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Soil heterogeneity and the lack of detailed site characterization are two ubiquitous factors that render predictions of flow

and transport in the vadose zone inherently uncertain. We employ the Green–Ampt model of infiltration and the Dagan–

Bresler statistical parameterization of soil properties to compute probability density functions (PDFs) of infiltration rate

and infiltration depth. By going beyond uncertainty quantification approaches based on mean and variance of system

states, these PDF solutions enable one to evaluate probabilities of rare events that are required for probabilistic risk

assessment. We investigate the temporal evolution of the PDFs of infiltration depth and corresponding infiltration rate,

the relative importance of uncertainty in various hydraulic parameters and their cross-correlation, and the impact of the

choice of a functional form of the hydraulic function.
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1. INTRODUCTION

Soil heterogeneity and the lack of detailed site characterization are two ubiquitous factors that hamper one’s ability to
predict flow and transport in the vadose zone. The continuing progress in data acquisition notwithstanding, measure-
ments of hydraulic properties of partially saturated media remain scarce and prone to measurement and interpretive
errors. Consequently, spatial distributions of hydraulic parameters (saturated and relative hydraulic conductivities,
and parameters in retention curves) are typically uncertain and their statistical properties are subject to considerable
debate.

Despite some reservations, e.g., [1, 2], it has become common to treat saturated hydraulic conductivity Ks(x) as
a multivariate log-normal random field whose ensemble statistics (e.g., mean, variance, and correlation length) can
be inferred from spatially distributed data by means of geostatistics. No such consensus exists about statistical dis-
tributions of various hydraulic parameters entering relative hydraulic conductivity and retention curves. For example,
various data analyses concluded that spatial variability of a soil parameter αG(x) in the Gardner model of relative
conductivity, which is often referred to as the reciprocal of the macroscopic capillary length, exhibits either a normal
[3] or log-normal [4] distribution and is either correlated [5] or uncorrelated [3] with Ks. We defer a more detailed
review of the statistical properties of both αG(x) and parameters in the van Genuchten model of relative conductivity
until Section 2. Here, it suffices to say that any approach to uncertainty quantification for flow and transport in the
vadose zone must be flexible enough to accommodate arbitrary statistical distributions of soil properties.

Statistical treatment of hydraulic parameters renders corresponding flow equation stochastic. Solutions of these
equations are probability density functions (PDFs) of system states (water content, pressure, and macroscopic flow
velocity) and can be used not only to predict flow in heterogeneous partially saturated porous media but also to quantify
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predictive uncertainty. Rather than computing PDFs of system states, standard practice in subsurface hydrology is to
compute (analytically or numerically) the first two moments of system states, and to use their ensemble means as
predictors of a system’s behavior and variances (or standard deviations) as a measure of predictive uncertainty. A
large body of literature employing this approach to solve the stochastic Richards equation includes [6–11], to name
just a few. With the exception of solutions based on the Kirchhoff transformation [12–14], such analyses require one
to linearize constitutive relations in the Richards equation, introducing errors that are hard to quantify a priori. More
important, none of these solutions can be used to estimate the probability of rare events, which is of crucial importance
for uncertainty quantification and risk assessment [15].

The Green–Ampt model described in some detail in Section 2 (see also [16, Section 5.2]) provides an alternative
description of flow in partially saturated porous media. The relative simplicity of the Green–Ampt formulation makes
it easier to solve than the Richards equation, which explains its prevalence in large numerical codes—e.g., SCS de-
veloped by U.S. Environmental Protection Agency (USEPA), DR3M developed by U.S. Geological Survey (USGS),
and HIRO2 developed by U.S. Department of Agriculture (USDA)—that are routinely used to predict overland and
channel flows. The first analysis of the impact of soil heterogeneity and parametric uncertainty on solutions of the
Green–Ampt equations was carried out by Dagan and Bresler [17]. Saturated hydraulic conductivity—the sole source
of uncertainty in their analysis—was treated as a two-dimensional random field, Ks(x1, x2). This enables one to
model vertical infiltration with a collection of one-dimensional (in the x3 direction) solutions each of which corre-
sponds to a different random variable Ks. The Dagan–Bresler statistical model [17], whose precise formulation is
provided in Section 2, was found to yield accurate predictions of infiltration into heterogeneous soils [18, 19] and has
been adopted in a number of subsequent investigations, e.g., [19–24]. These and other similar analyses aimed to derive
effective (ensemble averaged) infiltration equations, and some of them quantified predictive uncertainty by computing
variances of system states.

Driven by the needs of probabilistic risk assessment, we focus on the derivation of single-point PDFs (rather than
the first two moments) of system states describing infiltration into heterogeneous soils with uncertain hydraulic pa-
rameters. Our analysis employs the Green–Ampt model of infiltration with the Dagan–Bresler parameterization, both
of which are formulated in Section 2. This Section also contains an overview of experimentally observed statistical
properties of the coefficients entering the Gardner and van Genuchten expressions of relative hydraulic conductivity
Kr. A general framework for derivation of PDF solutions of the Green–Ampt model is presented in Section 3. In
Section 4 we investigate the temporal evolution of the PDFs of a wetting front (Setion 4.1) and corresponding infiltra-
tion rate (Section 4.2), the relative importance of uncertainty in various hydraulic parameters (Section 4.3) and their
cross-correlation (Section 4.4), and the impact of the choice of a functional form of Kr (Section 4.5). Concluding
remarks are presented in Section 5.

2. PROBLEM FORMULATION

Consider infiltration into a heterogeneous soil with saturated hydraulic conductivity Ks, porosity φ, residual water
content θr, and relative hydraulic conductivity Kr(ψ; α) that varies with pressure head ψ in accordance with a
constitutive model and model parameters α. While the subsequent analysis can be applied to any constitutive relation,
we focus on the Gardner model [16, Table 2.1]

Kr = eαGψ (1)

and the van Genuchten model (ibid)

Kr =
[1−ψmn

d (1 + ψn
d )−m]2

(1 + ψn
d )m/2

, ψd ≡ αvG|ψ|. (2)

The model parameters α (α ≡ αG and {αvG, n, m = 1 − 1/n} for the Gardner and van Genuchten models, respec-
tively) and the rest of the hydraulic properties mentioned above vary in space and are sparsely sampled. To quantify
uncertainty about values of these properties at points x = (x1, x2, x3)T where measurements are unavailable, we
treat them as random fields. Thus, a soil parameter A(x, ω) varies not only in the physical domain, x ∈ D, but also
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in the probability space ω ∈ Ω. A probability density function pA, which describes the latter variability, is inferred
from measurements of A by invoking ergodicity. Experimental evidence for the selection of PDFs pA for various soil
parameters A is reviewed in Section 2.1, and the Dagan–Bresler statistical model used in our analysis is formulated
in Section 2.2.

The overreaching aim of the present analysis is to quantify the impact of this parametric uncertainty on predic-
tions of both the dynamics of wetting fronts and infiltration rates. Uncertainty in the former may significantly affect
the accuracy and reliability of field-scale measurements of soil saturation [25], while uncertainty in the latter is of
fundamental importance to flood forecasting [23].

2.1 Statistics of Soil Parameters

Saturated hydraulic conductivity. In addition to the experimental studies reviewed in [12], the data analyses reported
in [4, 24], etc., support our treatment of saturated hydraulic conductivityKs as a log-normal random field.
Gardner’s constitutive parameter. The (scarce) experimental evidence reviewed in [12] suggests that αG, the

reciprocal of the macroscopic capillary length, can be treated alternatively either as a Gaussian (normal) or as a log-
normal random field. While the approach described below is capable of handling both distributions, in the subsequent
computational examples we will treatαG as a log-normal field, which is a model adopted in more recent computational
investigations (e.g., [4, 10]).
Van Genuchten’s constitutive parameters. The van Genuchten hydraulic function (2) is a two-parameter model

obtained from its more general form by settingm = 1−1/n and l = 1/2 (hence, the powerm/2 in the denominator).
We employ this form because of its widespread use [16, Table 2.1], but the approach described below can be readily
applied to quantify uncertainty in more general formulations with arbitrary m and l. The experimental evidence
presented in [4, 26, 27] shows that the coefficient of variation of αvG is much larger than that of n. These data suggest
that αvG can be treated as a log-normal field and the shape factor n as a deterministic constant.
Correlations between hydraulic parameters. Experimental evidence presented in [4, 12] suggests that the coef-

ficient of variation (CV) of Ks is generally much larger than that of either αG or αvG. These parameters were found
to be either perfectly correlated or uncorrelated or anticorrelated (see also [28]). Our analysis allows for an arbitrary
degree of correlation betweenKs and either αG or αvG.

Finally, since the difference between the full and residual saturations ∆θ = φ − θr typically exhibits lower
spatial variability than both Ks and αG (or αvG), we treat it as a deterministic constant to simplify the presentation.
Our approach can be adopted to quantify uncertainty in ∆θ and the shape factor n in the van Genuchten hydraulic
function, as discussed in Section 3.

2.2 Statistical Model for Soil Parameters

Following [17], we restrict our analysis to infiltration depths that do not exceed vertical correlation lengths lv of
(random) soil parameters A(x,ω). Then A = A(x1, x2, ω), so that a heterogeneous soil can be represented by a
collection of one-dimensional (in the vertical direction x3) homogeneous columns of length L3, whose uncertain
hydraulic properties are modeled as random variables (rather than random fields). The restriction lv > L3 formally
renders the Dagan–Bresler parameterization [17] suitable for heterogeneous topsoils, and thus can be used to model
surface response to rainfall events [23, 24] and transport phenomena in topsoil [21]. Yet it was also used to de-
rive effective properties of the whole vadose zone [4, 28]. Rubin and Or [19] provide an additional justification
for the Dagan–Bresler parameterization by noting that “the determination of soil hydraulic properties through field
methods. . .homogenize the properties vertically, thus eliminating the variability in the vertical direction in a practical
sense.”

Consider a three-dimensional flow domain Ω = Ωh × [0, L3], where Ωh represents its horizontal extent. A dis-
cretization of Ωh into N elements represents Ω by an assemblage of N columns of length L3 and facilitates the
complete description of a random field A(x1, x2,ω)—in the analysis below, A stands for Ks, αG, and αvG but can
also include other hydraulic properties and the ponding pressure head ψ0 at the soil surface x3 = 0—with a joint
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probability function pA(A1, . . . , AN ). Probability density functions (PDFs) of hydraulic properties of the ith column
are defined as marginal distributions,

pAi(Ai) =
�

pA(A1, . . . , An)dA1 . . . dAi−1dAi+1 . . . dAN . (3)

Since statistical properties of soil parametersA are inferred from spatially distributed data by invoking ergodicity, the
corresponding random fields (or their fluctuations obtained by data de-trending) must be stationary so that

pAi = pA for i = 1, . . . , N. (4)

Furthermore, if such soil parameters (e.g., Ks and αG) are correlated, their statistical description requires the knowl-
edge of a joint distribution. For multivariate Gaussian Y1 = ln Ks and Y2 = ln αG (or Y2 = ln αvG), their joint PDF
is given by

pY1,Y2(y1, y2) =
1

2πσY1σY2

�
1− ρ2

exp
�
− R

2(1− ρ2)

�
(5a)

where

R =
(y1 − Y 1)2

σ2
Y1

− 2ρ
y1 − Y 1

σY1

y2 − Y 2

σY2

+
(y2 − Y 2)2

σ2
Y2

; (5b)

Y i and σYi denote the mean and standard deviation of Yi (i = 1, 2), respectively; and −1 ≤ ρ ≤ 1 is the linear
correlation coefficient between Y1 and Y2. The lack of correlation between Y1 and Y2 corresponds to setting ρ = 0 in
(5).

2.3 Green–Ampt Model of Infiltration

During infiltration into topsoils, the Dagan–Bresler parameterization of soil heterogeneity can be supplemented with
an assumption of vertical flow. The rationale for, and implications of, neglecting the horizontal component of flow
velocity can be found in [17, 19, 20] and other studies reviewed in the Introduction.

This assumption obviates the need to solve a three-dimensional flow problem, replacing the latter with a collection
of N one-dimensional flow problems to be solved in homogeneous soil columns with random but constant hydraulic
parameters. Such a framework was used to predict mean (ensemble averaged) flow with either the Green–Ampt
model [17, 20] or the steady-state Richards equation with the Gardner hydraulic function [19]. We employ the Green–
Ampt description because it enables one to handle transient flow and to employ arbitrary hydraulic functions, without
resorting to linearizing approximations [29].

Let I(t) denote (uncertain) cumulative infiltration due to ponding water of heightψ0 at the soil surface x3 = 0. The
Green–Ampt model of infiltration approximates an S-shaped wetting front with a sharp interface xf(t) that separates
fully saturated soil (saturation φ) from dry soil (saturation θr). The latter is also known as infiltration depth. If the x3

coordinate is positive downward, Darcy’s law defines macroscopic (Darcy’s) flux q as (e.g., [16, Eq. (5.1)])

q = −Ks
ψf − xf −ψ0

xf
. (6)

Pressure head ψf at the infiltration depth xf(t) is empirically set to a “capillary drive”,

ψf = −
0�

ψin

Kr(ψ) dψ, (7)

where ψin is the initial pressure head in the dry soil.
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Mass conservation requires that I(t) = (ω − θr)xf(t) and the infiltration rate i ≡ dI/dt equals q. The first
condition yields

i = ∆θ
dxf

dt
, ∆θ = ω− θr, (8)

which, combined with the second condition and (6), leads to a (stochastic) ordinary differential equation for the
position of the wetting front,

∆θ
dxf

dt
= Ks

ψ0 + xf −ψf

xf
, xf(t = 0) = 0. (9)

Our goal is to relate uncertainty in hydraulic parameters Ks and αG (or αvG) to predictive uncertainty about the
infiltration depth xf(t) and the infiltration rate i(t), i.e., to express the PDFs of the latter, pf(xf ; t) and pi(i; t), in
terms of the PDF of the former (5).

3. PDF SOLUTIONS

To simplify the presentation, we assume that the height of ponding water, ψ0, does not change with t during the
simulation time T . Then an implicit solution of (9) takes the form

xf − (ψ0 −ψf) ln
�

1 +
xf

ψ0 −ψf

�
=

Ks

∆θ
t. (10)

For small t, (10) can be approximated by an explicit relation [16, Eq. (5.12)]

xf ≈
�

2(ψ0 −ψf)Kst

∆θ
. (11)

For large t, flow becomes gravity dominated, i ∼ Ks, and [16, p. 170]

xf ≈
Ks

∆θ
t. (12)

For intermediate t, various approximations, e.g., [30] and [16, p. 170], can be used to replace the implicit solution (10)
with its explicit counterparts. We will use the implicit solution (10) to avoid unnecessary approximation errors.

Several of the simplifying assumptions made above can be easily relaxed. First, sinceKs and∆θ enter the stochas-
tic Eq. (9) and its implicit solution (10) as the ratioK�

s = Ks/∆θ, one can easily incorporate uncertainty in (random-
ness of) ∆θ by replacing the PDF of Ks with the PDF of K�

s . Second, the implicit relation F (xf ,Ks/∆θ, α; t) = 0
given by (10) and (7) allows one to express the PDF of xf in terms of the PDFs of any number of hydraulic parameters
by following the procedure described below. Third, uncertainty in, and temporal variability of, the height of ponding
water ψ0(t) can be dealt with by replacing (10) with an appropriate solution of (9).

