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Abstract We consider the development of harmful algal blooms (HABs) in a
lake with uncertain nutrients inflow. To quantify the impact of this uncertainty
on predictions of the concentrations of various algae groups, we explore two
alternative approaches based on the Fokker–Planck equation and PDF methods.
Both approaches quantify predictive uncertainty by deriving deterministic equations
for joint probability density functions of the algae concentrations. As an example,
we study the impact of uncertain initial concentration and inflow–outflow ratio on
the evolution of cyanobacteria (the blue-green algae).

1 Introduction

Anthropogenic stresses, such as discharge of wastewater, significantly acceler-
ated eutrophication of many aquatic systems worldwide [1]. As a result, there is an
explosion of harmful algae blooms (HABs) that pose serious risks to human and
animal health and to ecosystem sustainability. A conservative estimate of annual
economic costs of HABs and eutrophication in the USA. alone amounts to $2.2–4.6
billion [2]. Ironically, on the other end of the spectrum, recent research suggests
various potential uses of algal biomass, such as biodiesel, animal feed, heating,
electricity, and even pharmaceutical and cosmetic products.

Like most eco-dynamics systems, HABs involve complex interactions between
different biological species and their predictions rely on mathematical models with a
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large number of uncertain parameters. A number of recent studies [3–6] employed a
probabilistic framework to quantify parametric uncertainty in predictions of HABs.
These analyses are typically based on simplifying assumptions and rely on the
ensemble variance of concentrations to quantify predictive uncertainty. Since the
concentrations of multiple competing algae species are described by a system
nonlinear differential equations with multiplicative noise, their probability density
functions (PDFs) are typically highly non-Gaussian. Therefore, the concentration
variances do not provide information necessary to predict extreme events and to
conduct risk assessments of HABs.

We present two alternative frameworks, the Fokker–Planck equation and PDF
methods, that enable probabilistic forecasting of HABs in natural environments.
Section 2 contains a mathematical formulation of the problem and a brief overview
of their uncertain parameterizations. In Sect. 3 we derive the Fokker–Planck
(Sect. 3.1) and PDF (Sect. 3.2) equations that are applicable for uncorrelated and
correlated system parameters, respectively. Both deterministic equations describe
the temporal evolution of the joint PDF of the concentrations of competing algae
species. In Sect. 4, we use the Fokker–Planck equation to quantify the impact
of uncertain initial concentration and inflow–outflow ratio on the evolution of
cyanobacteria (the blue-green algae). Section 5 consists of major conclusions drawn
from this study.

2 Problem Formulation

HABs typically occur when nutrients (nitrogen and phosphorous) are abundant,
water is warm (>20◦C) and either stagnant or quiescent, and sunlight is present [7].
It is often assumed that an aquatic system is well mixed throughout or at the top
layer of water. This assumption allows one to model HABs with a system of ordinary
differential equations (ODEs).

To be concrete, we base our analysis on a model of the growth of four competing
algae groups: Diatoms, Chrysophyceae, nitrogen-fixing cyanobacteria, and minor
species [4]. This model is generalized to account for the temporal evolution of n
algae groups with biomass concentrations ci(t) (i = 1, . . . ,n) in a lake of volume V
and average depth h. Then the model [4] consists of a system of n coupled ODEs,

dci

dt
=

Å
μ̃i − σ̃i

h
− qout

V
− fiCz

ã
ci, i = 1, . . . ,n, (1)

where μ̃i is the natural growth rate of the ith algae group, σ̃i is its non-predatory loss
rate, qout denotes the outflow rate, and fiCz is the zooplankton predator rate.

