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a b s t r a c t

We develop a probabilistic approach to quantify parametric uncertainty in first-order
hyperbolic conservation laws (kinematic wave equations). The approach relies on the der-
ivation of a deterministic equation for the cumulative density function (CDF) of a system
state, in which probabilistic descriptions (probability density functions or PDFs) of system
parameters and/or initial and boundary conditions serve as inputs. In contrast to PDF equa-
tions, which are often used in other contexts, CDF equations allow for straightforward and
unambiguous determination of boundary conditions with respect to sample variables. The
accuracy and robustness of solutions of the CDF equation for one such system, the Saint–
Venant equations of river flows, are investigated via comparison with Monte Carlo
simulations.

! 2012 Elsevier Inc. All rights reserved.

1. Introduction

Since its development by Lighthill and Whitham [1,2], the kinematic wave theory (KWT) has been used to model a
number of environmental phenomena, including overland flow, channel flow, multiphase flow in porous media, erosion
and sediment transport [3,4]. It is routinely employed in analyses of urban storm-water drainage systems to route flood
hydrographs [4].

The KWT theory postulates a functional relationship between a quantity kðx; tÞ and its flux qðx; tÞ; q ¼ qðkÞ, so that a
phenomenon is described by a continuity equation

@k
@t

þr % q ¼ S; q ¼ qðkÞ; ð1Þ

where Sðx; tÞ is a source. This is in contrast with dynamic-wave models, which employ the conservation of momentum to
establish a dynamic relation between kðx; tÞ and qðx; tÞ. For Froude numbers smaller than 1 (appropriate for flood waves),
the dynamic waves (long gravity waves) do appear, but they attenuate rapidly and the main disturbance is carried down-
stream by kinematic waves only [1]. We use this application (overland flow in flood forecasting) to motivate the subsequent
analysis. In doing so, we assume that the function q ¼ qðkÞ is invertible and treat the flux qðx; tÞ as a primary state variable. If
this assumption is invalid, then our approach can be applied directly to (1) in which kðx; tÞ is a primary state variable (see the
concluding remarks in Section 6).

When the KWT Eq. (1) is used to describe flow in long rivers, the functional relationship q ¼ qðkÞ is typically given by
either Chézy or Manning formulae [4], which represent a balance between the friction at the bottom and the gravitational
force. These constitutive relations are parameterized with a friction coefficient and a downward slope, both of which often
exhibit high spatial variability and are usually underspecified by data. In addition to this parametric uncertainty, the source

0021-9991/$ - see front matter ! 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcp.2012.07.030

⇑ Corresponding author.
E-mail address: dmt@ucsd.edu (D.M. Tartakovsky).

1 Current address: Pacific Northwest National Laboratory, P.O. Box 999, MSIN K7-90, Richland, WA 99352, USA.

Journal of Computational Physics 231 (2012) 7868–7880

Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

http://dx.doi.org/10.1016/j.jcp.2012.07.030
mailto:dmt@ucsd.edu
http://dx.doi.org/10.1016/j.jcp.2012.07.030
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


function S, which represents influx from tributaries and/or runoff from the ambient terrain, as well as initial and boundary
conditions are subject to uncertainty. Although data acquisition continues to improve, ubiquitous data sparsity and mea-
surement/interpretation errors render overland flow predictions inherently uncertain. This predictive uncertainty is rou-
tinely mentioned as one of the fundamental challenges in flood forecasting [5].

A common approach to quantifying uncertainty in system parameters and driving forces is to treat them as random fields,
whose statistics are inferred from available data. This renders the KWT Eq. (1) stochastic. Its solution is given in terms of
probabilistic density functions (PDFs) of the system states q and k, and amounts to propagation of parametric uncertainty
through the modeling process.

Early attempts to quantify uncertainty in modeling predictions based on the stochastic KWT Eq. (1) dealt with spatially-
averaged quantities [6–10]. Spatially-distributed probabilistic predictions were obtained by solving the stochastic KWT Eq.
(1) with Monte Carlo simulations (MCS) [11,12] and stochastic finite elements [13–18]. For transient nonlinear systems such
as (1) these direct approaches are computationally expensive, and often prohibitively so, especially when the parameter
fields have small correlation lengths and high variances. They are typically used to compute the first two ensemble moments
of system states. Accurate estimates of the tails of system states’ PDFs entail further computational costs.

We present an alternative approach to uncertainty quantification in flowmodels based on the stochastic KWT Eq. (1). The
approach is based on the derivation of a deterministic differential equation for cumulative density functions (CDFs) of the
system states qðx; tÞ and kðx; tÞ. Our framework is conceptually similar to the PDF equations approach used to describe
the dynamics of (passive or reactive) scalars in turbulent flows (e.g., [19]) and to quantify uncertainty in models of reactive
transport in heterogeneous porous media [20]. Yet it offers a distinct advantage of removing the ambiguity in formulation of
boundary conditions.