3.1 PDF of Infiltration Depth

Let Gf(x�
f ) = P (xf ≤ x�

f ) denote the cumulative distribution function of xf , i.e., the probability that the random
position of the wetting front xf takes on a value not larger than x�

f . Since (10) provides an explicit dependence of
randomKs on random xf and α (where α stands for either αG or αvG), i.e.,

Ks(xf , α) =
∆θ

t

�
xf − (ψ0 −ψf) ln

�
1 +

xf

ψ0 −ψf

��
, (13)

it follows from the definition of a cumulative distribution function that

Gf(x�
f ) =

∞�

0

Ks(x�
f ,α)�

0

pY1,Y2(Ks, α)
dKsdα

Ksα
. (14)
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The denominator in (14) reflects the transition from (5), the joint Gaussian PDF for Y1 and Y2, to the log-normal
variablesKs = exp(Y1) and α = exp(Y2).

The PDF of the random (uncertain) infiltration depth pf(x�
f ; t) can now be obtained as

pf(x�
f ; t) =

dGf(x�
f ; t)

dx�
f

. (15)

Using Leibnitz’s rule to compute the derivative of the integral in (14) and (15), we obtain

pf(x�
f ; t) =

∞�

0

pY1,Y2 [Ks(x�
f ,α),α]

αKs(x�
f , α)

∂Ks(x�
f ,α)

∂x�
f

dα. (16)

Equation (16) holds for an arbitrary implicit solution of the Green–Ampt equation, F (xf ,Ks/∆θ, α; t) = 0, and
hence, the PDF solution (16) is applicable to a large class of infiltration regimes that are amenable to the Green–Ampt
description. For the flow regime considered in the present analysis, Ks(x�

f , α) is given by (13), and (16) takes the
form

pf(x�
f ; t) =

∆θ

t

∞�

0

pY1,Y2 [Ks(x�
f , α),α]

αKs(x�
f , α)

x�
f dα

ψ0 −ψf + x�
f

. (17)

3.2 PDF of Infiltration Rate

Let Gi(i�) = P (i ≤ i�) denote the cumulative distribution function of i, i.e., the probability that the random infiltra-
tion rate i takes on a value not larger than i�. Since q = i, Eqs. (6) and (7) define a mapping Ks = Ks(i, α). This
enables one to compute the cumulative distribution function Gi(i�) as

Gi(i�) =
∞�

0

Ks(i�,α)�

0

pY1,Y2(Ks, α)
dKsdα

Ksα
(18)

and the PDF of infiltration rate, pi = dGi/di�, as

pi(i�; t) =
∞�

0

pY1,Y2 [Ks(i�, α), α]
αKs(i�,α)

∂Ks(i�, α)
∂i�

dα. (19)

The derivative ∂Ks/∂i� is computed from (6) as the inverse of

∂i�

∂Ks
= 1 +

ψ0 −ψf

xf

�
1− Kst

∆θ

xf −ψf + ψ0

x2
f

�
. (20)

3.3 Dimensionless Form of PDFs

To facilitate an analysis of the effects of various sources of parametric uncertainty on the PDF pf(x�
f ; t) of the uncertain

(random) infiltration depth xf(t), given by the analytical solution (17), we introduce the following dimensionless
quantities. Let the averaged quantities (α)−1 andKs represent a characteristic length scale and a characteristic value
of saturated hydraulic conductivity, respectively. Then a characteristic time scale τ can be defined as

τ = (αKs)−1, (21)
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and the following dimensionless quantities can be introduced,

t� =
t

τ
, ψ� = αψ, α� =

α

α
, K �

s =
Ks

Ks
. (22)

This leads to a PDF solution for the dimensionless infiltration depth x�f = αxf ,

pf(x�f ; t
�) =

∆θ

t�

∞�

0

pY �
1 ,Y �

2
[K �

s(x�f ,α
�), α�]

α�K �
s(x�f , α�)

x�f dα�

ψ�0 −ψ�f + x�f
. (23)

Likewise, the PDF of the dimensionless infiltration rate i� = i/Ks takes the form

pi(i�; t�) =
∞�

0

pY �
1 ,Y �

2
[K �

s(i�, α�), α�]
α�K �

s(i�,α�)
∂K �

s(i�, α�)
∂i�

dα�. (24)

In the following, we drop the primes to simplify the notation.

