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Abstract. The Buckley–Leverett (nonlinear advection) equation is often used to describe two-
phase flow in porous media. We develop a new probabilistic method to quantify parametric un-
certainty in the Buckley–Leverett model. Our approach is based on the concept of a fine-grained
cumulative density function (CDF) and provides a full statistical description of the system states.
Hence, it enables one to obtain not only average system response but also the probability of rare
events, which is critical for risk assessment. We obtain a closed-form, semianalytical solution for
the CDF of the state variable (fluid saturation) and test it against the results from Monte Carlo
simulations.
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1. Introduction. Modeling of two-phase immiscible flows in porous media is
important for many industrial applications, such as oil recovery [12] and carbon se-
questration [1]. Mathematical conceptualizations for such flows include the Buckley–
Leverett model, which, in its simplest form, is represented by a nonlinear advection
equation [4] for the relative saturation of fluid phases. Parameterizations of these flow
equations are complicated by the multiscale heterogeneity and incomplete character-
ization of typical porous media. Consequently, many parameters in the governing
equations exhibit a high degree of uncertainty, and quantification of predictive un-
certainty becomes paramount. It is common to represent parametric uncertainty in
probabilistic terms by treating uncertain parameters as (correlated) random fields.
This renders otherwise deterministic governing equations stochastic. Their complete
solutions are given by a probabilistic density function (PDF) or cumulative density
function (CDF) of dependent variables.

Several conceptual frameworks have been proposed to solve stochastic differential
equations describing two-phase immiscible flow in heterogeneous porous media with
uncertain properties. One of them is Monte Carlo simulation (MCS), in which multiple
(equally likely) realizations of random parameters serve as inputs for the correspond-
ing deterministic governing equations. A statistical postprocessing is then conducted
to obtain the distribution (histograms) of dependent variables. While MCSs are very
robust and easy to implement, they have high computational costs due to their slow
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convergence rate (inversely proportional to the square root of the number of realiza-
tions). Alternatives to MCS include derivation of deterministic equations for leading
statistical moments of the system states [10, 13, 30, 22, 23, 24, 29, 28] and polynomial
chaos expansions [6, 9, 16, 15, 17].

The first two statistical moments (ensemble mean and variance) can be used to
forecast a system’s average response and to measure an associated prediction error,
respectively. These statistics are insufficient for risk assessment [25], where one is
typically concerned with the probability of rare events. The use of PDF methods [20]
for uncertainty quantification [14, 26, 27] addresses this need by deriving deterministic
equations for PDFs of the system states. The PDF methods, as well as the moment
equation methods, require a closure that is problem dependent. To our knowledge,
no closures (and computable deterministic equations) exist for PDFs of nonlinear sto-
chastic advection equations. Equally important, formulation of boundary conditions
for PDF equations is not unique.

We propose an alternative CDF method for the stochastic Buckley–Leverett equa-
tion. In section 2 we describe the CDF method. In section 3 we derive a general de-
terministic equation for the (single-point) CDF of saturation. In section 4 we provide
a semianalytical solution for the CDF of saturation in one spatial dimension. Discus-
sion of the main features of the semianalytical solution and its comparison with MCS
results are provided in section 5. The final conclusions are given in section 6.

2. Problem formulation. Darcy’s law provides a macroscopic description of
multiphase flow in porous media. An example of two-phase flows, which is of interest
for secondary oil recovery, is oil (o) being displaced by water (w) in a reservoir with
intrinsic permeability κ and porosity φ. For horizontal flow with negligible capillary
pressure, Darcy’s law takes the form

(2.1) qw = −κ
κrw

µw
∇p, qo = −κ

κro

µo
∇p,

where qw and qo denote Darcy fluxes of the wetting (water) and nonwetting (oil)
phases, respectively; κri and µri are relative permeability and viscosity of a given
fluid phase i = {w, o}; and ∇p is the pressure gradient.

Let Vw(x, t) and Vo(x, t) denote the volumes of water and oil within an averaging
volume centered at x. Then water saturation s(x, t) of the averaging volume is defined
as s(x, t) = Vw(x)/[Vw(x, t) + Vo(x, t)]. Combining Darcy’s law (2.1) with mass
conservation of each phase yields the Buckley–Leverett equation [4],

(2.2)
∂s

∂t
+∇ ·

(
q

φ
fw(s)

)
= 0, x ∈ Ω, t > 0,

which is defined at every point x of a spatial d-dimensional domain Ω ⊂ Rd. The
total volumetric flux of water and oil, q = qw + qo, satisfies the continuity equation
for incompressible flow ∇ · q = 0. The quantity fw = qw/(qw + qo) is referred to as
the fractional flow of water. For constant porosity φ, (2.2) can be rewritten as

(2.3)
∂s

∂t
+ v(s) · ∇s = 0, v(s) ≡ q

φ

∂fw
∂s

.

Supplemented with appropriate initial and boundary conditions, the Buckley–Leverett
equation (2.3) provides a good approximation to actual saturation distributions for
high flow rates [2].
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3. CDF equation. Heterogeneity and data sparsity make κ(x) uncertain. Com-
bined with uncertainty in boundary conditions, this renders predictions of flow behav-
ior uncertain. We represent this uncertainty by treating q(x, t) in (2.3) as a random
field with a known PDF. To solve the resulting stochastic Buckley–Leverett equation,
we start by introducing a “raw” (or “fine-grained”) CDF of water saturation s,

Π(Θ;x, t) = H[Θ− s(x, t)],(3.1)

where H is the Heaviside step function and Θ is a deterministic value (outcome) that
the random water saturation s takes at a space-time point (x, t). Let ps(Θ;x, t) denote
the single-point PDF of water saturation s at point (x, t). Then the ensemble average
of H over random s leads to the single-point CDF,

〈Π(Θ;x, t)〉 ≡
∫ ∞

−∞
H(Θ− s′) ps(s

′;x, t) ds′ = Fs(Θ;x, t).(3.2)

For smooth solutions of (2.3), their raw CDF satisfies a linear stochastic linear
hyperbolic equation (see Appendix A)

(3.3)
∂Π

∂t
+ v(Θ) ·∇Π = 0, x ∈ Ω, t > 0,

subject to the initial condition

Π(Θ;x, t = 0) = Πin = H [Θ− sin(x)] ,(3.4)

and appropriate boundary conditions in the physical domain Ω. Derivation of an equa-
tion corresponding to (3.3) for discontinuous solutions has to account for shock (e.g.,
entropy) conditions. It may lead to the presence of additional “kinetic defect” terms
in (3.3) [18, 19]. Further study is needed to extend the deterministic analyses [18, 19]
to the derivation of CDF equations in two and three spatial dimensions. For discon-
tinuous solutions in one spatial dimension, shocks can be explicitly resolved (for each
random realization) to bypass the need for the more general equation containing a
kinetic defect term. In the example in section 4 we pursue the latter approach.

The raw CDF formulation (3.3) offers a number of advantages over direct solutions
of the flow equations (2.3). First, for overall uncertainty quantification, one needs
to compute (e.g., with MCS or stochastic finite elements) only the first ensemble
moment of Π to obtain the full single-point CDF of s. Second, linearity of the raw
CDF equation (3.3) facilitates its theoretical and numerical analyses. More important
for the subsequent analysis, one can take advantage of the large body of literature
on stochastic averaging of linear advective transport in random velocity fields v(x, t).
Specifically, the ensemble averaging of (3.3) yields an effective transport equation for
the CDF of s [33],

(3.5)
∂Fs

∂t
+ veff ·∇4Fs = ∇4 · (D∇4Fs), (Θ,x) ∈ [0, 1]× Ω, t > 0,

where veff is the (d+1)-dimensional “effective velocity,” D is the (d+1)-dimensional
eddy-diffusivity second-order tensor, and ∇4 = (∂/∂x1, . . . , ∂/∂xd, ∂/∂Θ)& is the
(d+1)-dimensional del operator. This equation is based on a closure approximation,
but it is asymptotically exact for a particular formulation of veff and D when Fs

varies slowly with x and t relative to v [11].
Boundary conditions for Fs(Θ;x, t) at Θ = 0 and 1 are formulated in a straight-

forward and unambiguous manner: Fs(0;x, t) = 0 and Fs(1;x, t) = 1. This provides
a key advantage of our CDF method over commonly used PDF equations [20], since
the corresponding boundary conditions for PDF are not uniquely defined.
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4. One-dimensional Buckley–Leverett problem. To simplify the presenta-
tion of the CDF method, we restrict the subsequent analysis to the one-dimensional
problem on the domain Ω = [0,∞). We assume that initially the domain is mostly
saturated with oil and has a small uniform (irreducible) water saturation swi,

(4.1) s(x, t = 0) = sin = swi.

Furthermore, we consider the boundary condition

(4.2) s(x = 0, t) = s0 = 1− soi,

where soi is the irreducible oil saturation. This boundary condition represents injec-
tion of water at the boundary x = 0 into an initially oil-saturated field (sin = swi).
In the following, soi and swi are treated as deterministic constants, but they may in
general be modeled as random variables.

In d = 1 spatial dimensions, v(s) in (2.3) reduces to

(4.3) v(s) =
q

φ

∂fw
∂s

.

The general continuity equation, ∇·q = 0, now requires the total flux q to be constant
in x and equal to the injection flow rate q(x, t) = q(x = 0, t) = q0(t). We allow the
flow rate q0(t) to be uncertain, i.e., treat it as a random field with a prescribed PDF.

Combining the one-dimensional versions of Darcy’s law (2.1) yields an expression
for the fractional flow of water

(4.4) fw =
qw

qw + qo
=

κrwµo

κrwµo + κroµw
.

A number of empirical constitutive models have been proposed to express relative per-
meabilities as functions of water saturation s. To be concrete, we adopt the Brooks–
Corey quadratic relation [3]

κrw =

(
s− swi

1− swi − soi

)2

, κro =

(
1− s− soi
1− swi − soi

)2

.(4.5)

Combining (4.3) and (4.4) yields

(4.6) v(s) =
2q (1− s− soi) (s− swi) (1− soi − swi)µoµw

φ
[
(s− swi)

2 µo + (1− s− soi)
2 µw

]2 .

4.1. Discontinuity in deterministic solution. For a given q, (2.3) can be
solved using the method of characteristics, in which characteristic curves are defined
according to dx/dt = v(s) in the (x, t) plane. If v(s) were monotonic, there would
exist a one-to-one correspondence between the characteristics and the solution. The
nonmonotonicity of v(s) in (4.6) can cause different characteristic curves to intersect
in finite time (Figure 4.1). This requires one to impose jump conditions, allowing for
physically meaningful discontinuous (shock) solutions [2]. A water-oil discontinuous
front at x = xf forms immediately and propagates in time with velocity dxf/dt.
Ahead (to the left) of the front, a rarefaction wave follows well-defined characteristic
curves. Behind (to the right of) the front, the saturation remains at the initial value,
s+ = swi.
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Fig. 4.1. Illustration of intersecting characteristics for nonlinear first-order hyperbolic equation
(2.3) when dv/dx < 0.

The Rankine–Hugoniot condition at the discontinuity [21] defines the front loca-
tion (and the saturation values ahead of the front) as

(4.7)
dxf

dt
=

q

φ

fw(s−)− fw(s+)

s− − s+
.

The saturation value ahead of the front, s−, is constant along the characteristic curve
defined by dx/dt = v(s−) = q/φ (dfw/ds) |s=s− , which must match the shock speed:

(4.8)
fw(s−)− fw(s+)

s− − s+
=

dfw
ds

(s = s−).

Solving (4.8) gives s− and hence the location of shock front xf (t).
The continuous solution sr(x, t) ahead of the front (rarefaction) satisfies the

Buckley–Leverett equation (2.3). It is found by using the method of characteristics
in the range s− ≤ sr ≤ 1− soi. The complete solution is then given by

s(x, t) =






sr(x, t), 0 ≤ x < xf (t),

swi, x > xf (t).
(4.9)

Physically, it represents an oil-saturated zone to the right of the sharp water-oil front,
with a smoothly varying mix of water and oil from the injection point to the left of
the front. Other initial and boundary conditions can give rise to more complicated
shock structures.