In Section 2, we provide a shallow-water formulation of surface flow and identify the key sources of uncertainty. Section 3
contains the derivation of a CDF equation and corresponding boundary conditions. In Section 4, this equation is solved ana-
lytically for two special cases describing flood dynamics in long rivers. We investigate the robustness and salient features of
the CDF solutions in Section 5, using MCS as a benchmark. The overall conclusions are drawn in Section 6.

2. Problem formulation

2.1. Governing equations

Motion of a homogeneous fluid whose horizontal extent is much larger than its vertical counterpart can be described by
the shallow water equations. It is common to use their one-dimensional form, which is often referred to as the Saint–Venant
equations,

@k
@t

þ @q
@x

¼ S; ð2Þ

to model open-channel flow. In this application of the KWT Eq. (1), kðx; tÞ ½L2' denotes the cross-sectional area of a channel
occupied by the fluid at a point x along the channel’s length, qðx; tÞ ½L3T(1' is the volumetric flow rate, and Sðx; tÞ ½L2T(1' de-
notes the lateral inflow rate. When kinematic waves in long rivers pass a junction with a tributary, the latter’s effects on the
flood movement are represented by S. The KWT Eq. (1) provides a good approximation of the flood dynamics if influence on
the river upstream of the junction is neglected [1]. Since the kinematic wave approximation neglects backwater effects—the
upstream propagation caused by local acceleration, convective acceleration, and pressure—the flow rate throughout the flow
domain is non-negative, qðx; tÞ P 0 for all x and t.

For wide channels (i.e., channels whose hydraulic radius equals the depth of water), commonly used functional relations
between k and q at any point x and time t (e.g., Darcy–Weisbach, Chézy, or Manning formulae) can be written as

q ¼ ak1=b: ð3Þ

Here the parameter a represents the effects of surface slope and resistance, and the exponent b is a measure of turbulence
that characterizes the flow regime as laminar, turbulent or transitional [4]. In general, both parameters can vary in space and
time, aðx; tÞ and bðx; tÞ. Although the bed of an alluvial river varies with time [21], these changes occur on a time scale that is
much larger than that of the flow, so that a ¼ aðxÞ. While not strictly necessary, we assume that the exponent b is constant in
order to simplify the presentation. Combining (2) and (3) gives

cðxÞ @q
b

@t
þ @q

@x
¼ Sðx; tÞ; c ) a(b: ð4Þ

The open-channel flow Eq. (4) is subject to the initial and boundary conditions

qðx ¼ 0; tÞ ¼ q0ðtÞ; ð5aÞ
qðx; t ¼ 0Þ ¼ qinðxÞ: ð5bÞ

We allow the coefficient cðxÞ, the source function Sðx; tÞ, the inlet flow rate q0ðtÞ, and the initial flow rate qinðxÞ to be uncer-
tain. The uncertainty is quantified by treating these functions as random fields. Within this probabilistic framework, a ran-
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dom quantity Aðx; t;xÞ varies not only in the physical domain, ðx; tÞ 2 ð0;1Þ* ð0;1Þ, but also in the probability space
x 2 X. Our goal is to obtain a complete (single space–time point) probabilistic description of qðx; t;xÞ. In the following,
the dependence of the random fields on x is suppressed to simplify the notation.

2.2. Example of statistical parameterizations

Consider, as an example of the general relation (3), the Manning formula

q ¼
ffiffiffiffiffi
s0

p

n
k4=3; ð6Þ

wherein s0ðxÞ denotes the channel slope, and nðxÞ (s/m1=3) is the Manning’s roughness coefficient. Both s0ðxÞ and nðxÞ are typ-
ically uncertain and often treated as random (e.g., [22–25] and the references therein). The data reviewed in these and other
analyses suggest that no single distribution is capable of capturing their spatial variability at all sites, with the normal, log-
normal, gamma, logistic or log–logistic PDFs found to fit various data sets best. The spatial correlations of s0ðxÞ and nðxÞ, and
their cross-correlation, are likewise site-specific. For the data analyzed in [22], the random field s0ðxÞ was found to be spa-
tially uncorrelated (white noise) and either weakly correlated or uncorrelated with other hydraulic parameters.

The relevant statistics of the parameter cðxÞ ¼ ð
ffiffiffiffiffi
s0

p
=nÞ(b in (4) are related to those of s0ðxÞ and nðxÞ in Appendix A.

3. CDF equations

We start by introducing a ‘‘raw’’ (or ‘‘fine-grained’’) cumulative density function (CDF),

PðQ ; x; tÞ ¼ H½Q ( qðx; tÞ'; ð7Þ

where H is the Heaviside step function, and Q is a deterministic value (outcome) that the random flow rate q can take at a
space–time point ðx; tÞ. Let pqðQ ; x; tÞ denote a single-point probability density function (PDF) of q at the space–time point
ðx; tÞ. Then taking the ensemble average (over random q) of (7) yields a single-point CDF of q,

PðQ ; x; tÞ )
Z 1

0
HðQ ( q0Þpqðq0; x; tÞdq0 ¼ FqðQ ; x; tÞ: ð8Þ

For qðx; tÞ in (4) and (5), its raw CDF satisfies a two-dimensional stochastic linear CWT equation (Appendix B)

bcðxÞQb(1 @P
@t

þ @P
@x

þ Sðx; tÞ @P
@Q

¼ 0 ð9Þ

subject to the initial and boundary conditions

PðQ ; x; t ¼ 0Þ ¼ Pin ¼ H Q ( qinðxÞ½ '; ð10aÞ
PðQ ; x ¼ 0; tÞ ¼ P0 ¼ H Q ( q0ðtÞ½ '; ð10bÞ
Pð0; x; tÞ ¼ 0: ð10cÞ

The straightforward and unambiguous way in which the boundary condition (10c) is formulated provides the key advantage
of our CDF method over commonly used PDF methods [19,20]. The latter are formulated in terms of ‘‘raw’’ PDFs,
PðQ ; q; x; tÞ ¼ d½Q ( qðx; tÞ', whose value at Q ¼ 0 for any space–time point ðx; tÞ is generally unknown.

The CDF formulation (9), (10) offers a number of other advantages over direct solutions of the flow Eqs. (4) and (5). First,
one needs to compute (e.g., with MCS or stochastic finite elements) only the first ensemble moment of P to obtain the full
distribution of q. Second, linearity of the CDF Eqs. (9), (10) simplifies their theoretical and numerical analyses, enabling, for
example, examination of the convergence and other properties of polynomial chaos methods [26]. More important for the
subsequent analysis, one can take advantage of the large body of literature on stochastic averaging of linear advective trans-
port in random velocity fields vðx; tÞ,

@P
@t

þ v % rxP ¼ 0: ð11Þ

In the context of (9), (10),

x ¼ ðx;QÞT ; v ¼ ðvx; vQ ÞT ; vx ¼
Q1(b

bcðxÞ ; vQ ¼ Q1(bSðx; tÞ
bcðxÞ : ð12Þ

Specifically, the ensemble averaging of (11) would yield an effective transport equation for the CDF of q,

@Fq

@t
þ veff % rxFq ¼ rx % ðDrxFqÞ; ð13Þ

where veff and D are the effective velocity and the eddy-diffusivity tensor, respectively. This equation is based on a closure
approximation, but is asymptotically exact when Fq varies slowly with x and t relative to v [27,28].
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In the present study, we consider two special cases of (9), S ¼ 0 and S ¼ SðxÞ, both of which enable one to obtain the CDFs
Fq without resorting to closure approximations.

4. CDF solutions

4.1. Flood propagation in the absence of lateral inflow

The open-channel flow Eq. (4) with S ) 0 provides a classical setting first analyzed by Lighthill and Whitham [1] to model
flood propagation in long rivers. The corresponding raw CDF problem (9), (10) admits an analytical solution (Appendix C),

PðQ ; x; tÞ ¼ HðC ( tÞH½Q ( qinðxHÞ' þ Hðt ( CÞH½Q ( q0ðt ( CÞ': ð14aÞ

Here

CðxÞ ¼
Z x

0
bQb(1cðx0Þdx0 ð14bÞ

and x0 ¼ xH is a solution of the equation

Cðx0Þ ¼ CðxÞ ( t ð14cÞ

for a given Q ; x and t.
For large times, t > C, the general solution (14) reduces to

PðQ ; x; tÞ ¼ H½Q ( q0ðt ( CÞ': ð15Þ

4.2. Flood propagation under steady lateral inflow

In the open-channel flow Eq. (4), the source term S ¼ SðxÞmight represent either input from a river’s tributaries (in which
case S can be treated as a sum of delta functions) or runoff (in which case S is continuous) or their combination. The corre-
sponding raw CDF problem (9), (10) admits an analytical solution (Appendix D)

PðQ ; x; tÞ ¼ HðC ( tÞH½Q ( Iðx; xHÞ ( qinðxHÞ' þ Hðt ( CÞH½Q ( Iðx;0Þ ( q0ðt ( CÞ': ð16aÞ

Here

C ¼
Z x

x0

b½Q ( Iðx; x00Þ'b(1cdx00; Iðx; x0Þ ¼
Z x

x0
Sdx00 ð16bÞ

and x0 ¼ xH is a solution of the equation
Z x0

x0

b½Q ( Iðx; x00Þ'b(1cdx00 ¼
Z x

x0

b½Q ( Iðx; x00Þ'b(1cdx00 ( t; ð16cÞ

with

x0 ¼
0 Q P Iðx; 0Þ
g Q < Iðx;0Þ

"
; Iðg;0Þ ¼ Iðx;0Þ ( Q : ð16dÞ

If SðxÞ ) 0, (16) reduces to (14).

4.3. CDF solutions

Expressions (14) and (16) map the random system parameter cðxÞ and driving forces q0ðtÞ; SðxÞ, and qinðxÞ onto the raw
CDF P. To simplify the presentation, we take qin to be deterministic, and analyze in detail flow in the absence tributaries
(S ¼ 0). This setting captures the salient features of the CDF method, and its extension to more complicated flow scenarios
is relatively straightforward.

The parametric uncertainty can now be quantified by pc;q0 , a joint PDF of random inputs cðxÞ and q0ðtÞ. Since cðxÞ and q0ðtÞ
represent two different physical phenomena, they can be treated as independent, so that pc;q0 ¼ pcpq0 and (8) gives rise to a
CDF solution

FqðQ ; x; tÞ ¼
ZZ

PðC;Q0; x; tÞpcðCÞpq0ðQ0ÞdCdQ0: ð17Þ

The (non-Gaussian, correlated) random field cðxÞ enters (14) only as an integrand in

IcðxÞ ¼
Z x

0
cðx0Þdx0: ð18Þ
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Therefore, (17) can be replaced with

FqðQ ; x; tÞ ¼
ZZ

PðI;Q0; x; tÞpIc ðIÞpq0 ðQ0ÞdIdQ0: ð19Þ

It remains to compute pIc ðI; xÞ, the PDF of IcðxÞ.
Let kc denote the correlation length of cðxÞ. For x + kc; cðx0Þ on the interval ½0; x' is approximately constant, IcðxÞ , xc and

CðxÞ in (14) can be approximated by

CðxÞ , bQb(1xcðxÞ; x + kc: ð20Þ

For x - kc; IcðxÞ becomes Gaussian with mean xc and variance 2xr2
c , and CðxÞ becomes

CðxÞ , bQb(1Nðxc;2xr2
cÞ; x - kc: ð21Þ

If cðxÞ lacks spatial correlation [22], this expression becomes exact. For intermediate x, we approximate the statistics of IcðxÞ
with the central limit theorem (CLT)-based approach [29] (see Appendix E).

Below we use a computational example to investigate the accuracy and robustness of the alternative approximations of
pIc ðI; xÞ, and their effects on the flow-rate CDF Fq, via comparison with Monte Carlo simulations.

4.4. Computational example

We set the initial flow rate to qin ¼ 0:5 m3=s and the flow rate at the inlet x ¼ 0 to

q0ðtÞ ¼ q0 sin
pt
P

# $%%%%

%%%%½1þ q0
0ðtÞ': ð22Þ

The mean flow rate q0 ¼ 1 m3=s satisfies the subcritical flow condition required for the kinematic wave approximation to be
valid, and P denotes the period. The fluctuating term q0

0ðtÞ is white noise. Its statistics, as well as those of the random channel
slope s0ðxÞ and Manning coefficient nðxÞ are summarized in Table 1, wherein CV denotes the coefficient of variation (absolute
value of the ratio of the standard deviation to the mean), and qðrÞ and k are the correlation function and correlation length,
respectively. The size of the flow domain (e.g., the length of a river downstream from x ¼ 0) is L ¼ 20 km, while the corre-
lation length is k ¼ 200 m.

5. Results and discussion

The subsequent results are presented in terms of the dimensionless quantities defined as follows. Let the deterministic
quantities k and q0 represent a characteristic length scale and a characteristic volumetric flux, respectively. Their ratio de-
fines a characteristic time scale s,

s ¼ k3=q0: ð23Þ

We introduce dimensionless quantities

~x ¼ x
k
; ~t ¼ t

s ;
~Q ¼ Q

q0
; ~qin ¼ qin

q0
; ~c ¼ cq3=4

0

k2
; ~P ¼ P

s : ð24Þ

In the simulations reported below, we set ~P ¼ 1.

5.1. Monte Carlo simulations (MCS)

We compare our CDF solutions with those obtained via MCS. These MCS consist of 10,000 realizations of mutually-uncor-
related random fields of s0ðxÞ and nðxÞ generated at 501 nodes evenly distributed on the interval ½0; L', as well as 10,000 real-
izations of white noise q0

0ðtÞ. For each realization of input parameters, a realization of dependent variables, the integral Ic and
raw CDF P, are computed from (18) and (14), respectively. The resulting 10,000 realizations of Ic and P are then used to
estimate their PDFs or CDFs.

Table 1
Statistics of the uncertain (random) parameters. These values are representative of data in [23–25,30].

Parameter PDF qðrÞ Mean CV k

q00ðtÞ Normal dðrÞ 0 0.1 –
s0ðxÞ Lognormal expðr=kÞ 0.01 0.25 200
nðxÞ Lognormal expðr=kÞ 0.037 0.25 200
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5.2. Accuracy of CDF solutions

We start by investigating the accuracy of the three alternative approximations—the constant c approximation (20)
(Const), the CLT-based approximation (CLT) and the white noise c approximation (21) (Delta)—used to compute the PDF
of the random integral Icð~xÞ in (18). Fig. 1 exhibits the PDF pcðCÞ computed with these approximations and with MCS at three
locations, ~x ¼ 0:5; ~x ¼ 5 and ~x ¼ 100. The accuracy of the constant c approximation degrades with the distance away from
the upstream boundary, i.e., as ~x increases. On the other hand, the accuracy of both the CLT and white-noise approximations
improves as ~x becomes large, with the CLT approximation being the most accurate. Fig. 2 demonstrates the close agreement
between the flow-rate CDFs Fq computed with both the CLT approximation-based CDF solution (19) and MCS.

Given the flow rate CDF FqðQÞ in (19), the n-th ensemble moment of the flow rate q is computed as

lq ) h~qi ¼
Z 1

0
½1( Fqð~QÞ'd~Q ; ð25aÞ

hð~q( lqÞ
ni ¼ n

Z 1

0
ð~Q ( lqÞ

n(1½1( Fqð~QÞ'd~Q þ ð(lqÞ
n; n P 2: ð25bÞ

Fig. 3 depicts the first two ensemble moments of q, i.e., its mean lq and variance r2
q , computed with N realizations of MCS

and analytically with (25) at ~x ¼ 50 and ~t ¼ 0:0006. The number of realizations required for MCS to converge increases with
the order n of the ensemble moment. The mean flow rate lq requires only N ¼ 300 realizations to converge, whereas close to
N ¼ 10;000 realizations are needed for the variance r2

q . Although not shown here, N ¼ 10;000 realizations are not enough for
MCS to converge to a stable estimate of kurtosis (the third ensemble moment of q).

To elucidate this effect further, we investigate the MCS convergence for the tails of the distribution of q. Let us consider a
relative error EðQÞ for the flow-rate CDF FqðQÞ computed with N realizations of MCS FMCS

q

& '
and the CDF solution FCDF

q

& '
,

EðQÞ ¼
FMCS
q ðQÞ ( FCDF

q ðQÞ
%%%

%%%

FCDF
q ðQÞ

* 100%: ð26Þ

Fig. 1. Random integral, IcðxÞ, computed with MCS, the constant c approximation (20) (Const), the CLT-based approximation (CLT) and the white noise c
approximation (21) (Delta).
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Fig. 4 exhibits the relative error Eð~QÞ, as a function of the number of MCS realization N, computed at (~x ¼ 50; ~t ¼ 0:0006)
for ~Q ¼ 0:3; 0:4, and 0:5. After N ¼ 10;000 realizations, EðQÞ drops from 6% for Q ¼ 0:3 to almost zero for ~Q ¼ 0:5. This find-
ing is to be expected since Fqð~QÞ is defined as the probability of (non-negative) flow rate q not exceeding a certain value ~Q ,

Fig. 3. Mean (lq) and variance (r2
q) of the flow-rate q computed with the CDF method and with N realizations of MCS at point (~x ¼ 50; ~t ¼ 0:0006).

Fig. 2. Flow rate CDF, Fq , computed with MCS and the CDF method at ~x ¼ 50 and ~t ¼ 0:0006.
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i.e., Fqð~QÞ ) Pr½~q 6 ~Q '. Small values of ~Q (e.g., ~Q ¼ 0:3) represent extreme events, whose low probability requires a large
number of realizations N for MCS to converge.

5.3. Temporal evolution of CDF

Fig. 5 shows snapshots of the temporal evolution of the flow-rate CDF Fqð~Q ; ~x ¼ 10; ~tÞ at dimensionless time
~t ¼ 0:00001; ~t ¼ 0:00015 and ~t ¼ 0:001. At earlier time (t ¼ 0:00001), the initial (deterministic) value ~qin ¼ 0:5 corresponds
to the CDF given by a step (Heaviside) function. As time increases, upstream fluctuations propagate downstream and reach
an observation point (~x ¼ 10). These fluctuations and parametric uncertainty increase predictive uncertainty of the local flow
rate, as demonstrated by Fqð~t ¼ 0:00015Þ. At later times (~t ¼ 0:001), as the wave has passed the observation point, the pre-
dictive uncertainty decreases resulting in sharpening Fq which now reflects uncertainty in the upstream boundary fluctua-
tions q0

0ðtÞ only.

Fig. 4. Relative error Eð~QÞ, as a function of the number of MCS realization N, computed at (~x ¼ 50; ~t ¼ 0:0006) for ~Q ¼ 0:3; 0:4, and 0:5.

Fig. 5. Snapshots of temporal evolution of the flow-rate CDF, Fqð~Q ; ~x;~tÞ, computed with the CLT-based CDF solution at ~x ¼ 10 and ~t ¼ 0:00001; 0:00015 and
0:001.
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5.4. Spatial profile of CDF

Fig. 6 exhibits the flow-rate CDF computed for a fixed dimensionless time (~t ¼ 0:00015) at three locations
~x ¼ 0:1;10 and 100. At ~t ¼ 0:00015, the wave has already passed the upstream point ~x ¼ 0:1 and the shape of Fq is domi-
nated by the upstream boundary fluctuation q0

0ðtÞ. The wave is located further downstream, where high predictive uncer-
tainty stems from the combined effects of uncertainty in temporal fluctuations q0

0ðtÞ and spatial variability of the system
parameter s0ðxÞ and nðxÞ, as represented by the flow-rate CDF at ~x ¼ 10. Even further downstream (~x ¼ 100), where the wave
is yet to reach, the flow-rate CDF sharpens, reflecting uncertainty in the upstream boundary fluctuations q0

0ðtÞ only.

6. Conclusion

We developed a probabilistic approach to quantify parametric uncertainty in first-order hyperbolic conservation laws
(kinematic wave equations). The approach relies on the derivation of a deterministic equation for the cumulative density
function (CDF) of the system state, in which probabilistic descriptions (probability density functions or PDFs) of the system
parameters and/or initial and boundary conditions serve as inputs. The accuracy and robustness of solutions of the CDF equa-
tion for one such system, the Saint–Venant equations of river flows, were investigated via comparison with Monte Carlo sim-
ulations. Our analysis leads to the following major conclusions.

1. CDF equations, and their (semi-) analytical solutions, provide a computationally efficient alternative to the existing
methods for uncertainty quantification, such as Monte Carlo simulations and stochastic finite element methods (poly-
nomial chaos expansions, stochastic collocation methods, etc.).

2. CDF equations are ideally suited for handling input parameters and/or initial and boundary conditions that exhibit
small correlation lengths. This is in contrast with stochastic finite element methods and other numerical approaches
that rely on the Karhunen-Loève representation of random parameter fields.

3. CDF equations offer an operational advantage over PDF equations that are often used in other contexts, e.g., to analyze
transport of passive tracers and reactive species in turbulent (randomly fluctuating) velocity fields. This is because CDF
equations allow for straightforward and unambiguous determination of boundary conditions with respect to sample
variables.

The presented analysis relies on the assumption that the relationship q ¼ qðkÞ between a system state kðx; tÞ and its flux
qðx; tÞ is invertible, which enabled us to treat the flux qðx; tÞ as a primary state variable. However, our CDF approach is
equally applicable to hyperbolic conservation laws (1) in which this assumption is invalid and kðx; tÞ serves as a primary
state variable. A derivation of a corresponding CDF equation for kðx; tÞ is outlined in Appendix F.
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Fig. 6. Spatial evolution of the flow-rate CDF, Fqð~Q ; ~x;~tÞ, computed with the CLT-based CDF solution at ~t ¼ 0:00015 and ~x ¼ 0:1; 10 and 100.
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Appendix A. Statistical properties of c

The random coefficient c ¼
ffiffiffiffiffi
s0

p
=nð Þ(b is defined in terms of the two random parameters, s0ðxÞ and nðxÞ. Its single-point

PDF pcðC; xÞ can be expressed in terms of the PDFs of s0ðxÞ and nðxÞ as follows. Let GcðCÞ ¼ Pðc 6 CÞ denote the cumulative
density function of c, i.e., the probability that the random coefficient c at point x takes on a value not larger than C. By
definition,

GcðCÞ ¼
Z 1

0

Z NðC;S0Þ

0
pn;s0 ðN; S0ÞdNdS0; ðA:1Þ

where pn;s0 ðN; S0Þ is the joint PDF of the channel slope s0 and the Manning coefficient n at point x. The PDF pc can now be
obtained as

pcðCÞ ¼
d
Gc

dC ¼
Z 1

0
pn;s0 NðC; S0Þ; S0½ ' @NðC; S0Þ

@C
dS0: ðA:2Þ

If s0 and n are mutually independent, (A.2) reduces to

pcðCÞ ¼
dGc

dC
1
b
C1=b(1

Z 1

0
pn½NðC; S0Þ'ps0 ðS0Þ

ffiffiffiffiffi
S0

p
dS0: ðA:3Þ

If Y1ðxÞ ¼ ln s0ðxÞ and Y2ðxÞ ¼ lnnðxÞ are mutually uncorrelated multivariate Gaussian stationary (statistically homogeneous)
random fields, their two-point PDFs are given by

p2Yi
ðn1; n2Þ ¼

1

2pr2
Yi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1( q2

Yi

q exp ( Riðn1; n2Þ
2r2

Yi
ð1( q2

Yi
Þ

" #
; i ¼ 1;2; ðA:4aÞ

where

Ri ¼ ðn1 ( Y1Þ2 ( 2qYi
ðn1 ( YiÞðn2 ( YiÞ þ ðn2 ( YiÞ2 ðA:4bÞ

and qYi
ðx1; x2Þ denotes the linear correlation function between Yiðx1Þ and Yiðx2Þ. The two-point covariance of

cðxÞ;Ccðx1; x2Þ ¼ hc0ðx1Þc0ðx2Þi, is defined by

Ccðx1; x2Þ ¼ hcðx1Þcðx2Þi ( c2 ¼ C1ðx1; x2ÞC2ðx1; x2Þ ( c2: ðA:5Þ

The covariances C1ðx1; x2Þ ¼ h½ðs0ðx1Þs0ðx2Þ'(b=2i and C2ðx1; x2Þ ¼ h½nðx1Þnðx2Þ'bi can be expressed in terms of the statistics of
s0ðxÞ and nðxÞ,

C1ðx1; x2Þ ¼
Z 1

(1

Z 1

(1
e(

b
2ðS1þS2Þp2Y1

ðS1; S2ÞdS1dS2 ¼ e(bY1þb2ð1þqY1
Þr2

Y1
=4 ðA:6Þ

and

C2ðx1; x2Þ ¼
Z 1

(1

Z 1

(1
ebðN1þN2Þp2Y2

ðN1;N2ÞdN1dN2 ¼ e2bY2þb2ð1þqY2
Þr2

Y2 : ðA:7Þ

Appendix B. Derivation of raw CDF equation

It follows from the definition of P in (7) that

@P
@x

¼ @H½Q ( qðx; tÞ'
@x

¼ @P
@q

@q
@x

¼ ( @P
@Q

@q
@x

: ðB:1Þ

Multiplying (4) with @P=@Q and making use of (B.1) yields

bcqb(1 @P
@Q

@q
@t

þ @P
@Q

@q
@x

¼ @P
@Q

S: ðB:2Þ

Since @P=@Q ¼ dðQ ( qÞwhere dð%Þ is the Dirac delta function, and since for any test function gð%Þ the following relation holds
gðqÞdðQ ( qÞ ¼ gðQÞdðQ ( qÞ, one can rewrite (B.2) as

bcQb(1 @P
@Q

@q
@t

( @P
@x

¼ @P
@Q

S: ðB:3Þ

Finally, substituting the relation

@P
@t

¼ @H½Q ( qðx; tÞ'
@t

¼ @P
@q

@q
@t

¼ ( @P
@Q

@q
@t

; ðB:4Þ
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into (B.3) yields an equation for the raw CDF (9).

Appendix C. Solution for S ¼ 0

Taking the Laplace transformation of (9) with S ) 0 yields

dP̂
dx

þ bQb(1csP̂ ¼ bQb(1cPin; ðC:1Þ

where P̂ðQ ; x; sÞ is the Laplace transform ofPðQ ; x; tÞ. This equation is subject to the boundary condition obtained from (10b),

P̂ðQ ; x ¼ 0; sÞ ¼ P̂0 ¼
Z 1

0
H Q ( q0ðtÞ½ 'e(stdt: ðC:2Þ

A solution of (C.1) and (C.2) is

P̂ ¼
Z x

0
e(s½CðxÞ(Cðx0 Þ'Bðx0Þdx0 þ P̂0e(sCðxÞ; ðC:3Þ

where

BðxÞ ¼ bQb(1cðxÞH½Q ( qinðxÞ'; CðxÞ ¼
Z x

0
bQb(1cðx0Þdx0: ðC:4Þ

The inverse Laplace transform of (C.3) and (C.4) is given by

P ¼
Z x

0
d½t ( CðxÞ þ Cðx0Þ'Bðx0Þdx0 þ Hðt ( CÞH½Q ( q0ðt ( CÞ': ðC:5Þ

Evaluating the quadrature, while recalling the definitions of B and C in (C.4), yields

P ¼ H½Q ( qinðxHÞ' þ Hðt ( CÞH½Q ( q0ðt ( CÞ': ðC:6Þ

Here x0 ¼ xH is a solution of the equation

Cðx0Þ ¼ CðxÞ ( t ðC:7Þ

for a given x and t. It follows from (C.4) that Cðx0 ¼ xHÞ P 0 for all x and t. This imposes the constraint CðxÞ P t on the param-
eter space of (C.7), which translates into the Heaviside function HðC ( tÞ in (14).

Appendix D. Solution for S ¼ SðxÞ

Taking the Laplace transformation of (9), (10) with S ¼ SðxÞ yields

@P̂
@x

þ SðxÞ @P̂
@Q

¼ (bQb(1cðxÞðsP̂(PinÞ; ðD:1Þ

subject to the boundary conditions

P̂ðQ ;0; sÞ ¼ P̂0ðQ ; sÞ; P̂ð0; x; sÞ ¼ 0: ðD:2Þ

A family of characteristics Q ¼ Qðx; nÞ is defined by

dQ
dx

¼ SðxÞ; Qðx ¼ 0Þ ¼ n; ðD:3Þ

which yields an equation for characteristics

Q ¼
Z x

0
Sdx0 þ n: ðD:4Þ

The ‘‘label’’ n defines the origin of each characteristic line, such that (see Fig. D.1)

1. for n P 0, characteristics originate from the Q-axis (x ¼ 0) and the solution is determined by the boundary condition on x;
2. for n < 0, characteristics originate from the x-axis (x ¼ g) and the solution is determined by the boundary condition on Q.