4. RESULTS AND DISCUSSION

In this Section, we explore the impact of various aspects of parametric uncertainty on the uncertainty in predictions of
infiltration rate i(t) and infiltration depth xf(t). Specifically, we investigate the temporal evolution of the PDFs of the
wetting front (Section 4.1) and the infiltration rate (Section 4.2), the relative importance of uncertainty in Ks and αi

(Section 4.3), and the effects of cross-correlation between them (Section 4.4). This is done for the Gardner hydraulic
function (1), in which case (7) results in the interfacial pressure head ψf = −α−1

G . In Section 4.5, we explore how
the choice of a functional form of the hydraulic function, i.e., the use of the van Genuchten model (2) instead of the
Gardner relation (1), affects the predictive uncertainty.

Unless explicitly noted otherwise, the simulations reported below correspond to the dimensionless initial pressure
head ψin = −9999.9, the dimensionless height of ponding water ψ0 = 0.1, ∆θ = 0.45, the coefficients of variation
CVln K ≡ σY1/Y 1 = 3.0 and CVln α ≡ σY2/Y 2 = 0.5 with the means Y 1 = 0.25 and Y 2 = 0.1, and the cross-
correlation coefficient ρ = 0. (The use of the soil data in Table 1 of [26] in conjunction with these dimensionless
parameters would result in the height of ponding water ψ0 = 0.6 cm.)

4.1 PDF of Wetting Front

Since the initial position of the wetting front is assumed to be known, xf(t = 0) = 0, the PDF pf(xf ; 0) = δ(xf),
where δ(·) denotes the Dirac delta function. As the dimensionless time becomes large (t → ∞), pf ∼ pKs in
accordance with (12). The PDF pf(xf ; t) in (23) describes the temporal evolution of predictive uncertainty between
these two asymptotes, with Fig. 1 providing snapshots at dimensionless times t = 0.01, 0.1, and 0.5. (For the soil
parameters reported in Table 1 of [26], this corresponds to dimensional times 1.5, 15, and 75 min, respectively). The
uncertainty in predictions of infiltration depth increases rapidly, as witnessed by wider distributions with longer tails.

4.2 PDF of Infiltration Rate

Figure 2 provides snapshots, at dimensionless times t = 0.01, 0.1, and 0.5, of the temporal evolution of the PDF
of infiltration rate pi(i; t) given by (24). Both the mean infiltration rate and the corresponding predictive uncertainty
decrease with time. At later times (the dimensionless time t = 5.0, for the parameters used in these simulations), the
PDF appears to become time invariant. This is to be expected on theoretical grounds, see (12), according to which
pi(i�; t�) → pK(K �

s) as t� → ∞. The reduced χ2 test confirmed this asymptotic behavior at dimensionless time
t = 100.0.
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FIG. 1: Temporal evolution of the PDF of infiltration depth pf(xf ; t).
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FIG. 2: Temporal evolution of the PDF of the infiltration rate pi(i; t).

4.3 Effects of Parametric Uncertainty

The degree of uncertainty in hydraulic parameters lnKs and lnαG is encapsulated in their coefficients of variation
CVln K and CVα, respectively. Figure 3 demonstrates the relative effects of these two sources of uncertainty upon
the predictive uncertainty, as quantified by the infiltration depth PDF pf(xf ; t), computed at t = 0.1. Uncertainty in
saturated hydraulic conductivityKs affects predictive uncertainty more than uncertainty in the Gardner parameter αG

does. Although not shown in Fig. 3, we found similar behavior at later times t = 0.5 and 1.0. These findings are in
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FIG. 3: The infiltration depth PDF pf(xf ; t = 0.1) for different levels of uncertainty in (a) saturated hydraulic
conductivityKs and (b) the Gardner parameter αG.

agreement with those reported in [17, 31], wherein variances of state variables were used to conclude that uncertain
saturated hydraulic conductivityKs is the dominant factor affecting predictive uncertainty.

