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Microscopic (pore-scale) properties of porous media affect and often determine their 
macroscopic (continuum- or Darcy-scale) counterparts. Understanding the relationship 
between processes on these two scales is essential to both the derivation of macroscopic 
models of, e.g., transport phenomena in natural porous media, and the design of novel 
materials, e.g., for energy storage. Microscopic properties exhibit complex statistical 
correlations and geometric constraints that present challenges for the estimation of 
macroscopic quantities of interest (QoIs), e.g., in the context of global sensitivity analysis 
(GSA) of macroscopic QoIs with respect to microscopic material properties. We present a 
systematic way of building correlations into stochastic multiscale models through Bayesian 
Networks. The proposed framework allows us to construct the joint probability density 
function (PDF) of model parameters through causal relationships that are informed by 
domain knowledge and emulate engineering processes, e.g., the design of hierarchical 
nanoporous materials. These PDFs also serve as input for the forward propagation of 
parametric uncertainty thereby yielding a Bayesian Network PDE. To assess the impact 
of causal relationships and microscale correlations on macroscopic material properties, 
we propose a moment-independent GSA and corresponding effect rankings for Bayesian 
Network PDEs, based on the differential Mutual Information, that leverage the structure 
of Bayesian Networks and account for both correlated inputs and complex non-Gaussian 
(skewed, multimodal) QoIs. Our findings from numerical experiments, which feature a non-
intrusive uncertainty quantification workflow, indicate two practical outcomes. First, the 
inclusion of correlations through structured priors based on causal relationships informed 
by domain knowledge impacts predictions of QoIs and has important implications for 
engineering design. Second, structured priors with non-trivial correlations yield different 
effect rankings than independent priors; these rankings are more consistent with the 
anticipated physics.

© 2019 Elsevier Inc. All rights reserved.

* Corresponding authors.
E-mail addresses: kimoon.um@gmail.com (K. Um), hall@uq.rwth-aachen.de (E.J. Hall), markos@math.umass.edu (M.A. Katsoulakis), 

tartakovsky@stanford.edu (D.M. Tartakovsky).
1 Both authors contributed equally to this work.
2 Present address: Chair of Mathematics for Uncertainty Quantification, Department of Mathematics, RWTH Aachen University, 52056 Aachen, Germany.
https://doi.org/10.1016/j.jcp.2019.06.007
0021-9991/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2019.06.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:kimoon.um@gmail.com
mailto:hall@uq.rwth-aachen.de
mailto:markos@math.umass.edu
mailto:tartakovsky@stanford.edu
https://doi.org/10.1016/j.jcp.2019.06.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2019.06.007&domain=pdf


K. Um et al. / Journal of Computational Physics 394 (2019) 658–678 659
1. Introduction

Understanding statistical and causal relations between properties/model parameters at various scales is essential for 
science-based predictions in general and for forecasts of transport phenomena in porous media in particular. For example, 
the design of materials for energy storage devices aims to optimize macroscopic material properties (quantities of interest 
or QoIs), such as effective diffusion coefficient and capacitance, through engineered pore structures [1,2]. Quantification of 
both uncertainty in predictions of these macroscopic QoIs and their sensitivity to variability and uncertainty in microscopic 
features are crucial for informing decision tasks such as optimal experimental design and reliability engineering.

The simulation-assisted approach to the optimal design of porous metamaterials takes advantage of the availability of 
microscopic (pore-scale) and macroscopic (continuum or Darcy-scale) models, and of a link between the two provided by 
various upscaling techniques [1–3]. Such a link also facilitates analyses of both uncertainty propagation from the microscopic 
scale to the macroscopic scale and sensitivity of macroscopic material properties to the microscopic ones [4]. Predictions re-
sulting from this multiscale approach can be made more robust by incorporating information about correlations and causal 
relationships between scales and within a single scale. Causal relationships are natural and stem from domain knowledge 
such as physical, chemical, and/or engineering design constraints, expert knowledge, and available data. Our primary objec-
tive is to bring a Bayesian Network perspective to stochastic multiscale modeling thereby providing a systematic framework 
for incorporating structured priors based on causal relationships informed by domain knowledge.

Bayesian Networks are a special class of hierarchical probabilistic graphical models (PGMs) with a directed acyclic graph 
structure that represents conditional relationships among random variables [5–7]. Bayesian Networks and, more generally, 
PGMs provide a rich framework for encoding distributions over large, complex domains of interacting random variables. In 
our application, they provide a coherent framework for representing causal relationships both between problem scales and 
among the space of parameters representing pore-scale features. Incorporating Bayesian Networks into random PDEs is a 
novel approach to the modeling of multiscale porous media; it breaks down the stochastic modeling and statistical inference 
tasks into smaller, controllable parts enabling us to

(i) build systematically informed parameter priors that include physical constraints and/or correlations;
(ii) mirror engineering processes related to the design of hierarchical nanoporous media networks;

(iii) construct Bayesian Network (random) Darcy-scale PDE models informed by domain knowledge including (possibly un-
certain) pore-scale data, parameters, and constraints; and

(iv) carry out global sensitivity analysis (GSA), effect rankings, and uncertainty quantification (UQ).

Related to this last point, this framework for incorporating structured priors through causal relationships informed by 
domain knowledge demands GSA tools that differ from the standard variance-based GSA methods. Conventional variance-
based methods assume unstructured (i.e., mutually independent) priors and are neither easy to interpret nor cheap to 
compute for correlated and/or dependent inputs [8–10]. In our application, causal relationships exist not just between pa-
rameters but also between scales. The latter is important since our predictive PDFs are not necessarily Gaussian and/or do 
not have a known analytical form. This suggests moving away from a fixed number of moments to a moment-independent 
quantity such as Mutual Information. Leveraging the structure of our Bayesian Networks, we employ a moment-independent 
GSA relying on Mutual Information [11,12] and empirical distributions acquired through simulations. We demonstrate that 
differential Mutual Information provides a measure of input effects for Bayesian Network PDEs that is suited to tackling the 
twin challenges of structured or correlated inputs and non-Gaussian (highly skewed, multimodal) QoIs.

Design of nanoporous metamaterials for energy storage provides an ideal setting to illustrate the Bayesian Network 
PDE approach. Macroscopic material properties are dependent on a set of microscopic parameters characterizing the pore 
geometry, e.g., pore radius or pore connectivity. These microscopic parameters are typically correlated due to the presence of 
geometric and topological constraints and uncertain due to natural and/or manufacturing variability. This setting gives rise 
to a number of theoretical and practical questions: How does uncertainty in microscopic properties (quantified, e.g., in terms 
of a pore-size distribution) propagate to the macroscopic scale (expressed in terms of the PDF of, e.g., the effective diffusion 
coefficient)? How sensitive are a material’s macroscopic properties to its microscopic counterparts? Etc. Our non-intrusive 
computational workflow, which makes exhaustive sampling for prediction and uncertainty quantification feasible, has three 
ingredients: (i) Rosenblatt transforms to decorrelate inputs for non-intrusive scientific computing, (ii) generalized polynomial 
chaos expansions obtained using the DAKOTA software [13], and (iii) kernel density estimation techniques.

In Section 2, we formulate a macroscopic (Darcy-scale) model of reactive transport in hierarchical nanoporous media. The 
model parameters are expressed in terms of microscopic (pore-scale) material properties by means of homogenization [4], 
which facilitates multiscale UQ and GSA. The work [4] considers a similar application problem and utilizes homogeniza-
tion for forward propagation of uncertainty thereby enabling variance-based GSA. However, in this approach the space of 
input distributions for pore features is assumed to be independent and consequently simulations that maintain these as-
sumptions are restricted to distributions supported over narrow, non-physical ranges. A major contribution of the present 
work is to use Bayesian Networks for stochastic modeling and to incorporate domain knowledge using causal relationships. 
Furthermore, we propose Mutual Information-based GSA as a suitable sensitivity and effect ranking tool for Bayesian Net-
work PDEs that is enabled by a non-intrusive uncertainty quantification workflow. Section 3 contains a description of our 
Bayesian Network PDE approach for modeling and uncertainty quantification. Section 4 contains an implementation for a 
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Fig. 1. A hierarchical nanoporous material [4] exhibiting horizontally oriented nanotunnels through mesopores connected by a series of vertically oriented 
nanotubes. The porous media volume V (left) consists of a periodic arrangement of unit cells V̆ (right) with pore space P̆ and fluid-solid interface �̆. The 
parameters {R, θ, d, l} describing the nanopore features are constrained by the geometry of V̆ .

model problem highlighting our workflow that uses inverse Rosenblatt transforms to non-intrusively interface with exist-
ing software, such as DAKOTA. This section also collects the results of our numerical experiments, which demonstrate the 
impact of causality and non-trivial correlations. In Section 5, we propose differential Mutual Information GSA indices and 
effect rankings for Bayesian Network PDEs. Our examples illustrate how the inclusion of causal relationships that encode 
domain knowledge about structural constraints provides rankings more consistent with the physics anticipated for a simple 
hierarchical nanoporous material. In Section 6, we present an alternative Bayesian Network for the model problem to high-
light the method’s flexibility and ability to mirror distinct engineering and design processes. Major conclusions drawn from 
our study are summarized in Section 7.

2. Models of flow and transport in nanoporous materials

A volume V =P∪S of a hierarchical porous material is comprised of a fluid-filled pore space P and solid matrix S , with 
a (multi-connected) fluid-solid interface denoted by � = P ∩S . To mimic a manufacturing process and to make subsequent 
use of the homogenization theory, we assume that the volume V consists of a periodic arrangement of unit cells V̆ =
P̆ ∩ S̆ with pore space P̆ ⊂ P , solid matrix S̆ ⊂ S , and fluid-solid interface �̆ = P̆ ∩ S̆ . For example, the hierarchical 
nanoporous material in Fig. 1 consists of mesopores that are connected longitudinally (horizontally) through nanotunnels 
and transversely (vertically) by a series of nanotubes. These features are described by a set of parameters {R, θ, d, l}, where 
R is the mesopore radius; θ is the angle of overlap between adjacent mesopores in a nanotunnel; and d and l are the 
diameter and length of the nanotubes, which serve as nano-bridges between adjacent mesopores/nanotunnels.

The design of novel materials calls for a systematic analysis of the sensitivity of desired macroscopic (Darcy-scale) prop-
erties to imperfections (natural variability) in microscopic (pore-scale) parameters and/or their distributions. Following [4], 
we use the homogenization theory to map uncertainty in the microscopic parameters and processes to their macroscopic 
counterparts. Sources of uncertainty, as well as representations of randomness in the microscopic and macroscopic models, 
are described below.

2.1. Pore-scale model

At the pore-scale, the evolution of a solute concentration c(x, t) (mol/�3), at point x ∈ P and time t > 0, is governed by 
the evolution equation

∂c

∂t
= ∇ · (D∇c) , x ∈ P , t > 0 , (1)

where D(x) (L2/T), x ∈ P , is the pore-scale diffusion coefficient. The spatial variability of D allows for Fickian diffusion 
through mesopores and Knudsen diffusion through nanotubes. This equation is subject to the uniform initial condition

c(x,0) = cin, x ∈ P ,

and the boundary condition

−Dn · ∇c = qm
∂s

∂t
, x ∈ �, t > 0 ,

where qm and s(x, t) are related to the sorption properties of the material surface �. Specifically, q(x, t) = qm · s(x, t) is the 
adsorption amount per unit area of � (mol/�2), qm (mol/�2) is the maximal adsorption amount, and s(x, t) is the fractional 
coverage of �. The fractional coverage is assumed to follow Lagergren’s pseudo-first-order rate equation,
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ds

dt
= γ (seq − s) ,

where γ (1/T) is the adsorption rate constant and the equilibrium adsorption coverage fraction seq satisfied Langmuir’s 
adsorption isotherm,

seq = K c

1 + K c
, (2)

with the adsorption equilibrium constant K (�3/mol).

2.2. Darcy-scale model

At the macroscopic scale, the volume-averaged solute concentration u,

u(x, t) := 1

‖V̆‖
ˆ

V̆(x)

c(ξ , t)dξ = 1

‖V̆‖
ˆ

P̆(x)

c(ξ , t)dξ = φ

‖P̆‖
ˆ

P̆(x)

c(ξ , t)dξ , x ∈ V ,

treats a porous material as a continuum. Here, ‖ · ‖ denotes the volume of a domain and φ := ‖P‖/‖V‖ = ‖P̆‖/‖V̆‖ is the 
material porosity. Using homogenization via multiple-scale expansions [1], one can show that u satisfies a reaction-diffusion 
equation

φ
∂u

∂t
= ∇ · (Deff∇u) − φqmγeff

K u

1 + K u
, x ∈ V. (3)

The effective diffusion coefficient Deff and the effective rate constant γeff are random, stemming from uncertainty in pore-
scale structures and processes that are propagated by the homogenization map. Specifically, the effective rate constant γeff

(1/L) is computed as

γeff = ‖�̆‖
‖P̆‖ , (4)

i.e., is defined solely by the pore geometry, and the effective diffusion coefficient Deff (L2/T), a second rank tensor, depends 
on both the pore geometry and the pore-scale processes. The latter is computed in terms of a closure variable χ , given by

Deff = 1

‖V̆‖
ˆ

P̆

(I + ∇ξχ
	)dξ , (5)

where I is the identity matrix. The closure variable χ (ξ) is a V̆-periodic vector defined on P̆ , which satisfies the Laplace 
equation

∇ξ · (D∇ξχ) = 0 , ξ ∈ P̆ , (6)

subject to the normalizing condition

〈χ〉 := 1

‖V̆‖
ˆ

P̆

χ(ξ)dξ = 0 , (7)

the boundary condition along the fluid-solid segments �̆,

n · ∇ξχ = −n · I , ξ ∈ �̆ , (8)

and V̆-periodic boundary condition on the remaining fluid segments of the boundary of P̆ . For the hierarchical nanoporous 
material in Fig. 1, these auxiliary conditions reduce to

χ1(−a, ξ2) = χ1(a, ξ2) = 0 ,
∂χ1

∂ξ2
(ξ1,0) = ∂χ1

∂ξ2
(ξ1,b) = 0 , (9)

and

χ2(ξ1,0) = χ2(ξ1,b) = 0 ,
∂χ2

(−a, ξ2) = ∂χ2
(a, ξ2) = 0 , (10)
∂ξ1 ∂ξ1
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Fig. 2. A Bayesian Network describing the components of the full statistical model P , in (13), for the multiscale porous media system takes into account 
the joint PDF P (�) of the input parameters, the PDF P (X | �) of the upscaling variable that maps pore-scale properties to Darcy-scale variables, and the 
PDF P (U | X) related to Darcy-scale QoIs. This figure and other Bayesian Networks are produced using [14].

where

a = R cos θ and b = 2R cos

(
sin−1

(
d

2R

))
+ l = 2R

√
1 − d2

4R2
+ l

are, respectively, the width and height of the unit cell V̆ . In the next section, we introduce a representation for uncertainty 
in the pore- and Darcy-scale models that will enable us to compartmentalize various stochastic modeling and statistical 
inference tasks.

3. Bayesian Network formulation for random PDE models of multiscale porous media

A Bayesian Network is a directed graph structure in which each node represents a random variable with an associated 
PDF and each edge encodes a conditional relationship [7]. A Bayesian Network PDE incorporates these structured proba-
bilistic models into a forward physical model and allows one to capture conditional relationships, including correlations, 
constraints, and causality, in a systematic way. The key components of the full statistical model include:

(i) inputs � = {R, θ, d, l}, a random vector related to the parameters describing pore-scale features in Fig. 1;
(ii) upscaling variable X , a random vector related to the closure equations (6)–(8); and

(iii) QoI U , a random macroscopic quantity, such as macroscopic parameters Deff and γeff in (4) and (5) or a functional of u
in (3).

In the context of the multiscale model, the relationships between problem scales are naturally causal: the PDF of U depends 
causally on the PDF of X since, for example, the closure variable χ determines u and Deff . In turn, the PDF of X depends 
causally on the PDF of � since the pore-scale parameter values determine χ , e.g., via (9) and (10). The Bayesian Network in 
Fig. 2 describes these causal relationships for the full statistical model where the directed network structure indicates that 
there is only one-way communication between the different scales.

The Bayesian Network in Fig. 2 encodes the relationships among the conditional and marginal PDFs for �, X , and U . We 
denote the joint PDF of the input parameters by P (�). For simplicity we assume the statistical models for X and U to be 
known, that is, uncertainty enters only through the parameters since we have fixed both the form of equations for χ and 
u in (3)–(8) and the numerical methods for approximating them. Under this assumption, the conditional PDF of X given a 
sample � is the Dirac delta function

P (X | �) = δX (X − χ(ξ ;�)). (11)

Similarly, the conditional PDF of U given a sample X = χ is

P (U | X) = δU (U − u(x, t; X)). (12)

Then the full statistical model P is given by

P := P (�, X, U ) = P (U | X) P (X | �) P (�) = δU (U − u(x, t; X)) δX (X − χ(ξ , t;�)) P (�) . (13)

In the remainder of this section, we discuss expanded Bayesian Networks for representing causal relationships between 
parameters within a single scale that allow us to encode correlations among pore scale features. In the context of the 
hierarchical material in Fig. 1, causal relationships stemming from domain knowledge, including expert knowledge and 
geometrical design constraints, provide a basis for positing conditional relationships that in turn give rise to correlations 
among pore scale features after selecting (uninformed) statistical models for each component of the Bayesian Network. In 
Section 3.1, we consider the assumption of independent priors for the pore-scale parameters and contrast this in Section 3.2
with causality arising from natural structural constraints encountered in engineering design.

Remark 1. Widely adopted approaches to uncertainty quantification, e.g., Monte Carlo methods, involve strategies for gen-
erating surrogates of the model P in (13). The direct application of these traditional UQ methods requires the form of P
to be known. In the sequel, we introduce an approach relying on Rosenblatt transformations, generalized polynomial chaos 
expansions, and the popular UQ software package DAKOTA that makes sampling P feasible.
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Fig. 3. A Bayesian Network describing the components of the full statistical model under the assumption of independent priors on pore-scale features 
� = (�1, . . . , �n). The flat structure of the � component in the model above contrasts with the rich structure of the Bayesian Network in Fig. 4 that 
captures causal relationships among the pore-scale features in order to ensure sampling geometries consistent with the hierarchical nanoporous material 
in Fig. 1 over the physically relevant hyperparameter ranges in Table 2.

Table 1
Narrow hyperparameter ranges for uninformed (uniform) priors on pore-scale fea-
tures used with Bayesian Networks (15) and (20) that allow for comparison with 
results in [4] (cf. with the extended, physically relevant range in Table 2).

p = R (nm) p = θ (rad) p = d (nm) p = l (nm)

(maximum) p+ 60 0.7 8 18
(minimum) p− 10 0.07 4 8

3.1. Independent uniform priors

As a first simple case we revisit the analysis [4] of the hierarchical nanopore geometry in Fig. 1 to illustrate the Bayesian 
Network formulation for independent pore-scale features that do not take full advantage of domain knowledge. A naive 
model for representing uncertainty in each of the pore-scale parameters assumes pairwise independent priors. Recall that 
for � = (�1, . . . , �n), the variables �1, . . . , �n are pairwise independent, �i ⊥ � j for all i, j = 1, . . . , n such that i = j, if 
and only if

P (�i,� j) = P (�i)P (� j) ,

where P (�i) denotes the (marginal) PDF of �i and P (�i, � j) denotes the joint PDF of (�i, � j) [7]. Under the assumption 
of independent priors P (�i), the joint PDF P (�) factors into the product of the priors,

P (�) =
n∏

i=1

P (�i) . (14)

The full statistical model for P in (13) is then given by

P0 := δU (U − u(x, t; X)) δX (X − χ(ξ , t;�1, . . . ,�n))

n∏
i=1

P (�i) . (15)

In the case of (15), the Bayesian Network has the special form in Fig. 3 where the independent priors assumption leads to an 
overall flatness in the graph structure for P (�). For PDF P (�i) with finite variance, the pairwise independence assumption 
implies the variables �i are uncorrelated. In particular, (15) holds with |�| = n = 4 for the parameters {R, θ, l, d} that 
describe pore-scale features in Fig. 1. A model or PDF can then be specified for each �i , for example, the uniform priors 
considered in [4].

In the absence of additional data that could be used to select a statistical model for each of the pore-scale features, 
it is reasonable to assume uninformed priors, i.e., that each P (�i) is uniformly distributed, where the support of each 
distribution must be specified using expert knowledge. In Tables 1 and 2 two different ranges are given for specifying 
the hyperparameters for such uniform priors; a narrow range in Table 1 and an extended, physically relevant range in 
Table 2. However, assuming independent, uniformly distributed priors according to (14) with hyperparameter ranges in 
Table 2, it is possible to sample geometries that are inconsistent with Fig. 1. The Bayesian Network in Fig. 3 does not take 
into account geometrical structural constraints between the pore scale parameters that naturally arise when considering a 
periodic arrangement of unit cells V̆ as in the hierarchical nanoporous structure in Fig. 1. Next, we build Bayesian Networks 
based on causal relationships that encode such natural structural constraints thereby incorporating additionally available 
domain knowledge directly into the Bayesian Network random PDE formulation.
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Table 2
Physical hyperparameter ranges for uninformed (uniform) priors on pore-scale fea-
tures used with Bayesian Networks (15), (20) and (38). Expert knowledge is used to 
specify the support of each feature distribution in the absence of data for statistical 
model selection.

p = R (nm) p = θ (rad) p = d (nm) p = l (nm)

(maximum) p+ 60 0.4π 60 60
(minimum) p− 10 0.05π 5 1

Fig. 4. The rich structures of the Bayesian Network above, representing the probabilistic model P1 in (20), encodes causal relationships arising from struc-
tural constraints (cf. Fig. 5) that are absent in the model P0 in (15) with independent priors in Fig. 3. In this Bayesian Network, conditional dependencies 
among the variables � induce various correlation structures that depend on the selected hyperparameters (cf. the correlation structure for model P1 over 
the narrow range of hyperparameters in Fig. 6b vs. the physical range in Fig. 6c).

3.2. Correlations arising from pore-scale structural constraints

The inclusion of causal relationships suggested by geometrical constraints on the pore-scale parameters adds more com-
plexity to the structure of � in the Bayesian Network in Fig. 3. Here and below we use �p with labels p ∈ {R, θ, l, d} in 
place of indices where no confusion arises. Moreover, for each �p we fix hyperparameters {p+, p−} corresponding to upper 
and lower bounds on �p in Tables 1 and 2; performing inference over the Bayesian Network to infer hyperparameters from 
relevant data is beyond the scope of this work. There are many different conditional relationships among pore-scale features 
consistent with Fig. 1 giving rise to a plurality of Bayesian Networks. Different causal relationships mirror distinct engineer-
ing or design processes (see Section 6) and yield different correlation structures among pore-scale features (cf. Fig. 6 and 
Fig. 11b).

Fig. 4 presents one possible Bayesian Network capturing causal relationships that allow one to encode structural con-
straints among the hierarchical pore-scale parameters {R, θ, l, d}. Choosing {�R , �θ } as independent parameters to be 
consistent with our particular design goal and assuming uniform priors,

�R ∼ unif(R−, R+) and �θ ∼ unif(θ−, θ+) , (16)

constrains both the distribution of �d and of �l . Specifically, in order for the sample �d = d to be consistent with the 
features of the hierarchical nanopore structure in Fig. 1, the nanotube diameter cannot exceed the width of the unit cell V̆ , 
i.e., d < 2R cos θ (see Fig. 5). That is, we are naturally able to specify the conditional PDF �d given samples �R = R and 
�θ = θ . Assuming an uninformed or uniform model for this conditional PDF we have

�d | �R ,�θ ∼ unif(d−,min{2�R cos�θ, d+}) . (17)

The length of the nanotube is bounded below by l > 2R − √
4R2 − d2 when the vertical gap between the mesopores is zero 

(see Fig. 5) and then the PDF of �l given �R and �d is

�l | �R ,�d ∼ unif(max{l−, 2�R −
√

4�2
R − �2

d}, l+) , (18)

where again we assume a uniform model for the conditional PDF of �l .



K. Um et al. / Journal of Computational Physics 394 (2019) 658–678 665
Fig. 5. The conditional distribution of �d and �l in (17) and (18) arises from geometric constraints that arise naturally when considering the hierarchical 
nanopore structure in Fig. 1. Above, we illustrate that the nanotube radius d/2 cannot exceed R cos θ , half the width of the unit cell V̆ resulting in (17). 
Further, to exclude gaps between vertical mesopores that are less than zero, l > 2R − √

4R2 − d2 from the right triangle in the diagram above resulting 
in (18).

Fig. 6. The empirical correlation structure of P (�), the distribution on pore-scale features, is presented for the probabilistic model P0 with independent 
priors (14) and the model P1 with causal priors (19) over both the narrow and physical hyperparameter ranges in Tables 1 and 2, respectively. In general, 
the physical hyperparameter range is inaccessible to the model P0 as the sampling strategy violates structural constraints by producing sample geometries 
inconsistent with Fig. 1. In contrast, the causal relationships included in P1 enable sampling over the physical hyperparameter range thereby impacting 
predictions of QoIs (see Section 4), however the nontrivial correlation structure in Fig. 6c poses a challenge for GSA (see Section 5). (For interpretation of 
the colors in the figures, the reader is referred to the web version of this article.)

The joint distribution for the pore-scale input parameters is then given by

P (�) = P (�R ,�θ ,�l,�d) = P (�l | �R ,�d)P (�d | �R ,�θ )P (�R)P (�θ ) (19)

where each of the conditional and marginal PDFs is specified by (16)–(18) (cf. to the assumption of independent priors in
(14)). Once a range of hyperparameters is fixed, one can sample from the PDFs (16) and (18) and hence, using (19), the cor-
relation structure of the variable � can be computed empirically. In Fig. 6, we compare the empirical correlation structures 
obtained by computing the Pearson correlation coefficient for 106 samples of � for different priors P (�) and hyperparam-
eter ranges. The empirical correlations in Figs. 6b and 6c are both computed assuming priors (19) with distributions (16)
to (18) whereas the correlations in Fig. 6a assume independent uniform priors (14). Over the narrow range Table 1, Fig. 6b 
indicates the variables �R , �θ , �l , and �d are uncorrelated in contrast to the nontrivial correlations observed in Fig. 6c 
over the physical hyperparameter range Table 2. As expected, Fig. 6a confirms the model with independent, uniform priors 
are uncorrelated over the narrow hyperparameter range Table 1. Over physical hyperparameter ranges Table 2, independent 
sampling according to (14) yields geometries inconsistent with the hierarchical nanoporous material Fig. 1.

Incorporating (19) into the full statistical model (13), we obtain a new probabilistic model P1,

P1 := δU (U − u(x, t; X)) δX (X − χ(ξ , t;�)) P (�l | �R ,�θ ,�d)P (�d | �R ,�θ )P (�R)P (�θ ) , (20)

that describes the full statistical model for the multiscale system with the causal relationships in Fig. 4 assuming that 
uncertainty only enters through the parameters. When the models for U and X are known and trivial (e.g., have a known 
analytic form), then sampling (20) is a straightforward task however this is typically not the case. In the next section, we 
review tools that will enable us to feasibly sample the statistical models for U and X in order to carry out UQ and GSA.
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3.3. Constructing a physics-informed probabilistic model for macroscopic QoIs

We are interested in functionals g = g(�) = g(Deff(�), γeff(�)) such as the projections,

D L := D11
eff and DT := D22

eff , (21)

corresponding to the longitudinal and the transverse components of the effective diffusion coefficient tensor. In the hierar-
chical nanoporous media in Fig. 1, D L is related to diffusion through nanotunnels/mesopores and DT through nanotubes. 
In the numerical experiments presented in the sequel, we report uncertainty in these macroscopic quantities by giving an 
estimate of the PDF f g ∼ P (g | �) for the PDF of g given knowledge of pore-scale inputs. In the context of the homogenized 
pore- to Darcy-scale model in Fig. 2, we have the representation

P (g | �) = P (g | X)P (X | �)P (�) . (22)

For example, the univariate PDF for D L = g(Deff(�), γeff(�)) based on the Bayesian Network in Fig. 4 is

P (D L | �) = P (D L | X)P (X | �)P (�l | �R ,�θ ,�d)P (�d | �R ,�θ )P (�R)P (�θ ) . (23)

In general, the form of the statistical model or PDF for P (g | X) and hence P (g | �) in (22) is unknown. The PDF in (22)
can be estimated empirically using simulations of the forward model, however, sampling (22) based strictly on input-output 
pairs may be computationally expensive due to the high cost involved in simulating the forward model. The estimation of 
QoIs with high fidelity, therefore, poses a computational challenge.

The computation of estimates for QoIs of the form (22) is made feasible using a two-step procedure that relies on first 
finding a truncated generalized polynomial chaos expansion (gPCE) for the variable g and second using this surrogate to 
build an appropriate kernel density estimator (KDE) for the desired distribution. A surrogate ĝ for g(�) is given by the 
gPCE [15],

g(�) =
∞∑

i=0

Gii(�) ≈
N P C∑
i=0

Gii(�) =: ĝ , (24)

where i(�) are an orthogonal multivariate polynomial basis, Gi are the expansion coefficients, and the expansion is 
truncated after N P C terms such that

N P C − 1 =
N p∏
i=1

(1 + κi) , (25)

where κi is the polynomial order bound for the ith dimension and Np is the number of parameters (to give a sense of scale, 
the numerical experiments in Section 4.2 use Np = 4, κi = 4, and N P C = 626).

The second step involves producing N samples ĝk using the gPCE (24) corresponding to realizations �k for k = 1, . . . , N , 
for a fixed number N . These samples are then used to construct a KDE f̄ ĝ for the desired density f g , for example, using a 
Gaussian-kernel,

f̄ ĝ(η) = 1

N
√

2πh2

N∑
k=1

exp

[
− (η − ĝk)2

2h2

]
, (26)

where h is the kernel bandwidth; for the multivariate density f̄ ĝ1,ĝ2
we similarly employ Gaussian-kernels

f̄ ĝ1,ĝ2
(η1, η2) = 1

N
√

2πh1h2

N∑
k=1

exp

[
− (η1 − ĝk

1)
2

2h2
1

− (η2 − ĝk
2)

2

2h2
2

]
, (27)

with bandwidths h1 and h2. To have a high-fidelity representation of the desired density it is desirable to choose N �
N P C .

The software DAKOTA [13] was used to automatize the process of computing the coefficients, basis functions, and trun-
cation parameters appearing in (24). This approach is taken in [4] in the context of independent priors with the aim of 
computing Sobol’ indices for global sensitivity analysis. Although generalizations of gPCE that handle correlated inputs ex-
ist (e.g., [10,16]), we instead present a recipe for obtaining the desired gPCE in (24) that non-intrusively uses existing 
codes and software packages such as DAKOTA that implement methods assuming uncorrelated inputs in the next sec-
tion.
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4. Quantifying uncertainty in Darcy-scale flow variables

The present section deals with uncertainty quantification for the Bayesian Network PDE model for multiscale porous me-
dia outlined in Sections 2 and 3. The causal relationships encoded by the Bayesian Network for the full statistical model in 
Fig. 2 propagate uncertainty from pore-scale parameters to Darcy-scale variables via the homogenization map in (4) to (10). 
Together, these allow one to study systematically the impact of microscopic structural uncertainty on macroscopic flow 
variables. At present, we incorporate the Bayesian Networks constructed in Section 3 for informed priors into the random 
PDE homogenization framework thereby examining through simulations and numerical experiments the role of causality 
in predictions of Darcy-scale flow variable QoIs. Specifically, we report on numerical experiments concerning the joint and 
marginal distributions of Darcy-scale flow variables where uncertainty stems from pore-scale features with correlations aris-
ing from structural constraints encoded by the Bayesian Network in Fig. 4. As these numerical experiments utilize DAKOTA
[13] to compute gPCE surrogates for Darcy-scale variables, we first illustrate in Section 4.1 a technique for decorrelating 
inputs to allow the non-intrusive use of existing codes and software packages. This workflow, which relies on Rosenblatt 
transformations, gPCEs, and DAKOTA, enables UQ and GSA by making it feasible to sample from the desired QoI with respect 
to a given statistical model P in (13).

4.1. Non-intrusive input decorrelation using Rosenblatt transforms

Many variance-based methods for uncertainty quantification and sensitivity analysis, such as Sobol’ indices, and hence 
the popular software packages that implement these methods, require models that assume statistically independent inputs. 
Bayesian Networks encode correlations, see Fig. 6, through the specification of causal relationships (in the case of Figs. 3
and 4 the relationships between scales and within single scales are also causal). Presently, we highlight how the Rosenblatt 
transform can be used to decorrelate inputs by mapping a vector of random variables with a specified joint distribution 
onto a vector of independent uniform random variables when the conditional distributions are known. This procedure, in 
Algorithm 1 below, enables the non-intrusive use of DAKOTA and existing codes for solving the forward model for our 
application of interest when the conditional dependencies are represented using Bayesian Networks.

The Rosenblatt transform [17] turns the problem of sampling a general joint distribution into the problem of sampling 
a vector of independent unif(0, 1) random variables. Let X = (X1, . . . , Xk) be a random vector with a continuous joint 
cumulative distribution function F (x1, . . . , xk). Define a transform, T (x1, . . . xk) = (z1, . . . , zk), given by

z1 = P (X1 ≤ x1) = F1(x1) ,

z2 = P (X2 ≤ x2 | X1 = x1) = F2|1(x2 | x1) ,

...

zk = P (Xk ≤ xk | Xk−1 = xk−1, . . . , X1 = x1) = Fk|k−1,...,1(xk | xk−1, . . . , x1) ,

(28)

where Fi| j is the conditional cumulative distribution function of Xi given X j , i.e., Fi| j(xi |x j) = P (Xi < xi | X j = x j). The 
Rosenblatt transform, Z := T (X), yields Z = (Z1, . . . , Zk) uniformly distributed on the k-dimensional hypercube, that is, 
Z1, . . . , Zk are independent and identically distributed (iid) unif(0, 1) random variables. Note that this transform depends 
on the ordering of the elements in the vector X due to the serial nature of the conditioning; we denote the Rosenblatt 
transform and the inverse, when it exists, associated with the ordering of a particular vector X with a subscript, e.g., TX .

