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Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-
scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensi-
tivity of effective material properties to pore-scale parameters and statistical parameterization of
Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-
scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and
uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous
medium as random variables to conduct global SA and to derive probabilistic descriptors of effec-
tive diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute
transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is suffi-
ciently general to be applied to other multiscale porous media phenomena that are amenable to
homogenization. Published by AIP Publishing. https://doi.org/10.1063/1.5009691

I. INTRODUCTION

Pore- and Darcy-scale models provide two distinct
descriptors of flow and transport in porous media. The for-
mer approach relies on relatively few modeling assumptions,
but requires the detailed knowledge of a material’s pore
structure and is computationally prohibitive unless the num-
ber of pores being simulated is small. The latter approach
invokes the concept of a representative elementary volume,
treating a porous medium as an effective continuum without
distinguishing the pore space and the surrounding solid
matrix. While they are orders of magnitude faster to solve
than their pore-scale counterparts, Darcy-scale models are
grounded in a number of simplifying assumptions whose
validity is often questionable.1,2

Upscaling techniques, such as homogenization via
multiple-scale expansions3 or the method of volume averag-
ing,4 allow one to ascertain the applicability of Darcy-scale
models both by identifying the necessary and sufficient con-
ditions under which their foundational assumptions hold and
by relating parameters in these models to pore geometry and
operating regime. While many of these approaches formally
place restrictions on the regularity of a pore structure (e.g.,
by requiring it to be periodic), they often yield remarkably
robust predictions of macroscopic properties of materials
with irregular pore structures with equivalent microscopic
characteristics (e.g., porosity, pore-size distribution, and con-
nectivity).3 Recent examples of such studies include Refs.
5–8 among many others. By mapping microscopic material
properties onto their macroscopic counterparts, upscaling

approaches of this kind instill confidence in predictions of
transport processes in natural (e.g., geologic) porous
media9,10 and facilitate design of new metamaterials.11,12

For example, since porous electrodes with high surface area
have high energy density and, hence, high electrical double-
layer capacitance (EDLC),13 much of recent effort focused
on synthesis of nanostructured electrodes with high surface
area.14 However, as specific surface area of nanoporous
materials continues to increase, their EDLC cannot be gener-
ated at high power density if ions in the electrolyte cannot
diffuse fast enough. Attempts to increase ion diffusion by
altering electrolyte molecules or salts were shown to
adversely change the intrinsic chemical stability.15 Instead,
an observation that ordered nanopores increase ion diffu-
sion16 suggests a multi-objective optimization problem, in
which specific surface area and diffusion coefficients are two
quantities of interest.

One of the least studied aspects of multiscale simula-
tions of transport phenomena in porous media is sensitivity
of their results to changes in pore geometry. Yet, high sensi-
tivity would undermine the generality of a detailed pore-
scale investigation based on either computer-generated or
imaged pore spaces of a porous material. Likewise, a meta-
material’s design that is excessively sensitive to parameters
controlling its pore structure is unlikely to be of much practi-
cal use. Homogenization-based relationships between pore-
scale parameters and their Darcy-scale counterparts facilitate
both sensitivity analysis (SA) and uncertainty quantification
(UQ) in this multiscale setting.

A prevalent UQ framework treats uncertain input
parameters as random variables. Within this paradigm, the
sensitivity of a model’s prediction to input parameters can bea)Electronic mail: tartakovsky@stanford.edu
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quantified in terms of relative contributions of variances of
the input parameters to the prediction’s variance. Such an
approach to SA is often referred as analysis of variance or
ANOVA; it is global in the sense that, unlike its local coun-
terparts, it does not require identification of a base set of
parameter values which is then sequentially perturbed one at
a time. ANOVA is well suited for homogenization-based
multiscale modeling since a base set of parameter values
either is unknown/unknowable due to pore-scale heterogene-
ity of natural (e.g., geologic) materials or has to be identified
by solving a shape optimization problem (in the case of
material design).

We develop these ideas in the context of multiscale
modeling of reactive solutes diffusing through a (nano)po-
rous material, while sorbing to its solid matrix. Pore- and
Darcy-scale formulations of this problem are provided in
Sec. II. A global SA (GSA) of two macroscopic material
properties, effective diffusion coefficient and effective sorp-
tion rate, to microscopic pore-geometric parameters is
described in Sec. III. In Sec. IV, we provide simulation
results and discuss their implications for material design.
Main conclusions derived from our study are summarized in
Sec. V.

II. PROBLEM FORMULATION

Consider a volume V ¼ P [ S of a porous material,
which comprises the fluid-filled pore space P and the solid
matrix S; the (multi-connected) fluid-solid interface is
denoted by C ¼ P \ S. Following the standard practice in
homogenization theory, we assume that the volume V con-
sists of a periodic arrangement of unit cells U ¼ PU [ SU
with the pore space PU , solid matrix SU , and the interface
CU . Figure 1 provides a typical example of hierarchical
nanoporous materials that exhibit such a structure.

A. Pore-scale model

Let cðx; tÞ ðmol=l3Þ denote solute concentration at a
point x 2 P and time t. