2 �D ¼ �D1
[ �D2

ð19Þ

Ki xð Þrhi xð Þ � n xð Þ ¼ Q xð Þ x 2 �N ¼ �N1
[ �N2

ð20Þ

and the contact surface, �12 = �1 \ �2, conditions

h1 xð Þ ¼ h2 xð Þ x 2 �12 ð21Þ

K1 xð Þrh1 xð Þ � n1 ¼ K2 xð Þrh2 xð Þ � n2: ð22Þ

Of course, the head distribution in (1) now takes the form
h(x) � hi(x) for x 2 �i.
[25] We compute the ensemble statistics in two steps.

First, we condition our calculations on known location of
the boundary. The corresponding conditional mean of a
random field A(x) is denoted in the sequel by Â(x) �
A(x|�12). Second, we average over the ensemble of �12.
[26] Taking the conditional (for fixed �12) mean of (18)–

(22) yields

r � Kirĥi � r̂i

h i
þ f ¼ 0 x 2 �i ð23Þ

subject to the boundary

ĥi ¼ H x 2 �D ð24Þ

Kirĥi � r̂i

h i
� n ¼ Q x 2 �N ð25Þ

and the contact surface conditions (where, of course, n1 =
�n2 � n)

ĥ1 ¼ ĥ2 x 2 �12 ð26Þ

K1rĥ1 � r̂1

h i
� n ¼ � K2rĥ2 � r̂2

h i
� n x 2 �12: ð27Þ

Assuming that the driving forces f 0, H 0 and Q 0 are
statistically independent from Kj

0, we show in Appendix B
that the conditional residual fluxes r̂j(x) are given exactly by

r̂j xð Þ ¼
X2
i¼1

Z
�i

aij x; yð Þryĥi yð Þdyþ
X2
i¼1

Z
�i

bj x; yð Þr̂i yð Þdy

ð28Þ

where the second-rank tensors aij and bj are the mixed
conditional statistical moments,

aij x; yð Þ ¼ K 0
j xð ÞK 0

i yð ÞryrT
xG y; xð Þ

D E
bj x; yð Þ ¼ K 0

j xð ÞryrT
xG y; xð Þ

D E
:

ð29Þ

Here the angle brackets are equivalent to placing a ‘‘hat’’
over the entire expression. The random Green’s function G
is defined, for each realization of �12, as the solution of
(18)–(22) with f (x) = d(x � y), the Dirac delta function, and
the homogeneous boundary conditions.
[27] Evaluating these moments requires some kind of

approximation. This problem is known as a problem of
closure, and it is traditionally solved by perturbation anal-
yses in a small parameter sY2, the variance of (natural) log
hydraulic conductivity, Y(x) = ln K(x) [Dagan, 1989; Neu-
man and Orr, 1993; Tartakovsky and Neuman, 1998]. It is
at this step where the advantages of our approach become
apparent. Since the kernels aij and bj are defined for each of
the geological facies separately, we can use the standard
perturbation expansions in the variances, s2Yj , which, as
discussed in the previous sections, are relatively small
compared with the total variance sY

2. The first-order (in
s2Yj ) approximation of the residual flux is given by

r̂
1ð Þ
j xð Þ¼KGj

xð Þ
X2
i¼1

Z
�i

KGi
yð ÞCYij x; yð ÞryrT

xG y; xð Þryĥ
0ð Þ yð Þ dy

ð30Þ

where KGj
¼ exp Y j

� �
is the geometric mean of Kj,

CYij x; yð Þ ¼ Y 0
i xð ÞY 0

j yð Þ is the correlation function, and
G(y, x) = Ĝ(0)(y, x) is the zeroth-order approximation of
the conditional mean Green’s function. If hydraulic con-
ductivities of the blocks �1 and �2 are uncorrelated, one has

r̂
1ð Þ
j xð Þ ¼ KGj

xð Þ
Z
�j

KGj
yð ÞCYjj x; yð ÞryrT

xG y; xð Þryĥ
0ð Þ yð Þdy:

ð31Þ

[28] Now the first two terms in the perturbation expan-
sion, ĥ(x) = ĥ(0)(x) + ĥ(1)(x) + . . . are easily found as
(Appendix B)