In our application, a target vector � with a structure encoded by a Bayesian Network can be obtained by applying 
the inverse Rosenblatt transform to a vector of independent uniform variables. For example, given the random vector of 
parameters � = (�R , �θ, �l, �d) with joint distribution in (19), the transform (28) simplifies to

z1 = F R(x1) ,

z2 = Fθ |R(x2 | x1) = Fθ (x2) (since �R ⊥ �θ) ,

z3 = Fd|R,θ (x3 | x2, x1) ,

z4 = Fl|d,R(x4 | x3, x1) (since �l ⊥ �θ | �d) ,

due to the independence and conditional independence of the variables [7], as indicated in Fig. 4 by the absence of causal 
relationships between �R and �θ and between �l and �d , respectively. Thus, the Rosenblatt transform is given by

T�(�) = T�(�R ,�θ ,�l,�d) = (
F R(�R), Fθ (�θ ), Fd|R,θ (�d | �R ,�θ ), Fl|R,d(�l | �R ,�d)

) =: Z

where, using the statistical models indicated in (16) to (18), the components of Z are
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Z1 = F R(�R) = �R − R−
R+ − R−

,

Z2 = Fθ (�θ ) = �θ − θ−
θ+ − θ−

,

Z3 = Fd(�d | �R ,�θ ) = �d − d−
min{�R cos�θ,d+} − d−

,

Z4 = Fl|R,d(�l | �R ,�d) =
�l − max{l−,2�R −

√
4�2

R − �2
d}

l+ − max{l−,2�R −
√

4�2
R − �2

d}
.

The corresponding inverse Rosenblatt transform � = T −1
� (Z) is, component-wise,

�R = Z1(R+ − R−) + R−
�θ = Z2(θ+ − θ−) + θ−
�d = Z3(min{2�R cos�θ, d+} − d−) + d−

�l = Z4(l+ − max{l−, 2�R −
√

4�2
R − �2

d}) + max{l−, 2�R −
√

4�2
R − �2

d} ,

where the target vector � has the distribution P (�) given in (19). Thus, the inverse transform maps a random vector Z ∼
unif(0, 1)k into a target distribution P (�) using knowledge of the conditional dependencies associated with the Bayesian 
Network for P (�), in particular, where the conditional distribution � j given � j−1, . . . , �1 is known for each j = 1, . . . , k.

Together with the Bayesian Network PDE, Rosenblatt transforms provide a strategy for non-intrusively incorporating con-
straints and correlations into existing computational frameworks. Algorithm 1 describes the use of DAKOTA for computing 
surrogates for Darcy-scale QoIs based on correlated inputs given an inverse Rosenblatt transform and an existing solver for 
the forward problem. A surrogate ĝ for a QoI g(Y (�)), e.g., the gPCE coefficients G in (24) and truncation parameter N P C in
(25), can be computed with DAKOTA using several forward simulations of the response Y = M(�) where M denotes the 
portion of the forward model solver that maps a random input � to Y . For example, if the QoI is g(Y (�)) = D L then M
would correspond to the projection D11

eff in (21) of the solution to the coupled system (5) with (6) to (8). The compositional 
model Y = (M ◦ T −1)(Z) that first employs the inverse Rosenblatt transform provides a non-intrusive means of computing 
with DAKOTA since the statistics of the output of M ◦ T −1 in response to Z are identical to the statistics of the output of 
M in response to � [18]. An important observation is that Algorithm 1 returns a surrogate ĝ for g(Y (�)) with respect to 
the input variables Z , not for � directly, and therefore care must be taken in the interpretation of Sobol’ indices [8]. In the 
next section, we observe that the density functions for effective Darcy-scale QoIs exhibit non-Gaussian behavior. Together, 
these two challenges—correlated inputs and non-Gaussian QoIs—motivate the investigation of moment-independent global 
sensitivity indices in Section 5.

Algorithm 1: Decorrelate inputs via Rosenblatt transforms for non-intrusive scientific computing.

input : T −1
� � inverse Rosenblatt transform

input : M � forward model solver
output: ĝM � surrogate for g(Y (�)) e.g., gPCE in (24)

begin
DAKOTA as wrapper to produce surrogate using M input-output simulations
for i ← 1 to M do

sample iid Zk ∼ unif(0, 1), k = 1, . . . , n
Z i ← (Z1, . . . , Zn)

� ← T −1
� (Z i)

Yi ← M(�) � DAKOTA maps independent Z i �→ Yi

ĝM ← DAKOTA (Y1(Z 1), . . . , Y M (Z M ))

return ĝM � based on M input-output simulations

4.2. Numerical experiments: incorporating causality in predictions of Darcy-scale flow

For the application of interest, generating sufficiently many samples for UQ and GSA is a real challenge. The numerical 
experiments that follow employ the following common setup that makes sampling the distribution of QoIs computationally 
feasible. DAKOTA is used as a wrapper to map random inputs on pore-scale parameters to Darcy-scale responses yielding 
gPCE surrogates for Darcy-scale variables, i.e., effective longitudinal diffusion D L , effective transverse diffusion DT , and 
effective sorption rate constant γeff .



K. Um et al. / Journal of Computational Physics 394 (2019) 658–678 669
Fig. 7. A comparison of the marginal densities for Darcy-scale QoIs above highlights the importance of incorporating causal relationships into the modeling 
process; the distribution of Darcy-scale QoIs in Fig. 7c for model P1 in (20) with causal priors over the physical hyperparameter range in Table 2 are 
markedly different from the QoIs in Fig. 7a for model P2 in (15) with independent priors over the narrow hyperparameter range in Table 1. The QoIs in 
Fig. 7b for model P1 are expected to be qualitatively similar to the QoIs in Fig. 7a due to the similarities in the correlation structure for the priors over the 
narrow range of hyperparameters (cf. Fig. 6).

With regard to sampling input-output pairs for the generation of gPCE surrogates, we follow the decorrelation procedure 
described in Algorithm 1 for each sample � that relates to a possible configuration of pore-scale features consistent with 
the hierarchical nanoporous material in Fig. 1. In particular, Algorithm 1 allows seamless, non-intrusive integration with 
existing codes for the numerical solution of the multiscale forward model presented in Section 2. For the numerical solutions 
of the forward model, we first solve the closure equations (6) to (10) using a finite element code written in COMSOL
and then compute the rate constant γeff in (4) and effective diffusions D L and DT in (21) by numerically evaluating the 
quadrature in (5). For the required gPCE surrogates, given in (24), we select for i the Askey scheme of hypergeometric 
orthogonal polynomials [15] with N P C = 626 (i.e., for Np = 4 parameters we consider polynomials of degree κi = 4, for each 
i = 1, · · · , Np , in (25)). These gPCE surrogates are then used to construct KDEs for the desired Darcy-scale flow variables. The 
KDE approximations for densities below employ the Gaussian-kernels for univariate and multivariate densities, described in
(26) and (27), respectively, with N = 108 where the kernel bandwidths are estimated using a modified Sheather–Jones 
method [19].

As a first experiment, we compare simulations of Darcy-scale flow variables based on the causal-priors model P1 in
(20) to simulations based on the independent priors model P0 in (15) (cf. Bayesian Networks in Figs. 3 and 4). Over the 
narrow range of hyperparameter values given in Table 1, we anticipate qualitative similarities in the resulting Darcy-scale 
outputs as both P0 and P1 exhibit statistically uncorrelated parameter distributions over this hyperparameter range as 
demonstrated by the empirical correlations in Figs. 6a and 6b. In Fig. 7, we observe that the marginal distributions for 
Darcy-scale flow variables based on model P1 in Fig. 7b are qualitatively consistent with the marginals based on model P0
in Fig. 7a. Likewise, in Fig. 8 the joint distributions (D L , DT ), (DT , γeff), and (γeff, DL) for simulations based on model P1 in 
Fig. 8b and model P0 in Fig. 8a exhibit qualitative similarities. Although the qualitative nature of the simulated distributions 
suggests no remarkable difference in the physics over the narrow hyperparameter range, in general the simulations based 
on model P1 follow a different sampling procedure than the simulations based on model P0 .

A quantitative comparison suggests that models P0 and P1 lead to macroscopic outputs with distinct distributions with 
statistical significance. To compare the densities in Figs. 7a and 7b and in Figs. 8a and 8b quantitatively, we work directly 
with samples from the gPCEs, employing a two-way statistical test on the equality of distributions. Since the data in Figs. 7a 
and 7b and in Figs. 8a and 8b appear commensurable, we select a nonparametric Cramér test [19] indicated to be sensitive 
against location alternatives that is applicable to both univariate and multivariate distributions so as to have a consistent 
presentation. Although the estimated densities in Fig. 7b (in Fig. 8b) are superficially similar to the densities in Fig. 7a 
(respectively, in Fig. 8a), the statistical tests each based on 2000 sample values, summarized in Table 3, reject the hypothesis 
on equality of distributions with high statistical significance for all but one comparison.