The natural growth rate μ̃i and the non-predatory loss rate σ̃i vary with the
average temperature in the lake, T , in accordance with

μ̃i = μiθ T−Tref
i

I
KIi + I

P
KPi +P

N
KNi +N

, σ̃i = σiθ T−Tref
σ , (2)
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Table 1 Model parameters and variables and their units (Table 3 in [4])

Parameter Unit Description

ci (mg m−3) Biomass concentration of the ith algae group
μi (day−1) Maximum growth rate at 20◦C
σi (day−1) Maximum non-predatory loss rate at 20◦C
θi Temperature coefficients for growth rate
θσ Temperature coefficients for non-predatory loss rate
KIi (W m−2) Global irradiance half-saturation coefficient
KPi (mg m−3) Phosphorus half-saturation coefficient
KNi (mg m−3) Nitrogen half-saturation coefficient
fiCz (day−1) Zooplankton rate
αi Relative phosphorus content of algae
βi Relative nitrogen content of algae
P (mg m−3) Total phosphorus concentration available for the algae
Ptot (mg m−3) Total phosphorus concentration in the lake
P0 (mg m−3) Initial phosphorus concentration in the lake
cP (mg m−3) Phosphorus concentration of inflow
N (mg m−3] Total nitrogen concentration available for the algae
Ntot (mg m−3) Total nitrogen concentration in the lake
N0 (mg m−3) Initial nitrogen concentration in the lake
cN (mg m−3) Nitrogen concentration of inflow
T,Tref (◦C) Temperature and the reference temperature (20◦C)
qout (m3 day−1) Outflow rate
Q (m3) Inflow volume
Q̄ (m3) Mean inflow volume
I (W m−2) Global irradiance
V (m3) Volume of lake
h (m) Depth of lake

where the rate coefficients K with various subscripts are defined in Table 1.
Temperature coefficients for the growth and non-predatory loss rate are denoted
by θi and θσ , respectively. Concentrations of available (nonabsorbed) nutrients
(phosphorus P and nitrogen N) for algae are related to the concentrations of the
algae groups by

P = Ptot −
n∑

i=1

αici, N = Ntot −
n∑

i=1

βici, (3)

where Ptot and Ntot are the overall nutrient concentrations in the lake; and the
constants αi and βi denote the phosphorus and nitrogen contents of the ith algae
group, respectively. The Monod form of algae growth rate (2) varies almost linearly
with irradiance I and the phosphorous (P) and nitrogen (N) concentrations when
these quantities are small.

Insufficient site characterization and temporal fluctuations render various pa-
rameters in (1) uncertain. The data reported in [4, 5] suggest that over the
summer, temperature T , global irradiance I, outflow rate qout, and predatory
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loss fiCz typically exhibit much smaller variation than the fluctuations of nutrients.
Consequently, we treat the total nutrients contents (Ptot and Ntot) as random functions
of time t and assume the remaining parameters to be deterministic. Our goal is to
compute the joint PDF of the concentrations of various algae groups, W ({C}, t),
where {C}=C1,C2, . . . ,Cn denote deterministic values (outcomes) of random algae
population concentrations.

3 Stochastic Models

In many bodies of water, nutrient inflow through surface runoff and wastewater
discharge is the leading factor to eutrophication. Temporal fluctuations of inflow
volume Q(t) is identified as the common source of uncertainty for Ptot and Ntot via
relationships

Ptot = P0 +
cPQ
V

, Ntot = N0 +
cNQ
V

, (4)

where P0 and N0 are the initial phosphorus and nitrogen concentrations in the lake,
respectively; and cP and cN denote the inflow concentrations of nutrients.

Using a Reynolds decomposition to represent the runoff volume Q(t) = Q̄+Q′
as the sum of its ensemble mean Q̄ and zero-mean fluctuations Q′, and employing a
Taylor expansion of the random growth rates μ̃i around Q̄ yields

μ̃i = μ̃i(Q̄)+
dμ̃i

dQ
(Q̄)Q′+O(Q′2). (5)

Substitution of (5) into (1) leads to a system of n nonlinear Langevin equations with
multiplicative noise Q′(t),

dci

dt
= hi(c, t)+ gi(c, t)Q′(t), i = 1, . . . ,n, (6)

where c = (c1,c2, . . . ,cn) and

hi(c, t)≡
ï

μ̃i(Q̄)− σ̃i

h
− qout

V
− fiCz

ò
ci, gi(c, t)≡ dμ̃i

dQ
(Q̄)ci. (7)

3.1 Fokker–Planck Equation

Following the standard procedure outlined in [8], we define the mth Kramers–
Moyal expansion coefficients as