ĥ 0ð Þ xð Þ ¼
X2
i¼1

Z
�i

f ðyÞG y; xð Þdy�
X2
i¼1

Z
�Di

Hi yð ÞKGi
yð Þn

� ryG y; xð Þdyþ
X2
i¼1

Z
�Ni

Qi yð ÞG y; xð Þdy: ð32Þ
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and

ĥ 1ð Þ xð Þ ¼ �
X2
i¼1

Z
�i

KGi

s2Yi
2

rĥ 0ð Þ xð Þ � r̂
1ð Þ
i xð Þ

" #
� rG y; xð Þ dy :

ð33Þ

[29] We now recall that the first-order approximation of
the solution to the mean flow equations (23)–(27), ĥ[1] �
ĥ(0) + ĥ(1), was obtained by fixing the boundary �12 between
the two geological facies �1 and �2. It now remains to
average this solution over all possible realizations of �12,
i.e., to evaluate the integral

h
1½ �
xð Þ ¼

Z
ĥ
1½ �
xð Þ p �12ð Þ d�12 : ð34Þ

[30] The uncertainty associated with our head estimator,
h[1], can be characterized by head variance s2h xð Þ ¼
h0 xð Þh0 xð Þ. We show in Appendix B that for any given
boundary configuration �12, the first-order approximation
of the conditional head variance can be found as

ŝ2hðxÞ
� � 1ð Þ¼ �

X2
i¼1

Z
�i

Ĉ
1ð Þ
Kih

y; xð Þryĥ
0ð Þ yð Þ � ryG y; xð Þdy ð35Þ

where the first-order approximation of the conditional cross-
covariance Ĉkih y; xð Þ ¼ K 0

i
dyð Þh0 xð Þ is given by

Ĉ
1ð Þ
Kih

y; xð Þ ¼ � KGi
yð Þ

X2
j¼1

Z
�j

KGj
zð ÞCYij y; zð Þrzĥ

0ð Þ zð Þ

� rzG z; xð Þ dz: ð36Þ

In deriving (35) we assumed that the driving forces, f, h, and
Q, are deterministic. Extensions to the case of random
driving forces are relatively straightforward [Tartakovsky
and Neuman, 1999].
[31] Assuming, as before, that hydraulic conductivities of

different geological facies are statistically independent, (36)
reduces to

Ĉ
1ð Þ
Kih

y; xð Þ ¼ �KGi
yð Þ

Z
�i

KGi
zð ÞCYii y; zð Þrzĥ

0ð Þ zð Þ � rzG z; xð Þdz:

ð37Þ

In analogy to (34),

s2h xð Þ
� � 1ð Þ ¼

Z
ŝ2h xð Þ
� �ð1Þ

p �12ð Þ d�12 : ð38Þ

5. Example: One-Dimensional Flow

[32] We illustrate our approach with examples of one-
dimensional flows. Since we can obtain the exact solution to
(23)–(27) in this case, we can compare the accuracy of
perturbation expansions. Furthermore, many porous media

problems consist of vertical flows in heterogeneous media,
so this problem is also important in its own right.
[33] Consider steady state one-dimensional flow,

d

dx
K xð Þ dh xð Þ

dx

� �
¼ 0 x 2 ð0; 1Þ ð39Þ

subject to the boundary conditions

K xð Þ dh xð Þ
dx

¼ �q x ¼ 0 ð40Þ

h xð Þ ¼ 0 x ¼ 1: ð41Þ

The porous medium consists of two materials (say, sand and
clay) with random hydraulic conductivities K1(x) and K2(x)
connected together at the point b, so that now �1 = (0, b),
�2 = (b, 1),

K xð Þ ¼
K1ðxÞ 0 < x < b

K2 xð Þ b < x < 1

(
ð42Þ

and

h b�ð Þ ¼ h bþ
� �

ð43Þ

K1 b�ð Þ dh x ¼ b�ð Þ
dx

¼ K2 bþ
� � dh x ¼ bþ

� �
dx

: ð44Þ

Here b+ and b� indicate the limit as x ! b from the left and
the right, respectively. The exact position of the point of
contact is not known precisely. Instead, it is assumed that b
is a normally distributed random variable with known mean
b and variance sb