4.4 Effects of Cross-Correlation

The question of whether various hydraulic parameters are correlated with each other remains open, with different
data sets supporting opposite conclusions (see Section 2.1). This suggests that the presence or absence of such cross-
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correlations is likely to be site-specific rather than universal. The general PDF solution (23) enables us to investi-
gate the impact of cross-correlations between saturated hydraulic conductivity Ks and the Gardner parameter αG

on predictive uncertainty. This is done by exploring the dependence of the PDF of the wetting front pf(xf ; t) on the
correlation coefficient ρ. Figure 4 presents pf(xf ; t = 0.1) for ρ = −0.99, 0.0, and 0.99, which represent perfect anti-
correlation, independence, and perfect correlation between Ks and αG, respectively. The perfect correlation between
Ks and αG (ρ = 0.99) results in the minimum predictive uncertainty (the width of the distribution), while the perfect
anticorrelation (ρ = −0.99) leads to the maximum predictive uncertainty. Predictive uncertainty resulting from the
lack of correlation betweenKs and αG (ρ = 0.0) falls amid these two limits. The impact of cross-correlation between
soil hydraulic parameters (a value of ρ) decreases with time, falling from the maximum difference of about 21% at
t = 0.01 to about 3% at t = 0.1.

4.5 Effects of Selection of Hydraulic Function
Finally, we examine how the choice of a hydraulic function Kr(ψ;α) affects predictive uncertainty. Guided by the
data analyses presented in Section 2.1, we treat αvG as the only uncertain parameter in the van Genuchten hydraulic
function with n = 1.5. To make a meaningful comparison between predictions based on the Gardner (1) and van
Genuchten (2) relations, we select statistics of their respective parameters α in a way that preserves the mean effective
capillary drive defined by (7) [29, 32]. Specifically, we use the equivalence criteria to select the mean of lnαvG (-1.40,
for the parameters used in these simulations) that maintains the same mean capillary drive as the Gardner model with
lnαG = 0.1, and choose the variance of lnαvG as to maintain the original values of the coefficients of variation
CVln αvG = CVln αG = 0.5. Figure 5 reveals that the choice between the van Genuchten and Gardner models has
a significant effect on predictive uncertainty of the wetting front dynamics, although this influence diminishes with
time. For example, the difference between the variances is 40% at t = 0.01 and 23% at t = 0.1.

5. CONCLUSION
We presented an approach for computing probability density functions (PDFs) of both infiltration rates and wetting
fronts propagating through heterogeneous soils with uncertain (random) hydraulic parameters. Our analysis employs
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FIG. 4: The infiltration depth PDF pf(xf ; t = 0.1) for different levels of correlation ρ between hydraulic parameters
Ks and αG.
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FIG. 5: The infiltration depth PDF pf(xf ; t = 0.1) resulting from use of the Gardner and van Genuchten hydraulic
functions.

the Green–Ampt model of infiltration and the Dagan–Bresler statistical parameterization of soil properties. Our anal-
ysis leads to the following major conclusions.

1. The proposed approach goes beyond uncertainty quantification based on mean and variance of system states
by computing their PDFs. This enables one to evaluate probabilities of rare events, which are necessary for
probabilistic risk assessment.

2. Both the type and parameters of the PDF of a wetting front’s depth change with time. As time increases, so does
the width of the PDF, reflecting the increased predictive uncertainty.

3. Both the type and parameters of the PDF of infiltration rate change at early time. At large times, the PDF of
infiltration rate coincides with the PDF of saturated hydraulic conductivity, which can serve as the lower bound
of uncertainty associated with predictions of infiltration rate.

4. Predictive uncertainty is most sensitive to uncertainty in the saturated hydraulic conductivity Ks. Tripling the
coefficient of variation of lnKs significantly affects the shape of the infiltration depth PDF, while the effects
of tripling the coefficient of variation of lnαG (a measure of uncertainty about the Gardner parameter αG) are
relatively insignificant.

5. The degree of correlation between the hydraulic parametersKs and αG has considerable influence on predictive
uncertainty at early times and diminishes at later times.

6. The choice of a functional form of the hydraulic function (e.g., the Gardner model vs the van Genuchten model)
has a significant effect on predictive uncertainty during early stages of infiltration. This effect diminishes with
time.
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