4.2. Solution for raw CDF. While the Buckley–Leverett equation is highly
nonlinear, the raw CDF equation (3.3) is linear. Its one-dimensional version is

(4.10a)
∂Π

∂t
+ v(Θ)

∂Π

∂x
= 0,

where

(4.10b) v(Θ) =
2q (1−Θ− soi) (Θ− swi) (1− soi − swi)m

φ
[
(Θ− swi)

2 + (1−Θ− soi)
2 m

]2 , m =
µw

µo
.
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Thus, one would not expect the raw CDF to have any shock-like discontinuities. This
may seem somewhat paradoxical considering our previous argument for saturation
discontinuity in the physical space.

However, this discontinuity of s in the physical space translates into a disconti-
nuity of the CDF (and the PDF) of s in the space of Θ. To be specific, the raw CDF
Π(Θ;x, t) in (3.1) is subdivided into two parts, Πa and Πb, according to the saturation
solution (4.9), as

Π(Θ, x, t) =






Πa = H(Θ − swi), Θ < s−, x > xf (t),

Πb = H(Θ− sr), s− < Θ, x < xf (t).
(4.11a)

For the example considered here, the rarefaction solution sr(x, t) is easy to obtain.
This solution would also provide a direct mapping of parametric uncertainty onto
system state uncertainty [31, 32]. This would render the introduction of Π redundant.
However, in most cases (and certainly for the Buckley–Leverett equation in higher
dimensions) analytical solutions are a rarity. This is the raison d’être for the CDF
method developed here.

In (4.11a), Πa is independent of either x or t, while Πb satisfies the one-dimensional
raw CDF equation (4.10). We show in Appendix B that

(4.11b) Πb = H(Θ− 1 + soi)H(C − x) +H(Θ− swi)H(x − C),

where C(Θ, t) =
∫ t
0 v(Θ, t′) dt′.

4.3. Solution for CDF. In accordance with (3.2), the saturation CDF is ob-
tained by taking the ensemble average of Π in (4.11). Since both saturation and shock
location are random, the ensemble average is formally given by

(4.12a) Fs(Θ;x, t) =

∫ ∞

−∞

∫ ∞

−∞
ΠaH(x− xf )p

+
s,xf

(s′, xf ;x, t)ds
′dxf

for Θ < s− and by

Fs(Θ;x, t) =

∫ ∞

−∞

∫ ∞

−∞
Πa H(x− xf ) p

+
s,xf

(s′, xf ;x, t)ds
′dxf

+

∫ ∞

−∞

∫ ∞

−∞
Πb H(xf − x) p−s,xf

(s′, xf ;x, t)ds
′dxf(4.12b)

for Θ ≥ s−. Here ps,xf denotes the (unknown) joint PDF of saturation and front
location, while the superscripts − and + indicate the component of this PDF restricted
to values of saturation before and after the front, respectively, for a given x and t. The
first term in (4.12b) is required because the CDF is a cumulative probability. This
CDF expression may be generalized to account for multiple shocks by considering
multiple jump conditions and rarefaction zones according to the theory of hyperbolic
conservation laws [21]. This generalization will be studied in the future; here we
continue to focus on the case with s(x, 0) = swi and s(0, t) = 1− soi.

5. Computational example. We solve (4.11) for a time-dependent statistically
homogeneous random flux q(t) that has a lognormal distribution pq(Q) with mean µq

and variance σ2
q and that exhibits an exponential correlation structure with correlation

time τq. The flux is imposed at x = 0 and regarded as the system’s sole source of
uncertainty.
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5.1. Nondimensionalization. The statistics µq and τq introduce a character-
istic velocity and a characteristic time scale, respectively. Furthermore, we define a
characteristic length scale L as

(5.1) L = µqτq.