2. Hydraulic conductivities K1(x) and K2(x)
are treated as log normal (multivariate) statistically homo-
geneous random fields.
[34] For any given b, the zeroth-order approximation of

the Green’s function for this problem, G(y, x) satisfies (39)–
(44) with Ki(x) replaced by their constant geometric means
KGi

, the source function replaced by the delta function, and
with homogeneous boundary conditions. Following Stak-
gold [1998, p. 91], one can easily show that, for 0 < x < b,

G y; xð Þ ¼
x�y
KG1

H y� xð Þ þ b�x
KG1

þ 1�b
KG2

0 < y < b

1�y
KG2

b < y < 1

8<: ð45Þ

and, for b < x < 1,

G y; xð Þ ¼
1�x
KG2

0 < y < b

x�y
KG2

H y� xð Þ þ 1�x
KG2

b < y < 1

8<: ð46Þ

where the Heaviside function H is the one-dimensional
equivalent of the indicator functions used in the previous
sections.
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[35] For the problem under consideration, it is easy to
show that one-dimensional versions of (32), (31), and (33)
give rise to the conditional mean,

ĥ 0ð Þ xð Þ ¼ q

b�x
KG1

þ 1�b
KG2

0 < x < b
1�x
KG2

b < x < 1

(
ð47Þ

r̂
1ð Þ
1 xð Þ ¼ � qs2Y1 ð48Þ

r̂
1ð Þ
2 xð Þ ¼ � qs2Y2 ð49Þ

and

ĥ 1ð Þ xð Þ ¼ q

s2
Y1

2
b�x
KG1

þ
s2
Y2

2
1�b
KG2

0 < x < b
s2
Y2

2
1�x
KG2

b < x < 1:

8<: ð50Þ

Hence

ĥ 1½ � xð Þ ¼ q

1þ
s2
Y1

2

� �
b�x
KG1

þ 1þ
s2
Y2

2

� �
1�b
KG2

0 < x < b

1þ
s2Y2
2

� �
1�x
KG2

b < x < 1:

8>><>>: ð51Þ

Determining the mean head distribution, h[1](x), requires
evaluating the integral (34). Before doing that, we
investigate the accuracy of the first-order approximation
by comparing it with the exact solution of (39)–(44).
[36] Direct integration of (39)–(44) leads to

h xð Þ ¼ qH b� xð Þ
Z b

x

ds

K1 sð Þ þ
Z 1

b

ds

K2ðsÞ

� �
þ qH x� bð Þ

Z 1

x

ds

K2 sð Þ :

ð52Þ

Assuming that Ki(x) are log-normal statistically homoge-
neous fields gives, for any realization of b,

ĥ xð Þ ¼ q

b�x
KH1

þ 1�b
KH2

0 < x < b
1�x
KH2

b < x < 1:

(
ð53Þ

where KHi
¼ KGi

exp �s2Yi=2
	 


are the harmonic means of
Ki(x).
[37] Comparing the approximate solution (51) with the

exact solution (53) shows that our perturbative solution is a
good approximation of the exact one so long as exp
ðsYi=2Þ  1þ sYi=2 is a good approximation. The latter
is strictly valid for sYi < 2, which seems reasonable for
most materials consisting of a single geological unit. (As
was discussed above, fractured segments of a geological
unit can be modeled as a separate unit with its own
hydraulic conductivity.) By contrast, modeling � as a
statistically uniform medium would result in effective
conductivity KH = KG exp(�sY

2/2) whose perturbative sol-
ution contains an approximation exp(sY /2) 1 + sY/2. Since
for composite materials sY might be much larger that 2, the
standard perturbation analysis might not work.
[38] We now proceed to average our solutions (51) or

(53) over all possible realizations of b. For truncated
normally distributed b, the probability density function
p(b) has the form

p bð Þ ¼ 1

W
exp � 1

2

b� b
sb

� �2
" #

W b; sb
� �

¼
Z 1

0

exp � 1

2

b� b
sb

� �2
" #

db :

ð54Þ

Substituting (53) and (54) into (34) yields the mean
hydraulic head. Mean head profiles for q=KH1