In contrast to P0, model P1 enables numerical experiments over physically relevant hyperparameter ranges, such as Ta-
ble 2, by embedding domain knowledge through causal relationships thereby ensuring sampled geometries are consistent 
with Fig. 1. Over the physical range of hyperparameters, the marginal and joint densities in Figs. 7c and 8c, respectively, 
for the Darcy-scale flow variable are markedly different from the corresponding marginal and joint densities observed in 
Figs. 7a, 7b, 8a and 8b. In comparing Fig. 7c to Fig. 7b, we observe that density for the effective rate constant γeff becomes 
more positively skewed and more peaked suggesting less variance in the estimate of γeff over the physical hyperparameter 
range. In contrast, we observe in comparing Fig. 7c to Fig. 7b that the density for DT becomes more uniform in distribution 
(and more like the distribution of D L ) suggesting that the simulations over the physical hyperparameter range realize a 
richer space of transverse diffusions. Similarly, in Fig. 8c the joint distributions for the Darcy-scale flow variables employing 
model P1 over the physical hyperparameter range demonstrate similar qualitative changes, with the joint densities involving 
γeff narrowing in variability and realizing a more variety in the observed transverse diffusion DT . Altogether, the differences 
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Fig. 8. A comparison of the joint densities for Darcy-scale flow variables above further underscores the importance of including causal relationships in the 
modeling process due to the impact for decision support. The causal relationships included in model P1 in (20) guarantee that the pore-scale geometries 
sampled under P1 are consistent with the hierarchical nanoporous material in Fig. 1 over the physical hyperparameter range in Table 2. In Fig. 8c, we 
observe that the QoIs related to model P1 with physical hyperparameters realize a richer range of transverse diffusions than the QoIs depicted in Figs. 8a 
and 8b, which correspond to the models P0 and P1 over the narrow hyperparameter range in Table 1, thereby differentially impacting decision tasks.

Table 3
Results for a two-way nonparametric Cramér test [19] on the hypothesis of equality of the empirical distributions 
for comparable variables displayed in Figs. 7a, 7b, 8a and 8b each based on 2000 values sampled using a gPCE.

Variable Cramér-statistic Critical value Conf. interval p-value Result Figures

D L 10.16 0.3116 0.95 <0.001 reject
⎫⎬⎭7a vs. 7bDT 1.154 0.1049 0.95 <0.001 reject

γeff 0.2232 0.3835 0.95 0.154 accept

(D L , DT ) 10.2 0.3154 0.95 <0.001 reject
⎫⎬⎭8a vs. 8b(DT , γeff) 1.3 0.3854 0.95 <0.001 reject

(γeff, D L) 7.525 0.4533 0.95 <0.001 reject

between the Darcy-scale flow QoIs for model P1 over physical hyperparameter range, with non-trivial correlations between 
pore-scale features, and for model P0 or P1 over the narrow hyperparameter range suggest flows with different physi-
cal properties. In the present context, these differences in physics can have a profound impact on decision support tasks 
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such as experimental design thereby underscoring the importance of including domain knowledge through causal relation-
ships and structured priors in mathematical and statistical modeling processes. In the section that follows, we investigate 
methodologies for GSA that further emphasize the impact of causality on uncertainty in Darcy flow variables and QoIs.

Remark 2. In any of the Bayesian Network representations (15), (20), (23) and (38), uncertainty and error in the homog-
enization can be included by putting a distribution on X that is not trivial, i.e., by replacing (11) with a distribution that 
captures error in the homogenization map or that compares distributions resulting from different upscaling techniques. Un-
certainty and error in other relevant processes, such as the choice of the KDE, might also be incorporated into the Bayesian 
Network for the full statistical model and analyzed similarly. Thus, the Bayesian Network PDE formulation provides a sys-
tematic framework for building complete predictive models including forward physical models, transitions between scales, 
and uncertainties in parameters, mechanisms and parameter or model constraints.

5. Mutual Information for GSA and effect ranking in Bayesian Network PDEs

We are interested in simulating nanoporous media to inform the design of metamaterials with targeted macroscopic 
properties, such as effective diffusions and sorption constants, through engineered microscopic pore-scale structures. The 
sensitivity of macroscopic QoIs with respect to uncertainty in pore-scale properties is important to analyze as simulations of 
macroscopic material performance that are highly sensitivity to distributional changes in microscopic pore-scale processes 
and structures would undermine the generality of such investigations. In this context, sensitivity analysis corresponds to 
understanding how changes in input parameters and distributions affect the output simulation of a forward physical model 
that will ultimately inform an engineering decision task.

In general, sensitivity analysis is a key component of UQ and the analysis of model robustness, identifiability, and reli-
ability. Local sensitivity analysis is suited to situations where the (hyper)parameters are known with some confidence and 
small perturbations are relevant. In contrast, in our present application of interest the mapping from pore-scale input distri-
butions to Darcy-scale flow variables is nonlinear, includes several computational steps, and we have no a priori information 
on the form of the model for the Darcy-scale variables (cf. Section 3.3). These features demand GSA methods that explore 
the whole space of uncertain input factors [20].

Variance-based GSA methods, such as Sobol’ indices [21] and total sensitivity indices [22], rank input factors and higher 
order interactions of input factors in terms of their contributions to the variance of a QoI. In particular, Sobol’ sensitivity 
indices are used in [4] to analyze the global sensitivity of Darcy-scale QoIs to first and second order interactions among 
independent input parameters for the multiscale porous media model considered here. However, variance-based methods 
are not easily interpreted for correlated or dependent spaces of input parameters [10,8,23,9]. Moreover, we observe that the 
distributions for macroscopic Darcy-scale flow variables exhibit non-Gaussian behavior (cf. marginal and joint densities in 
Figs. 7 and 8 in Section 4 are highly skewed and even multimodal) and methods that rely on a finite number of moments 
may be insufficient to capture the full complexity of these interactions.

Our application of interest thus fixes the scope of the sensitivity analysis (i.e., global versus local) and additionally 
presents two challenges that are not easily handled with standard variance-based methods: (i) correlated and dependent 
inputs and (ii) highly skewed and even multimodal QoIs.

5.1. Mutual Information leverages structure inherent in Bayesian Network PDEs for sensitivity analysis

The Bayesian Network PDE framework represents the probabilistic models for components of a forward physical model, 
e.g., inputs, outputs, QoIs, transitions between scales, as a Bayesian Network thereby attaching additional layers of sig-
nificance to the nodes in the network. On the one hand, this enables us to systematically build Bayesian Networks that 
incorporate domain knowledge through causal relationships that respect physical properties and expert knowledge. On the 
other hand, we are able to leverage the structure inherent in the Bayesian Network that suggest information theoretic mea-
sures of component sensitivity. An important contribution here is that we provide an interpretation of information theoretic 
sensitivity measures in the context of simulation-based studies (i.e., that incorporate forward physical models) intended to 
inform decision tasks such as optimal experimental design. In our numerical experiments below, the inclusion of structured 
priors with non-trivial correlations using Bayesian Network PDE yields different information-based GSA effect rankings than 
independent priors and moreover these rankings are more consistent with the anticipated physics of a model problem 
(cf. Section 5.3 and in particular Fig. 10).

We propose and interpret global sensitivity indices based on information theoretic concepts [11,12] that rely on empir-
ical distributions acquired through simulation as opposed to moments. There is a rich literature on moment-independent 
indices for local sensitivity analysis [24–28] as well as GSA [29–34,23]. In particular, GSA indices based on various infor-
mation theoretic notions are well established [35,31,36,37]. In [36], discrete Mutual Information-based sensitivity indices 
are demonstrated as an effective tool for discrete probability distributions arising in biochemical reaction networks in sys-
tems biology. For our application of interest, sensitivity indices and rankings based on the differential Mutual Information
provide a suitable measure of effect that overcomes the twin challenges of causally related inputs and non-Gaussian QoI. 
The differential Mutual Information has explicit connections to more general information theoretic concepts and we provide 
interpretations of these in the context of uncertainty quantification and global sensitivity analysis.
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The differential Mutual Information between continuous random variables V and W ,

I(V ; W ) :=
¨

log

(
f V ,W (v, w)

f V (v) f W (w)

)
f V ,W (v, w)dvdw , (29)

0 ≤ I(V ; W ) < ∞, quantifies the statistical dependence between V and W , that is, the amount of shared information, 
provided that all of the densities above exist and the marginals are non-zero. Importantly, (29) applies to dependent random 
variables V and W , such as random variables that share a causal relationship, and we observe that I(V , W ) = 0 if V and 
W are independent, i.e., if P (V , W ) = P (V )P (W ). Further, (29) applies to random variables with very general marginal and 
joint distributions including distributions that are skewed and multimodal. The differential Mutual Information is precisely 
the relative entropy R (or Kullback–Leibler divergence) between the joint and marginal densities,

I(V ; W ) = R(P (V , W ) ‖ P (V )P (W )) , (30)

a well-known pseudo-distance used, e.g., in variational inference [38,39], machine learning [40], and model selection [41]. 
Lastly, the differential Mutual Information I(V , W ) is the limiting value of the discrete Mutual Information (the supremum 
over all partitions of V and W ) and therefore shares all of the same properties as its discrete counterpart [11]; in particular, 
we will compute the differential Mutual Information using empirical distributions.