This gives rise to dimensionless quantities

(5.2) x! =
x

L
, x!

f =
xf

L
, t! =

t

τq
, C! =

C

L
, Q! =

Q

µq
.

The superscript ! is omitted in the following to simplify the representation.

5.2. Results and discussion. Uncertainty in the boundary flux q0(t) gives rise
to uncertainty (randomness) in saturation and shock location. The PDF of the former
is related to the joint PDF of the latter by ps,xfds

′dxf = pqdQ. The saturation CDF
(4.12) becomes

Fs(Θ;x, t) =






∫∞
−∞ Πa H(x− xf )pqdQ, Θ < s−,

∫∞
−∞ [ΠaH(x− xf ) +ΠbH(xf − x)] pqdQ, Θ ≥ s−.

(5.3)

The (non-Gaussian, correlated) random field q(t) enters (4.11) and, hence, (5.3) only
as an integrand in

(5.4) C(Θ, t) =

∫ t

0
v(Θ, t′) dt′ =

1

φ

∂fw(Θ)

∂Θ

∫ t

0
q(t′) dt′.

Let

Iq(t) =

∫ t

0
q(t′)dt′.(5.5)

Then (5.3) is transformed into

Fs(Θ;x, t) =






∫∞
−∞ ΠaH(x− xf )pIqdI, Θ < s−,

∫∞
−∞ [ΠaH(x− xf ) +ΠbH(xf − x)] pIqdI, Θ ≥ s−,

(5.6)

where pIq (I; t) is the PDF of Iq(t). Based on the correlation time τq, we subdivide
the temporal evolution of Fs into three periods with three different approximation
schemes.

For small times, t , τq, the flux q(t′) on the interval [0, t] is approximately
constant, Iq ≈ qt, and C(Θ, t) can be approximated by

(5.7) C(Θ, t) ≈ 2qt(1−Θ− soi)(Θ− swi)(1− soi − swi)m

φ[(Θ − swi)2 + (1 −Θ− soi)2m]2
, t , τq.

For large times, t . τq, a white-noise (WN) approximation is appropriate, so
that Iq(t) is approximately Gaussian with mean tµq and variance 2tσ2

q . Then

(5.8) C(Θ, t) ≈ 2(1−Θ− soi)(Θ− swi)(1 − soi − swi)m

φ[(Θ − swi)2 + (1−Θ− soi)2m]2
N(tµq, 2tσ

2
q), t . τq.
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In some applications (see, e.g., [5]), q(t) lacks temporal correlation, and this expression
becomes exact.

For intermediate times, we approximate the statistics of Iq(t) with the central
limit theorem (CLT)-based approach [7, 8, 34] outlined in Appendix C.

In the following sections, we first examine the accuracy and robustness of the
alternative approximations of pIq (I; t) by comparing them with the MCS performed on
the shock solution (4.7)–(4.9). Next, we present and discuss both temporal and spatial
profiles of the saturation CDF Fs. Finally, we investigate the impact of the degree
of uncertainty in the boundary flux q(t) on the saturation CDF. Unless specified
otherwise, the following simulations correspond to lognormal distribution of boundary
flux with mean µq = 1 and standard deviation σq = 0.5, flux correlation time τq =
1, and irreducible water and oil saturation swi = soi = 0.1. The ratio of relative
viscosities is set to m = 0.01.

5.2.1. Model validation and verification. Here we validate the CDF equa-
tion (5.3) and verify the accuracy of its numerical solution. To validate the CDF
equation, we compare its solution in the limit of σq = 0 with the solution of the
deterministic Buckley–Leverett equation (4.9) with q = µq. In this limit, the PDF of
q becomes pq(Q) = δ(Q − µq) and the CDF equation (5.3) reduces to

Fs(Θ;x, t) =






H(Θ− swi)H(x − xf ), Θ < s−,

H(Θ− swi)H(x − xf ) +H(xf − x) [H(C − x)

× H(Θ − 1 + soi) +H(x− C)H(Θ − swi)] , Θ ≥ s−.

(5.9)

For a given x and t, the solution of the deterministic Buckley–Leverett equation is
given by the value of Θ at which Fs undergoes a jump from 0 to 1. For x < xf , the
saturation value at point (x, t) is given by the solution of the equation C(Θ, t) = x
for s = Θ and, for x > xf , the saturation is given by s = swi. This is equivalent to
the solution (4.9) for the deterministic case.

To verify our CDF model, we compare its solution Fs(Θ;x, t) with that obtained
with the MCS of the shock solution (section 4.1). These MCSs consist of computing
multiple realizations of the random integral Iq,

Fs(Θ;x, t) = P (I ≤ I1) =

∫ I1

0
pIq (I)dI, Θ < s−,(5.10a)

Fs(Θ;x, t) = P (I1 < I ≤ I2) =

∫ I2

I1

pIq (I)dI, Θ ≥ s−,(5.10b)

where s− = swi + (1 − swi − soi)
√

m/(m+ 1) and

I1 =
φx

∂fw
∂s (s = s−)

, I2(Θ) =
φx

∂fw
∂s (s = Θ)

.(5.10c)

Figure 5.1 exhibits Fs(Θ) computed alternatively with the MCS and the CDF
solution (5.3) under the three approximations of Iq . As time increases, the accuracy
of both the CLT approximation and the WN approximation (5.8) improves, whereas
that of the random constant approximation (5.7) (Const) deteriorates. For t ≤ τq
(t = 0.1, t = 1), the Const scheme provides a good estimate of the random integral
Iq. At intermediate times (t = 10), the CLT and WN approximations agree well with
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Fig. 5.1. Saturation CDF Fs(Θ;x = 1, t) computed at four dimensionless times t = 0.1, t = 1,
t = 10, and t = 100. These solutions are obtained with the MCS and the CDF solution (5.3)
under the three alternative approximations: the random constant approximation (5.7) (Const), the
CLT-based approximation (CLT), and the WN approximation (5.8) (WN). Only the portion of the
domain in which the CDF varies is shown.

the MCS, though the former has a slight edge. At later times (t = 100), the CLT and
WN approximations are equally accurate. The WN approximation can be seen as an
extension of the CLT approximation at large times (Appendix C).

5.2.2. Temporal evolution of saturation CDF. Four temporal snapshots of
the saturation CDF Fs(Θ;x = 1, t) at dimensionless times t = 0.01, t = 0.1, t = 10,
and t = 100 are shown in Figure 5.2. At early times (t = 0.01), the saturation
is nearly deterministic, i.e., close to its initial (deterministic) value s = swi, which
corresponds to an approximate step-function CDF. As time increases, the fluctuations
associated with the random boundary flux q0(t) propagate along with the wetting
front, increasing uncertainty in the predictions of the saturation profile at t = 0.1 and
t = 10. As time elapses (t = 10), the front moves to the right of the observation point
x = 1 in almost all realizations and Fs follows almost entirely a distribution of the
rarefaction solution. Eventually (t = 100) the effect of random flux q0(t) diminishes
and Fs approaches the Heaviside function representative of deterministic (known with
certainty) predictions.

5.2.3. Spatial profiles of saturation CDF. Figure 5.3 shows the saturation
CDF at dimensionless points x = 0.01, x = 0.5, x = 50, and x = 500 at fixed time
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Fig. 5.2. Temporal snapshots of the saturation CDF, Fs(Θ; x = 1, t), at four dimensionless
times t = 0.01, t = 0.1, t = 10, and t = 100.

Fig. 5.3. Saturation CDF, Fs(Θ; x, t), at t = 5 and four dimensionless locations x = 0.01,
x = 0.5, x = 50, and x = 500.

t = 5. The saturation CDF exhibits the same pattern as the temporal evolution does,
but in reverse order. At x = 0.01, very few realizations have a saturation value below
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Fig. 5.4. Saturation CDF, Fs(Θ;x = 1, t = 5), for three coefficients of variation of the boundary
flux, CV = 0.1, CV = 0.5, and CV = 2.

those in the upper range of the rarefaction zone. A significant portion of realizations
have the front near x = 0.5, as indicated by the shape of the CDF at that x value. At
x = 500, ahead of almost all realizations of the front, the medium maintains its initial
saturation, as indicated by the Heaviside function shape of the CDF; behind the front,
the medium is either partially saturated (x = 0.5) or fully saturated (x = 0.01).

5.2.4. Effect of degree of uncertainty on concentration CDF. The degree
of the boundary flux uncertainty is encapsulated in the coefficients of variation, CV =
σq/µq. Figure 5.4 demonstrates its impact on Fs(Θ;x = 1, t = 5) for CV = 0.1,
CV = 0.5, and CV = 2. As expected, the small CV yields a saturation profile
approaching the step function. With rising fluctuations (CV = 0.5), the shape of the
saturation CDF gradually spreads, indicating higher predictive uncertainty.

6. Conclusions. We present a novel method for obtaining the CDF Fs of a
state variable s(x, t) whose evolution is described by the stochastic Buckley–Leverett
model (first-order hyperbolic equation) with a random time-dependent flux. This
CDF method converts an original stochastic equation into a deterministic equation for
the CDF of the system state, in which uncertain parameters and initial and boundary
conditions are described as random variables. Here we considered a one-dimensional
problem with a random correlated in time flux prescribed at the boundary of a semi-
infinite domain. We demonstrated that Fs found from the CDF method compares
favorably with its counterpart obtained by MCS. Our analysis leads to the following
major conclusions:

1. CDF equations and their semianalytical solutions provide a full statistical
description of system states and enable one to perform probabilistic risk assessment,
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which is focused on rare events as characterized by the tails of probability distribu-
tions.

2. The CDF method allows one to derive an exact computable deterministic
equation for the CDF of nonlinear advection equations such as the Buckley–Leverett
equation. To our knowledge, this is the first method that results in computable
equations for the CDF (or PDF) for the nonlinear hyperbolic conservation laws with
shocks.

3. Our approach converts the original stochastic nonlinear equation into a deter-
ministic equation for the system state’s CDF without any approximations. It allows
one to preserve the underlying physics, in particular shocks, in the final solution.

4. Uncertainty in the boundary flux has a significant impact on uncertainty in
predictions of the system state (water saturation).

5. The present analysis relies on the existing rarefaction solution of the deter-
ministic Buckley–Leverett equation. However, our general CDF framework is also
applicable to problems that do not admit deterministic analytical solutions.

6. Our formulation of the CDF equations may be generalized to the case of mul-
tiple shocks by considering multiple jump conditions and rarefaction zones according
to the theory of hyperbolic conservation laws.

7. Derivation of the CDF equations for higher-dimensional problems with shocks
might benefit from the deterministic theory of “kinetic defects” [18, 19].

Appendix A. Derivation of stochastic equation for raw CDF. Our deri-
vation of the CDF equations is closely related to the PDF equations in turbulence [20]
and their applications for uncertainty quantification [26]. We express the spatial and
temporal derivatives of Π(Θ;x, t) as

(A.1) ∇Π =
∂Π

∂s
∇s = −∂Π

∂Θ
∇s,

∂Π

∂t
=

∂Π

∂s

∂s

∂t
= −∂Π

∂Θ

∂s

∂t
.

For smooth solutions, multiplying (2.3) by ∂Π/∂Θ and using the first expression
in (A.1) yields

(A.2)
∂Π

∂t
+ v(s)

∂Π

∂Θ
·∇s = 0.

Since ∂Π/∂Θ = δ(Θ − s), this yields

(A.3)
∂Π

∂t
+ v(s) δ(Θ − s) ·∇s = 0.

Finally, recalling that f(s)δ(Θ− s) = f(Θ)δ(Θ− s), we rewrite (A.2) as

(A.4)
∂Π

∂t
+ v(Θ)

∂Π

∂Θ
·∇s = 0.