¼ 2 and
q=KH2

¼ 1 are shown in Figure 1. Uncertainty in the
location of the contact affects both mean head, h(x), and its
derivative. The magnitude of sb, the standard deviation of b,
is a measure of location uncertainty. Supposing that b = 1/2
and considering h(x) first, we see that large sb leads to an
almost linear trend from one boundary value to the other
(Figure 1). This is to be expected, since in this case we are
basically not sure whether there is one material or two;
hence P(x 2 M1)  P(x 2 M2). In the deterministic case
(sb = 0 and b = b), mean head h(x) exhibits typical behavior:
linear trends in each material and continuity at the boundary,
but with a change in slope,

h xð Þ ¼ q

b�x
KH1

þ 1�b
KH2

0 < x < b
1�x
KH2

b < x < 1:

(
ð55Þ

Other values of sb induce intermediate behavior with the
greatest effect near the location of the expected contact.
Mean hydraulic gradient, the reciprocal of effective
conductivity, is similarly affected (Figure 2).
[39] In the deterministic boundary case (sb = 0) there is a

jump at the boundary, just as there should be. The con-
ductivity random fields are known to be different on each
side of the known boundary. Large sb, on the other hand,
shows an influence of location uncertainty throughout the
domain with a nearly linear trend in the gradient between
the fixed boundary points. Of course, intermediate values of
sb cause mean head gradients to fall between these two
extremes.

Figure 1. Mean hydraulic head distribution for
q=KH1

¼ 2, q=KH2
¼ 1 and several values of the standard

deviation sb.
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[40] If the medium consists of a single material, (55)
reduces to a well known relation [Dagan, 1989; and Gelhar,
1993]

h xð Þ ¼ q

KH

1� xð Þ ð56Þ

where KH1
¼ KH2

� KH

[41] By way of example, Figure 3 presents the one-
dimensional version of (38) based on exponential cova-
riance functions, CYi x; yð Þ ¼ s2Yiexp �jx� yj=lYið Þ with the
correlation length lYi in the ith material. The boundary
conditions dictate that variance is high on the constant flow
boundary at x = 0 and is zero on the boundary at x = 1 where
head is constant (Figure 3). This is the case even when there
is no uncertainty about the position of the interface between
materials (sb

2 = 0). In Figure 3 the expected interface
between the two different materials is at x = 0.5, so there
is a clear distinction in head variance between the two
materials when the location of the interface is certain.
Figure 3 makes it clear that uncertainty about the location
of the interface is an additional source of variability in our
estimates of mean head. Interface uncertainty increases the
head variance at every point in the interval (0, 1) relative to
the fixed interface (sb

2 = 0). The greater is our uncertainty
about the location of b, the greater is the head variance. Of
course head variance decreases no matter how large our
uncertainty in the location of b as we approach the fixed
head boundary at x = 1.

6. Summary

[42] We have analyzed flow in highly heterogeneous
aquifers composed of distinct geological facies, or blocks.
Our approach consists of representing such media as a
doubly stochastic process that depends on (1) the random
locations of block boundaries and (2) the random spatial
distribution of hydraulic conductivity within a block. Hence
the model explicitly includes uncertainty about the large-
scale structure of heterogeneous media which is a source of
variation that is usually excluded from analysis. This leads
to statistically inhomogeneous random conductivity fields.

Although more general formulations of inhomogeneous
fields are possible, our model covers many cases of practical
interest in groundwater hydrology. To illustrate our
approach we derived an analytical solution for one-dimen-
sional flow in a medium composed of two distinct blocks
whose conductivities and contact point, i.e., boundary
location, are random.
[43] Our approach provides a natural framework for

incorporating the results of aquifer characterization in
stochastic models. First, the method includes the kinds of
spatially distributed material heterogeneities, especially
uncertain block boundaries, that are found in most charac-
terization studies. Second, error models for characterization
techniques can be explicitly included in models of random
block boundaries. And third, the outputs of different stat-
istical characterizations can be combined probabilistically.
[44] The main technical contribution of our model is that

it increases the range of applicability of perturbation expan-
sions used in stochastic hydrogeology. These expansions are
usually carried out in the variance of log-conductivity,
which is therefore assumed to be small. However, the
assumption of small variance becomes questionable in
aquifers composed of many facies. In our approach, the
perturbation parameters are the within-block conductivity
variances which are much smaller than their homogeneous
counterpart.
[45] We conclude by mentioning three outstanding issues

we are currently investigating. First, we are evaluating the
relative importance of the two types of uncertainty in
different groundwater flow systems. It is obvious that in
some flow systems structural uncertainty due to between-
block boundaries dominates. For instance, the locations of
pinchouts and high conductivity zones seem to be the main
factors in determining flow in layered fractured media
[Gómez-Hernández and Wen, 1998]. On the other hand,
highly uniform media are most likely dominated by within-
block variation. The analytical solution presented in Figure
3 suggests a method for comparing the possible behavior of
flows in the more general, multidimensional media
described by equation (38). Second, our model should allow
us to investigate the relation between measurement volume

Figure 2. Mean head gradient distribution for q=KH1
¼ 2,

q=KH2
¼ 1 and several values of the standard deviation sb.

Figure 3. Hydraulic head variance for q2s2Y1=KH1
¼ 2;

q2s2Y2=KH2
¼ 1; lY1 ¼ 0:5; lY2 ¼ 0:25 and several values of

the standard deviation sb.
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and scale of cross-block inhomogeneities. Since our model
incorporates multiple spatial scales, it may provide a theo-
retical basis for the experimental results of Tidwell and
Wilson [1999] who have found that hydraulic conductivity
increases with support volume in some cases while in others
it decreases. Third, we are currently extending our one-
dimensional applications to more general examples through
numerical simulations in multiple dimensions. The
approach, which depends on Monte Carlo simulation of
the integrals in (34) and (38), relies on the nonlocal finite
element analysis introduced by Guadagnini and Neuman
[1999].

Appendix A: Label and Boundary Processes

[46] A composite porous medium is made up of disjoint
blocks of internally (statistically) uniform materials. We
assume that sufficient geophysical data are available to
characterize the boundary process. The boundary process
is a probability measure on the set of possible boundaries,
{b} = {b1,. . ., bn}, between n + 1 blocks. Each bi is a
(possibly closed) surface in the aquifer �. When data is not
available to characterize the material membership process,
P[x 2 M ], the question arises how to obtain the member-
ship process from the boundaries.
[47] Our model requires a given point, x, to have only one

label, i.e., �nM
i¼1Pi(x) = 1 where we suppose the medium is

composed of nM materials. This is different from dual-
continuum models [e.g., Gerke and van Genuchten, 1993]
in which points, corresponding to small volumes, may
include several different types of material. We suppose that
the space of membership functions is measurable with
measure P(M ) so that

P x1 2 M1; . . . ; xm 2 Mm½ � ¼
Z

M j x12M1;...;xm2Mmð Þf g
dP Mð Þ: ðA1Þ

Below we write p(M )dM = dP(M ) for convenience. Sup-
pose a boundary is specified by a family of random set
functions, b, with a joint measure p(b)db = dP(b). Obvi-
ously

P x 2 M½ � ¼
Z

bjx2Mf g
p bð Þdb : ðA2Þ

Since (A2) is too abstract to be of much use, we examine
two important special cases in the remainder of this section:
stratified media and media with lense-like inclusions.
[48] In what follows, x may be a point in a one-dimen-

sional (x = x), two-dimensional (x = (x, z)T) and three
dimensional ((x, y, z)T) porous media, respectively; We
suppose z is the vertical coordinate.

A1. Stratified Media

[49] Consider first, a perfectly stratified medium in which
boundaries between material types are horizontal and the
only uncertainty is the location of the boundary in the
vertical direction. Suppose the medium has nM parallel
layers arranged vertically from the first at the bottom to
the nMth at the top. This case is equivalent to a one-
dimensional problem in which the boundaries, bi, are points
on the z-axis. The boundary process is defined by p(b1,. . .,

bnM�1) the probability density that the ith boundary is
located at bi. Since there are nM �1 boundary points,

Pi zð Þ ¼
1

N
P b1 < . . . bi�1 < z < bi < . . . < bnM�1

� �
¼ 1

N

Z z

�1
db1 . . .