D(m)
i1...im

(C, t) =
1

m!
lim
τ→0

〈[ci1(t + τ)−Ci1] · · · [cim(t + τ)−Cim ]〉|cik
=Cik

τ
, (8)
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where C is a deterministic outcome of random c, 〈·〉 denotes the ensemble mean, and
k = 1, . . . ,m. Let us suppose that Q′(t) is uncorrelated Gaussian-distributed white
noise,

〈Q′(t)〉= 0 , 〈Q′(t1)Q′(t2)〉= 2δ (t1 − t2), (9)

where δ (·) is the Dirac delta function. Then all but the first two of the Kramers–
Moyal expansion coefficients vanish [8]. The nonzero coefficients are referred to as
drift Di and diffusion coefficients Di j. This yields the Fokker–Planck equation for
the joint PDF of the algae concentrations, W (C, t),

∂W
∂ t

=−
n∑

i=1

∂
∂Ci

[Di(C, t)W ]+
n∑

i, j=1

∂ 2

∂Ci∂Cj
[Di j(C, t)W ] (10)

where

Di(C, t) = hi(C, t)+ gk
∂

∂Ck
gi(C, t), Di j(C, t) = gi(C, t)g j(C, t). (11)

3.2 PDF Method

For the correlation function 〈Q′(t1)Q′(t2)〉 that cannot be treated as white noise,
we use the PDF method [9–11] to derive a deterministic equation for W (C, t). We
expand the concept of fine-grained single-point PDF [9–11] by introducing a fine-
grained joint PDF of the concentrations of competing algae groups,

Π =
n∏

i=1

δ [Ci − ci(t)]. (12)

Its ensemble average yields W (C, t):

〈Π〉=
∞∫

−∞

· · ·
∞∫

−∞

n∏

i=1

δ (Ci − c′i)W (c′1, . . . ,c
′
n, t)dc′1 · · ·dc′n =W (C1, . . . ,Cn, t). (13)

We show in the Appendix that the coupled system of nonlinear stochastic ODEs (6)
gives rise to a linear stochastic partial differential equation (PDE) for Π ,

∂Π
∂ t

+
n∑

i=1

∂
∂Ci

[φi(C, t)Π ] = 0, φi(C, t)≡ hi(C, t)+ gi(C, t)Q′(t). (14)

This PDE is subject to appropriate initial and boundary conditions.
Employing Reynolds decompositions Π =W +Π ′ and φi = φ̄i +φ ′

i , and taking
the ensemble average of (14), leads to a deterministic equation for W ,

∂W
∂ t

+

n∑

i=1

∂
∂Ci

[W φ̄i(C, t)] =
n∑

i=1

∂
∂Ci

〈Π ′φ ′
i 〉, (15)
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which contains the unknown covariance 〈Π ′φ ′
i 〉. A closure approximation for this

term can be drawn from the rich literature on stochastic averaging of linear advective
transport in random velocity fields. Here we adopt the large-eddy-diffusivity (LED)
approximation [11],

∂W
∂ t

+
n∑

i=1

∂
∂Ci

[φ̄i(C, t)W ] =
n∑

i, j=1

∂
∂Ci

Å
Di j

∂W
∂Cj

ã
, (16)

where Di j are components of the effective eddy-diffusivity tensor. This closure
becomes exact in the limit of the correlation length of Q′(t) going to zero [9]. One
can verify that in this limit the PDF equation (16) reduces to the Fokker–Planck
equation (10).

4 Results and Discussion

We demonstrate our approach on a relatively simple example of cyanobacteria
(blue-green algae) bloom that is caused by (uncertain) inflow of nutrients. The
inflow rate Q(t) is modeled as white noise, so that the PDF of the cyanobacteria con-
centration is governed by a simplified version of the Fokker–Planck equation (10),

∂W
∂ t

=− ∂
∂C

[D1(C, t)W ]+
∂ 2

∂C2 [D2(C, t)W ], (17)

where the drift (D1) and diffusion (D2) coefficients take the form (see equation
(3.95) in [8])