The constant g is a solution of
R g
0 Sdx0 ¼ (n.

Along the characteristics (D.4), Eq. (D.1) takes the form

dP̂
dx

¼ (bQb(1cðxÞðsP̂(PinÞ: ðD:5Þ
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The two boundary conditions in (D.2) give rise to the boundary condition for (D.5),

P̂ðQ ; x0; sÞ ¼ P̂0ðn; sÞ; x0 ¼
0 n P 0
g n < 0

"
; P̂0 ¼

Z 1

0
H n( q0ðtÞ½ 'e(stdt: ðD:6Þ

Substituting (D.4) into (D.5), solving the resulting ODE, and eliminating n in favor of x and Q in the solution, yields

P̂ ¼
Z x

x0

e(sðC(AÞBdx0 þ P̂0ðx0; sÞe(sC ; ðD:7Þ

where

A ¼
Z x0

x0

b½Q ( Iðx; x00Þ'b(1cdx00; ðD:8Þ

B ¼ b½Q ( Iðx; x0Þ'b(1cH½Q ( Iðx; x0Þ ( qinðx0Þ'; ðD:9Þ

C ¼
Z x

x0

b½Q ( Iðx; x00Þ'b(1cdx00; Iðx; x0Þ ¼
Z x

x0
Sdx00: ðD:10Þ

The inverse Laplace transform of (D.7) and (D.8) is given by

P ¼
Z x

x0

dðt ( C þ AÞBdx0 þ Hðt ( CÞH½Q ( Iðx; 0Þ ( q0ðt ( CÞ': ðD:11Þ

Evaluating the quadrature, while recalling the definitions of A;B and C in (D.8), yields

P ¼ H½Q ( Iðx; xHÞ ( qinðxHÞ' þ Hðt ( CÞH½Q ( Iðx;0Þ ( q0ðt ( CÞ': ðD:12Þ

Here x0 ¼ xH is a solution of the equation

Aðx; x0Þ ¼ Cðx; x0Þ ( t ðD:13Þ

for a given x and t. It follows from (D.8) that Aðx; xHÞ P 0 for all x and t. This imposes the constraint Cðx; x0Þ P t on the param-
eter space of (D.13), which translates into the Heaviside function HðC ( tÞ in (16).

Appendix E. Integration of correlated random fields

For intermediate x, we follow the approach presented in [29] to compute the statistics of the integral IcðxÞ in (18). It is
briefly reviewed here for completeness. Let us subdivide the integration interval ½0; x' into 2N intervals of length
D ¼ x=ð2NÞ. Then (18) can be rewritten as

IcðxÞ ¼
XN

i¼1

ðIi þ JiÞ; Ii ¼
Z 2iD

ð2i(1ÞD
cðx0Þdx0; Ji ¼

Z ð2i(1ÞD

ð2i(2ÞD
cðx0Þdx0: ðE:1Þ

Since cðxÞ is stationary, the integrals Ii and Ji ði ¼ 1; . . . ;NÞ have the same mean I ¼ cD and variance

r2
I ¼ r2

c

Z 2iD

ð2i(1ÞD

Z 2iD

ð2i(1ÞD
qcðx0 ( x00Þdx0dx00 ¼ 2r2

c

Z D

0
ðD( xÞqcðyÞdy: ðE:2Þ

Fig. D.1. Characteristic curves in the ðx;QÞ plane for P̂ðQ ; x; sÞ.
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The correlation coefficient between the two sums is given by

qN

XN

i¼1

Ii;
XN

j¼1

Ij

 !
¼ 2N ( 1

2N

R D
0 qcðyÞdyR D

0 ðD( yÞqcðyÞdy
: ðE:3Þ

According to the central limit theorem for dependent processes, IcðxÞ ¼
PN

i¼1ðIi þ JiÞ is asymptotically (as N ! 1) Gaussian
with mean 2NI and variance 2Nð1þ qNÞr2

I .

Appendix F. CDF equation for kðx; tÞ

If the constitutive relation q ¼ qðkÞ in the hyperbolic conservation law (1) is not invertible, one can derive a CDF equation
for kðx; tÞ by redefining the raw CDF as

PkðK; x; tÞ ¼ H½K ( kðx; tÞ': ðF:1Þ

When applied to (2) with an arbitrary differentiable qðkÞ, the procedure outlined in Appendix B yields a raw CDF equation

@Pk

@t
þ q0ðKÞ @Pk

@x
þ Sðx; tÞ @Pk

@K
¼ 0; ðF:2Þ

where the prime indicates the derivative of qðkÞ with respect to k.
Taking the ensemble average of (F.2) and either invoking a closure approximation or using the method of characteristics

(both of which are discussed above in the context of the CDF for q), one obtains closed-form deterministic equations for the
CDF of k.

The same procedure is applicable to (1) in two or three spatial dimensions.
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