Z z

bi�2

dbi�1

Z 1

z

dbnM�1 . . .Z biþ1

z

p b1; . . . ; bi�1; bi; . . . ; bnM�1

� �
dbi: ðA3Þ

The constraint that bi < bi+n follows from the vertical
ordering of the materials which restricts the portion of
b1 � . . . � bnM�1 that is sampled. The normalizing constant,

N ¼
Z 1

�1
dbnM�1

Z bnM�1

�1
dbnM�2 . . .

Z b2

�1
p b1; . . . ; bnM�1

� �
db1

¼ P b1 < . . . < bnM�1

� �
; ðA4Þ

reflects the ordering constraint. (A3) includes media with
finite, but uncertain, upper and lower bounds, b1 and bnM�1,
since in that case it is actually possible that x lies outside
(above or below) the medium entirely.
[50] In many cases, we can make the reasonable physical

assumption that the boundaries are pair-wise independent,
pij(bi, bj) = pi(bi)pj(bj), because the location of a boundary in
a stratified medium is essentially a result of (1) the times
when the deposition process started and stopped and (2) the
extent of erosion; and those events are all approximately
independent. Then

Pi zð Þ ¼
1

N

Z z

�1
p1 b1ð Þdb1 . . .

Z z

bi�2

pi�1dbi�1Z 1

z

pnM�1dbnM�1 . . .

Z biþ1

z

pi bið Þdbi: ðA5Þ

This is, of course, a much more convenient form than (A3),
and is one that will appear in many applications because the
independence assumption is so often physically plausible.
[51] It is worth pointing out that (A3) actually defines a

probability, since it is obvious that (1) 0 � Pi � 1; (2) P[x 2
Mi \ x 2 Mj] = 0 for i 6¼ j; and (3) it is tedious, but not too
hard to show that �i = 1

M Pi(x) = 1.
[52] The simplest case, a stratified medium composed of

two materials with fixed (deterministic) upper (BU) and
lower (BL) boundaries, and random interface, b, between the
materials is often useful in applications. Here P1(x) = P[z <
b] =

R Bu

z
p(b)db and P2(x) = P[b < z] =

R z

BL
p(b)db. Of course,

it may be that BU !1 and BL !�1. When that is so and

b � N [b, sb
2] is a normal random variate with mean b and

variance sb
2, we have P1 ¼ 1

2
erfc z�bffiffi

2
p

sb

	 

.

[53] The case where the boundary process of a stratified
medium is a random field, bi = bi(u) (u being ux or (ux, uy)

T

in two or three dimensions, respectively), is similar. To
restrict discussion to stratified media, we require that
P[bi(u) \ bj(u)] = 0 for all i 6¼ j and at any u. Porous
media in which layers intersect should be modeled as lense-
structured media. Geostatistics based on aquifer character-
ization studies can generally be used to parameterize bi =
bi(u; W(u)), especially to derive means, bi(u; W(u)) and
variances, s2bi (u; W(u)). In many cases, parameterization W
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is either W(u) = W, a constant set of parameters, or at least
W (u) =W; also s2bi (u) = s2bi , another constant, in many cases.
Usually polynomials or trigonometric series will suffice
to represent bi(u;W ). This requires that the distance between
strata is large compared to our uncertainty about boundary

locations, k bi � bj k2 � max s2bi ; s
2
bj

	 

. As before

Pi zð Þ ¼ P
�
b1 u;w1ð Þ < . . . < bi�1 u;wi�1ð Þ

< z < bi u;wið Þ < . . . < bnM�1 u;wnM�1ð Þ
�

ðA6Þ

which is the analog of (A3) except now the boundary value

depends on u explicitly.
[54] A particularly important example is a two-dimen-

sional medium composed of two semi-infinite layers sepa-
rated by a boundary, b(x; W ) = b(x) + �, that is the sum of a
mean function, b(x), and a zero-mean constant-variance
normal variate, � � N [0, sb

2]. Then P[x 2 M1] = P[z <
b(x)] = 1

2
erfc z�bffiffi

2
p

sb

	 

is the probability that the point x is in

material M1, the lower layer.