D1 =

Å
μ̃1 − σ̃1

h
− qout

V
− f1Cz

ã
C+

Ç
∂ 2μ̃1

∂Q∂C
C+

∂ μ̃1

∂Q

å
∂ μ̃1

∂Q
C, (18a)

D2 =

Å
∂ μ̃1

∂Q
C
ã2

. (18b)

Numerical simulations are performed with the data from previous investigations
[4, 5]. A lognormal distribution N (5,1) is prescribed to the initial concentration.
Figure 1 exhibits temporal snapshots of the PDF of the cyanobacteria concentration,
W (C, t), at t = 0, 5, and 10 days. The continuous nutrient inflow leads to rapid
growth of blue-green algae from its initial mean concentration of 5–33 mg m−3 over
a week. Widening distributions indicate rising uncertainty in the forecast. Overall,
the shape of W gradually diffuses and propagates with time, as expected from the
advection-diffusion (17).

Figure 2 elucidates the effects of uncertainty in the initial algae concentration.
The latter is quantified in terms of the coefficient of variation (CV, standard deviation
divided by mean). The PDFs W (C, t) in Fig. 2 correspond to t = 10 days and three
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Fig. 1 Temporal snapshots of the cyanobacteria concentration PDF W (C, t) at (a) t = 0 days,
(b) t = 5 days, and (c) t 10 days

levels of CV of the initial concentration. Not surprisingly, larger initial fluctuations
(CV= 2) lead to greater uncertainty, i.e., to longer distribution tails.

Figure 3 demonstrates the effect of average inflow on the algae growth for a
fixed outflow volume. At t = 10 days, greater inflows (Q̄/Qout = 2) introduce more
predictive uncertainty, as indicated by a wider breadth (longer tails) of the PDF
W (C, t). This is to be expected, because nutrient inflow is the primary factor leading
to algae bloom in lakes, and the random inflow volume is identified as the sole
source of uncertainty here. Reduction of average inflow (Q̄/Qout = 0.5) leads to
smaller predictive uncertainty. However, its overall impact is limited (comparing to
the time factor and initial condition) due to its small volume relative to the volume
of the lake.

5 Conclusions

We present two alternative frameworks to quantify uncertainty in predictions
of the concentration of various algae groups via their joint probabilistic density
function (PDF). Based on a physical model routinely used for algae population
dynamics in a lake, deterministic equations for the joint concentration PDF are
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Fig. 2 The cyanobacteria concentration PDF W (C, t) at t = 10 days for different levels of
uncertainty about the initial concentration

derived by two methods, the Fokker–Planck equation and PDF method, for the
uncorrelated and correlated input parameters, respectively. Our analysis leads to the
following major conclusions:

1. The proposed approach provides full statistical information on the bloom of
various algae species and facilitates probabilistic risk assessments by enabling
computation of probabilities of rare events.

2. Uncertainty of initial population density is found to significantly affect overall
predictive uncertainty.

3. Average inflow volume has limited impact on predictive uncertainty if its value
is much smaller that the lake volume.
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Appendix

We note that the derivatives of the raw joint PDF are
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Fig. 3 Effects of average runoff Q̄ on the cyanobacteria concentration PDF W (C, t) at t = 10 days

∂Π
∂Ci

=
∂δ
∂Ci

n∏

j=1, j �=i

δ (Cj − c j), i = 1, . . . ,n, (19)

∂Π
∂ t

=−
n∑

i=1

⎡

⎣ ∂δ
∂Ci

dci

dt

n∏

j=1, j �=i

δ (Cj − c j)

⎤

⎦ . (20)

Multiplying the ith equation (6) with ∂Π/∂Ci yields the following equations:

∂δ
∂Ci

n∏

j=1, j �=i

δ (Cj − c j)
dci

dt
=

∂Π
∂Ci

φi(c, t) =
∂ [Πφi(c, t)]

∂Ci
=

∂ [Πφi(C, t)]
∂Ci

. (21)

Summation over all n equations gives

∂Π
∂ t

=−
n∑

i=1

∂
∂Ci

[φi(C, t)Π ]. (22)

Rearrangement of the above equation leads to (14).
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