5.2. Estimators for Mutual Information global sensitivity indices

For each QoI g , we consider a global sensitivity index,

S�(g) := I(g;�), (31)

based on the Mutual Information between a Darcy-scale QoI g and each uncertain pore-scale input parameter � ∈ � =
(�1, . . . , �N p ). Intuitively, the index (31) measures the predictability of g given knowledge of � through the discrepancy 
between the joint density and the product of the marginal densities appearing in (29). We observe that in (31), S�(g) ≥ 0
for all �; in contrast, Sobol’ indices that represent the correlated share of the total influence can become negative (see, e.g., 
[10]) which leads to a problem with interpretation.

We estimate the sensitivity index (31) using empirically estimated distributions, i.e., KDEs, for the density functions 
of Darcy-scale QoIs. Indeed, a benefit to using the Mutual Information is the availability of methods relying on plug-in 
estimators for (29) with corresponding numerical analyses (including [42–44]). Recall that we obtain approximate densities 
f̄ using univariate and multivariate KDEs, in (26) and (27), respectively, that are in turn obtained using the gPCE surrogates 
ĝ defined in (24). Due to the availability of these surrogates, we do not sample input-output pairs as suggested by the form 
of (29) but instead consider the equivalent representation (change of measure),

I(V ; W ) =
¨

log

(
f V ,W (v, w)

f V (v) f W (w)

)
f V ,W (v, w)

f V (v) f W (w)
f V (v) f W (w)dvdw . (32)

Thus we compute the statistical estimator Ŝ�(g) ≈ S�(g),

Ŝ�(g) := 1

N

N∑
k=1

log

(
f̄ ĝ,�(ĝk,�k)

f̄ ĝ(ĝk) f�(�k)

)
f̄ ĝ,�(ĝk,�k)

f̄ ĝ(ĝk) f�(�k)
, (33)

based on a MC approximation of (32) using KDEs as plug-in estimates where appropriate.
In the left-hand side of Table 4, we report the value of the statistical estimator Ŝ�(g) related to the numerical experi-

ments presented in Section 4.2 concerning the probabilistic model P1 in (20) with causal inputs (see Fig. 4) over both the 
narrow and physical hyperparameter ranges in Tables 1 and 2. We are interested in the global sensitivity of the Darcy-scale 
QoIs g = D L , g = DT , and g = γeff with respect to each of input parameters � ∈ � = (�R , �θ, �d, �l) representing the 
pore-scale features identified in the hierarchical nanoporous material in Fig. 1. The computed estimators (33) are based on 
first generating random variables �k and ĝk for k = 1, . . . , N = 107 using the respective gPCE surrogate obtained by the 
workflow outlined in Section 4. These samples are used to form the respective KDE on an η-grid of size 128 by 128 which 
in turn are then used to form the plug-in quantity

X j = log

(
f̄�,ĝ(�

j, ĝ j)

f̄�(� j) f̄ ĝ(ĝ j)

)
f̄�,ĝ(�

j, ĝk)

f̄�(� j) f̄ ĝ(ĝ j)
,

where we define log( 0
0 ) · 0

0 = 0 (re-using 105 of the samples (� j, ̂g j) generated during density estimation). The sensitivity 
index is then estimated using the MC estimator, Ŝ�(ĝ) = 1

M

∑M
j=1 X j with M = 105 samples. We observe that the M = 105

samples utilized for the MC estimator is suggested to be sufficient by the convergence demonstrated in Fig. 9 for the 
experiment with model P1 over the range Table 1; similar convergence observations were made for the other experiments.
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Table 4
The global sensitivity index S in (31) based on the Mutual Information quantifies the effect of pore-scale uncertainties 
in terms of how additional knowledge of the input � ∈ � reduces uncertainty in our prediction of the macroscopic 
Darcy-scale variables DL , DT , and γeff . Below, the estimator ̂S in (33) and the associated ranking ̂r in (35) are given 
for the probabilistic model P1 in (20) over both the hyperparameter ranges in Table 1 and Table 2 (cf. graphical 
representation of rankings in Fig. 10b that also include error bars indicating two standard deviations); bold figures 
indicate maximal column values.

� Mutual Information (33) Ranking effects (35) Hyperparameters

Ŝ�(D L) Ŝ�(DT ) Ŝ�(γeff) r̂�(D L) r̂�(DT ) r̂�(γeff)

�R 0.0419 0.0424 0.8955 0.0724 0.1177 0.8509
⎫⎪⎪⎬⎪⎪⎭Table 1

�θ 0.5074 0.2049 0.0366 0.8770 0.5692 0.0348
�d 0.0150 0.0878 0.0271 0.0259 0.2438 0.0258
�l 0.0143 0.0249 0.0932 0.0247 0.0692 0.0885

�R 0.0655 0.0714 0.2878 0.1354 0.2470 0.5242
⎫⎪⎪⎬⎪⎪⎭Table 2

�θ 0.3539 0.0312 0.0251 0.7312 0.1079 0.0457
�d 0.0225 0.1646 0.0823 0.0465 0.5697 0.1499
�l 0.0420 0.0218 0.1539 0.0868 0.0754 0.2802

Fig. 9. The convergence of the MC estimator (33) for model P1 in (20) over the narrow hyperparameter range in Table 1 for each Darcy-scale flow variable 
for each input parameter demonstrates that 105 samples is sufficient for the numerical experiments.

Remark 3. The differential Mutual Information (29) can be expressed as an expected value of the relative entropy between 
conditional and marginal distributions,

I(g;�) = E� [R(P (g | �) ‖ P (g))] , (34)

for the input-output pair (g(Y (�)), �) provided P (g, �) = P (g, | �)P (�), i.e., all the densities exist. In [23], a family 
of sensitivity measures is given by replacing R in (34) with a general class of Csiszár ϕ-divergences [45–47]; here we 
demonstrate an implementation using gPCE surrogates that requires the representation (32) and restrict our attention to the 
differential Mutual Information owing to the clear interpretation as a measure of effect in terms of statistical dependence 
and shared information.

Remark 4. One can also consider higher order effects that include interactions between a subset of parameters using the 
conditional differential Mutual Information that takes the form of conditional expectations of the relative entropy between 
joints and marginals, as in [36]. These higher order interactions can be interpreted similarly in terms of dependence and 
shared information.

5.3. Ranking impact of uncertainty in correlated pore-scale inputs on Darcy-scale QoIs

Using the global sensitivity index (31) we form the ranking,

r�(g) = S�(g)∑
S (g)

, (35)

V ∈� V
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Fig. 10. The rankings in Fig. 10c associated with the causal model P1 in (20) over the physical hyperparameter range in Table 2 yield parameter rankings 
that are consistent with our understanding of the physics of the hierarchical nanoporous material in Fig. 1. In contrast, the Sobol’ index rankings in Fig. 10a 
for the independent priors model P0 in (15) over the narrow hyperparameter range in Table 1 suggest that the transverse diffusion DT is most sensitive 
to the parameter θ , related to the angle of overlap between adjacent mesopores in a nanotunnel. The Mutual Information rankings in Fig. 10b for model 
P0 are consistent with the Sobol’ index rankings in Fig. 10a for model P0 owing to the similarity of the correlation structures for pore-scale features over 
the narrow hyperparameter range (cf. Fig. 6). In Figs. 10b and 10c, error bars, that indicate the relative error associated with plus/minus two standard 
deviations of the computed sensitivity index, provide an indication of confidence in the ranking value.

0 ≤ r�(g) ≤ 1, of the relative contribution of each pore-scale parameter � ∈ � to the global sensitivity of each Darcy-scale 
variable g . We then obtain the estimate ̂r�(g) reported in the right-hand side of Table 4, by using the estimator Ŝ in (33)
in place of S . The values ̂r are also displayed graphically in Fig. 10 with error bars that indicate the relative error associated 
with plus or minus two standard deviations of the computed sensitivity index to provide an indication of confidence in the 
ranking.

In Fig. 10b, we observe that the rankings suggested by the model P1 in (20) with causal inputs in Fig. 4 over the narrow 
hyperparameter range in Table 1 are consistent with the Sobol’ index rankings in Fig. 10a that were obtained in [4] for the 
model P0 with independent priors. As observed in Section 4.2 this is to be expected due to the similarity in the correlation 
structures in Figs. 6a and 6b over the narrow hyperparameter range. The θ , which is related to the mesopore radius, is the 
most influential parameter for both the longitudinal diffusion DT and the transverse diffusion DT . The mesopore radius 
R , which is related to the size of the fluid-solid interface in Fig. 1, is the most influential parameter for the sorption rate 
constant γeff . In general, it is important to interpret these sensitivity rankings in the context of the hyperparameter range; 
the ranking ̂r�d in Fig. 10b is likely to be small as the range for d in Table 1 is very narrow (i.e., the Darcy-scale QoIs are 
insensitive over the narrow range of admissible d values).