A2. Lense-Structured Media

[55] In these models n discrete lenses, Li (i = 1,. . ., n), of
one type of material (M1) are embedded in another material
(M2). Each lens has a volume, Vi (i = 1,. . ., n), within which
p1(k1,. . ., km) is the finite-dimensional density for M1 of
conductivity at points x1,. . ., xm in Li. The probability that a
given point x is in the ith lense is P[Li] � P[x 2 Li], that x is
both in the ith and the jth lenses is P[LiLj], and so on. The
total (random) volume occupied by M1 is V1 = [i = 1

n Vi.
Extensions to systems composed of lenses of more than one
type of material are obvious.
[56] For given n,

P1 xð Þ ¼ P x 2 L1 [ . . . [ x 2 Ln½ � ¼
Xn
j¼1

P Lj
� �

�
Xn
j

Xn
i<j

P LiLj
� �

þ
X X

i<j<k

X
P LiLjLk
� �

� . . .

þ �1ð ÞnP L1L2 . . . Ln½ �: ðA7Þ

If the n lenses are pair-wise disjoint, (A7) reduces to

P1 xð Þ ¼
Xn
j¼1

P Lj
� �

: ðA8Þ

If, on the other hand, lense locations are pair-wise
independent,

P1 xð Þ ¼
Xn
j¼1

P Lj
� �

�
X
i< j

X
P Li½ �P Lj

� �
� . . .

þ �1ð ÞnP L1½ �P L2½ � . . .P Ln½ �: ðA9Þ

In either case, P1(x) depends on just P[Lj].
[57] In many applications, lenses can be modeled as

random convex surfaces characterized by a random center
of mass, c, and the random distance, Db(c, �), from the
center to a point b on the boundary. This distance depends
on the angle � – in two dimensions � = q and in three

dimensions � = (q, f) – between the center and the given
boundary point. Spherical lenses do not depend on �.
[58] A point lies in a convex lense Li with probability

P x 2 Li½ � ¼
R
pi cð ÞI i cð Þdc

I i cð Þ ¼
R1
jjx�cjj pi Db c;�xð Þjc

� �
dDb:

ðA10Þ

The inner integral I i(c) = P[||x � c|| < Db(c, �x)|c]
probabilistically determines the shape of Li, and is basically
the same as the ones we dealt with in (A5) and (A6) except
for the change to spherical coordinates and the dependence
on (1) c and (2) the direction from c to x as measured by �x.
[59] In some cases, more complex material boundaries

can be satisfactorily approximated by sets of intersecting
convex subblocks. Then (A8) does not apply, but the
probability model can still be kept fairly simple if the
(possibly) intersecting subblocks can be considered inde-
pendent as in (A9). When block boundaries are too irregular
to represent with intersecting subblocks, calculating P[Lj]
can be prohibitively complicated and may not be justified
even if n is known. A homogeneous mixture model based
on Qi in (12) is probably suitable.

Appendix B: Derivation of Mean Flow Equations

[60] To derive r̂i(x), the residual flux conditioned on
block membership, we begin by subtracting (23)–(27) from
(18)–(22). This yields the boundary-value problem for head
perturbations h0(x),

r � Kirh0i þ K 0
irĥi þ r̂i

h i
þ f 0 ¼ 0 x 2 �i ðB1Þ

subject to the boundary

h0i ¼ H 0 x 2 �D ðB2Þ

Kirh0i þ K 0
irĥi þ r̂i

h i
� n ¼ Q0 x 2 �N ðB3Þ

and contact surface, �12, conditions

h01 ¼ h02 x 2 �12 ðB4Þ

K1rh01 þ K 0
1rĥ1 þ r̂1

h i
� n1

¼ K2rh02 þ K 0
2rĥ2 þ r̂2

h i
� n2 x 2 �12 ðB5Þ

We rewrite (B1) for the whole domain �

r � Krh0 þ K 0rĥþ r̂
h i

þ f 0 ¼ 0 x 2 � ðB6Þ

where K and r̂ take the values of Ki and r̂i when x 2 �i.
Then, multiplying (B6) by the Green’s function G(y, x)
defined after (29) and integrating over � yields