Combining (A.4) and the second expression in (A.1) leads to (3.3).
This derivation is appropriate for smooth solutions, but in general hyperbolic

equations of discontinuous solutions may form. In one spatial dimension, solutions
with a single shock may be obtained by directly analyzing shock propagation. To
account for shocks and entropy conditions in higher dimensions it might be possible
to build upon the deterministic analysis of “kinetic defects” [18, 19].

Appendix B. Analytical solution to one-dimensional CDF equation. We
use the method of characteristics to solve the linear hyperbolic equation (4.10) subject
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Fig. B.1. Characteristic curves in the (x, t) plane for Π(Q; x, t).

to the following boundary and initial conditions:

(B.1) Π(Θ;x, t = 0) = H(Θ− swi), Π(Θ;x = 0, t) = H(Θ− 1 + soi).

We derive a solution for the case in which the random velocity v is such that no
shocks form in the underlying stochastic equation. This solution corresponds to a
rarefaction zone when we consider a solution that does contain a shock. A family of
characteristics, x = x(t; ξ), is defined by

dx

dt
= v(Θ, x, t), x(t = 0) = ξ,(B.2)

where the “label” ξ defines the origin of each characteristic line (see Figure B.1). Its
solution is

(B.3) x =

∫ t

0
v(Θ, x(t′), t′)dt′ + ξ.

Along these characteristics, (4.10) becomes

dΠ

dt
= 0,(B.4)

which is to say that Π is a function of t and ξ only, i.e., Π = g(t, ξ):
1. For ξ ≥ 0, the characteristics originate from the x-axis (t = 0) and the

solution is determined by the boundary condition on t, i.e., by the initial condition
in (B.1).

2. For ξ < 0, the characteristics originate from the t-axis (t = η) and the
solution is determined by the boundary condition on x. The variable η is a solution
of

∫ η
0 v dt′ = −ξ.
Substituting (B.3) into (B.4), and eliminating ξ in favor of x and t in the solution,

yields
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Π = H (Θ− swi)H(x− C) +H (Θ− 1 + soi)H(C − x),(B.5)

where C =
∫ t
0 v(Θ, x(t′), t′) dt′.

Appendix C. Approximation of random integral Iq. For t > τq, the
statistics of the integral Iq(t) in (5.5) can be computed with the methods presented
in [7]. One starts by subdividing the integration interval [0, t] into N subintervals of
length ∆ = t/N . Then (5.5) is rewritten as

Iq(t) =
N∑

i=1

χi =
N∑

i=1

∫ i∆

(i−1)∆
q(t′)dt′.(C.1)

Since q(t) is a stationary process with a continuous sample function, the integrals χi

(i = 1, . . . , N) share the same mean

(C.2) µχ = µq∆

and variance

σ2
χ = σ2

q

∫ i∆

(i−1)∆

∫ i∆

(i−1)∆
ρq(t

′ − t′′)dt′dt′′ = 2σ2
q

∫ ∆

0
(∆− t′)ρq(t

′)dt′.(C.3)

The two-point covariance between the intervals is given by

Cov(χ1,χi) = σ2
q

∫ ∆

0

∫ i∆

(i−1)∆
ρq(t

′ − t′′)dt′dt′′, i ≥ 2.(C.4)

According to the CLT for correlated random variables [8, 34], Iq(t) =
∑N

i=1 χi is
asymptotically (as N → ∞) Gaussian with mean Nµχ and variance NV , where

(C.5) V = σ2
χ + 2

N∑

i=2

Cov(χ1,χi) < ∞.

For large times, t . τq, this approximation is equivalent to the WN scheme in
(5.8). This scheme fails when one considers small times, t , τq, since the condition
above (C.5) cannot be satisfied.

It is interesting to note that, as N → ∞, the length of each interval tends to
zero. In other words, ∆ , τq, and hence the random field can be approximated as a
random variable for each interval. Now (C.3) and (C.4) can be rewritten as

σ2
χ = σ2

q∆
2,(C.6)

Cov(χ1,χi) = σ2
q∆

2ρq [(i− 1)∆] , i ≥ 2.(C.7)

On the other hand, for t → ∞, this approximation scheme is equivalent to that of
white noise.
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