In contrast, the rankings in Fig. 10c for the model P1 over the physical hyperparameter range in Table 2 demonstrates 
considerably different rankings to Figs. 10a and 10b thereby highlighting once again the impact of causal relationships and 
the Bayesian Network PDE modeling approach. The rankings in Fig. 10c indicate that while the θ and the R are still the most 
influential parameters for, respectively, the longitudinal diffusion, D L , and sorption rate constant, γeff , it is d, which is related 
to the diameter of the nanotube, that is the most influential parameter for the transverse diffusion DT through nanotubes. 
Thus, for the simple hierarchical nanoporous material in Fig. 1, the rankings in Fig. 10c using model P1 over the physical 
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Fig. 11. An alternative model P2 in (38) encodes causal relationships that are different from model P1 in (20) but also respects structural constraints 
realized by the hierarchical nanoporous material in Fig. 1. The model P2 is viewed as mirroring engineering processes and design workflows that are 
distinct from those of P1.

hyperparameter range reflect our expectations of the physics better than the experimental observations with respect to 
models over the narrow range. Importantly, the rankings in Fig. 10 are moment-independent and therefore suitable for the 
non-Gaussian behavior of the Darcy-scale QoIs observed in Figs. 7 and 8. Moreover, as the rankings are based on the Mutual 
Information, they can be interpreted as ranking the impact of the pore-scale parameter (whether correlated or not) on the 
total uncertainty in the Darcy-scale quantity of interest. To summarize the practical outcomes of this experiment, we observe 
that the inclusion of structured priors with non-trivial correlations (i) yields Mutual Information GSA indices for Bayesian 
Network PDEs and corresponding rankings that are different from those obtained with uncorrelated and independent priors 
and (ii) moreover, these rankings are more consistent with the anticipated physics of a model problem.

6. Alternative probabilistic models reflect different engineering and design causal relationships

We view the construction of the full statistical model for the multiscale porous media system as mirroring engineering 
processes and design workflows. From this perspective, it may be desirable to build models containing different causal 
relationships among the pore-scale parameters than those previously considered. Recall that the model P1 in (20) with 
causal priors given by the Bayesian Network in Fig. 4 is related to the design of nanotunnels/mesopores, i.e., the pore-scale 
features R and θ in the hierarchical nanoporous media in Fig. 1. In contrast, if it is desirable or possible to choose three 
aspects, such as the features R , θ , and l, independently while constraining the only remaining parameter, d, then one obtains 
a second model represented by the Bayesian Network in Fig. 11a.

The Bayesian Network in Fig. 11a corresponds to placing all of the constraints on �d . That is, choosing a subset of 
independent parameters {�R , �θ, �l} and assuming uniform priors,

�R ∼ unif(R−, R+) and �θ ∼ unif(θ−, θ+) and �l ∼ unif(l−, l+) , (36)

constrains the distribution of �d . Specifically, in order for the choice of d to be consistent with the features depicted in 
Fig. 1, then (i) the nanotube diameter d < 2R cos θ and (ii) if the gap between vertical mesopores is zero than the nanotube 
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Table 5
Two-way nonparametric Cramér test [19] rejects the hypothesis of equality of the empirical marginal and joint distri-
butions for comparable variables in Figs. 7c, 8c, 11c and 11d with high statistical significance (each test is based on 
2000 values sampled using a gPCE).

Variable Cramér-statistic Critical value Conf. interval p-value Result Figures

D L 4.688 0.3389 0.95 <0.001 reject
⎫⎬⎭11c vs. 7cDT 79.08 0.7396 0.95 <0.001 reject

γeff 0.4619 0.3958 0.95 0.029 reject

(D L , DT ) 72.31 0.7827 0.95 <0.001 reject
⎫⎬⎭11d vs. 8c(DT , γeff) 72.63 0.8284 0.95 <0.001 reject

(γeff, D L) 4.734 0.4882 0.95 <0.001 reject

diameter must be less than d <
√

4lR − l2 (i.e., to avoid nanotube “goiters”, see further Fig. 5). The corresponding conditional 
distribution is then given by

�d | �R ,�θ ,�l ∼ unif(d−,min{
√

4�l�R − �2
l , 2�R cos�θ, d+}) , (37)

where again we assume a uniform model. The form of the full statistical model that includes the causal relationships in 
Fig. 11a is then given by

P2 := δU (U − u(x, t; X)) δX (X − χ(ξ , t;�)) P (�d | �R ,�θ ,�l)P (�R)P (�θ )P (�l) , (38)

where the distributions for conditionals and priors above are given in (36) and (37).
We observe that the Bayesian Networks in Fig. 4 and Fig. 11a are not equivalent. Over the physical range of hyperpa-

rameters in Table 2, we observe that correlation structure in Fig. 11d is distinct from Fig. 8c and thus the joint density 
P (�) for the Bayesian Networks in Fig. 11a and Fig. 4 are different. Although it may be possible to select priors to ensure 
equality between the distributions P1 and P2, this is not in general the goal. Further, we can compare the Darcy-scale QoIs 
for the model P2 to the model P1 in Fig. 11c over the physical hyperparameter ranges in Table 2, i.e., by comparing Fig. 11c 
to Fig. 7c and Fig. 11d to Fig. 8c. Importantly, incorporating constraints directly into the models P1 and P2 allows us to 
ensure that we sample from a joint distribution that ensures realistic geometries that are consistent with the hierarchical 
nanoporous material in Fig. 1 over the physical range of hyperparameters. On the one hand, the densities in Fig. 7c (and 
Fig. 8c) are qualitatively similar to those in Fig. 11c (respectively, Fig. 11d) owing to the closeness of the input densities 
P (�), see the empirical correlations in Figs. 6c and 11b. On the other hand, we observe that the models P1 and P2 lead to 
distinct distributions on Darcy-scale flow variables as the Cramér tests reported in Table 5 reject the hypothesis of equal-
ity of the empirical distributions with high statistical significance. We emphasize that we do not give here a method for 
selecting among various models but instead a collection of tools for breaking the stochastic modeling task into smaller, 
manageable components that enables a systematic way of building a full statistical model that incorporates engineering 
design constraints.

7. Conclusions

The sensitivity of Darcy-scale observables to changes in pore-scale properties and rigorous quantification of the uncer-
tainty in predictions are some of the least studied aspects of multiscale models of flow and transport in porous materials. 
Our analysis leads to the following major conclusions.

• Causal relationships are natural and stem from physical or chemical constraints, engineering design, and expert knowl-
edge. These relationships exist between model parameters, scales, and model components in multi-scale and multi-
physics models. In the context of hierarchical nanoporous materials, we observe that causal relationships suggested by 
geometrical structural constraints among microscopic features yield non-trivial correlations among pore-scale model 
parameters over physical ranges.

• We incorporate domain knowledge-informed causal relationships, and thereby correlations, in a unified random, mul-
tiscale PDE model using structured probabilistic graphical models, in this case, Bayesian Networks. This perspective 
ultimately gives rise to Bayesian Network (random) PDEs.

• Due to causal relationships and resulting correlations between model parameters, GSA is not straightforward. Fur-
thermore, predictive PDFs of QoIs are not necessarily Gaussian (highly skewed, multimodal) or otherwise of known 
analytical form. For these two reasons, it is necessary to depart from moment-based sensitivity analysis, e.g., ANOVA 
methods, and deploy PDF-based methods relying on Mutual Information.

• The non-intrusive uncertainty quantification workflow relying on Rosenblatt transforms, gPCE surrogates for QoIs (ob-
tained using DAKOTA), and kernel density estimation techniques makes exhaustive sampling for prediction and uncer-
tainty quantification feasible.

• The proposed Mutual Information global sensitivity indices for Bayesian Network PDE and corresponding Darcy-scale 
QoIs yield parameter rankings that are consistent with our understanding of the physics of a hierarchical nanoporous 
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metamaterial. We demonstrate that correlations stemming from causal relationships turn out to be important in deter-
mining the most influential model parameters/mechanisms and impact predictions of QoIs.

The structure of Bayesian Networks or PGMs for the pore-scale parameter correlations can, in general, be learned from 
experimental or simulated data rather than being based on natural structural constraints as in this work and moreover they 
need not adopt causal relationships that mirror engineering design processes. One future direction includes learning the 
structure of the Bayesian Networks from available data and inferring the distributions of pore-scale features directly. The 
flexibility of the Bayesian Network PDE approach for incorporating domain knowledge and uncertainty into physical mod-
els will also enable explorations of model-form uncertainty that advance traditional uncertainty quantification techniques. 
Another future direction for research is to apply hybrid information divergences (e.g., [48]) to bound families of model pre-
dictions based on various pore-scale parameter representations and based on different upscaling techniques (i.e., different 
probabilistic models) to address questions of model-form uncertainty and tracking different levels of fidelity attached to 
system components.
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