X2
i¼1

Z
�i

ry � Ki yð Þryh
0 yð Þ

� �
G y; xð Þdyþ

X2
i¼1

Z
�i

ry

� K 0
i yð Þryĥ yð Þ

h i
G y; xð Þdyþ

X2
i¼1

Z
�i

ry � r̂i yð ÞG y; xð Þdy

þ
Z
�

f 0 xð ÞG y; xð Þdy ¼ 0: ðB7Þ
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Applying Green’s formula to the first integral, applying
Green’s identity to the remaining divergence integral, and
recalling (B2), (B3), and the definition of G(y, x) yields, for
x 2 �j ( j = 1, 2),

h0 xð Þ ¼ �
X2
i¼1

Z
�i

K 0
i yð Þryĥ yð Þ � ryG y; xð Þdy

�
X2
i¼1

Z
�i

r̂i yð Þ � ryG y; xð Þdy

�
X2
i¼1

Z
�Di

H 0 yð ÞKi yð Þni � ryG y; xð Þdy

þ
X2
i¼1

Z
�Ni

Q0
i yð ÞG y; xð Þdyþ

Z
�

f 0 yð Þ G y; xð Þdy

þ
Z
��
12

n1 � K1 yð Þryh
0 yð Þ þ K 0

1 yð Þryĥ yð Þ
h

þ r̂1 yð Þ
i
G y; xð Þdy

þ
Z
�þ
12

n2 � K2 yð Þryh
0 yð Þ þ K 0

2 yð Þryĥ yð Þ
h

þ r̂2 yð Þ
i
G y; xð Þdy

�
Z
��
12

n1 � K1 yð ÞryG y; xð Þh0 yð Þdy

�
Z
�þ
12

n2 � K2ðyÞryG y; xð Þh0 yð Þdy: ðB8Þ

Along �12, n1 = �n2, and continuity conditions (B4)–(B5)
and analogous conditions for G hold so that

h0 xð Þ ¼ �
X2
i¼1

Z
�i

K 0
i yð Þryĥ yð Þ � ryG y; xð Þdy

�
X2
i¼1

Z
�i

r̂i yð Þ � ryG y; xð Þdy

�
X2
i¼1

Z
�Di

H 0 yð ÞKi yð Þni � ryG y; xð Þdy

þ
X2
i¼1

Z
�Ni

Q0
i yð ÞG y; xð Þdy

þ
Z
�

f 0 yð ÞG y; xð Þdy: ðB9Þ

Assuming that the driving forces f 0, H 0 and Q0 are
statistically independent from Kj

0, operating with Kj
0(x) rx

and taking the ensemble mean leads directly to (28).
[61] Multiplying (B9) by h0(y) and taking the ensemble

mean, while retaining the first-order terms, give rise to (35).
Multiplying (B9) by Ki

0(y) and following the analogous
procedure yields to (36).
[62] Expanding the conditional mean flow equations

(23)–(27) into powers of s2Yi and collecting the terms of
the same order leads to the following recursive set of
boundary-value problems (for n = 0, 1),

r � KGi
rĥ

nð Þ
i

h i
þ F nð Þ

i ¼ 0 x2�i ðB10Þ

subject to the boundary,

ĥ
nð Þ
i ¼ H nð Þ x 2 �D ðB11Þ

KGi
rĥ nð Þ � n ¼ Q nð Þ x 2 �N ; ðB12Þ

and contact surface conditions (x 2 �12)

ĥ
nð Þ
1 ¼ ĥ

nð Þ
2 ðB13Þ

KG1
rĥ

nð Þ
1 � n1 þ S nð Þ

1 ¼ KG2
rĥ

nð Þ
2 � n2 þ S nð Þ

2 ðB14Þ

where

F 0ð Þ
i xð Þ ¼ f xð Þ

F 1ð Þ
i xð Þ ¼ r � Fi xð Þ

Fi xð Þ ¼ KGi

s2Yi
2
rĥ

0ð Þ
i xð Þ � r̂

1ð Þ
i xð Þ ðB15Þ

H 0ð Þ
i ðxÞ ¼ H xð Þ H 1ð Þ

i xð Þ ¼ 0 ðB16Þ

Q 0ð Þ
i xð Þ ¼ Q xð Þ Q 1ð Þ

i xð Þ ¼ �n � Fi xð Þ ðB17Þ

and

S 0ð Þ
i xð Þ ¼ 0 S 1ð Þ

i xð Þ ¼ n � Fi xð Þ: ðB18Þ

[63] One can solve the above boundary-value problems
by a variety of methods. Since G(y, x) is already known, we
write the solutions as (32) and (33).
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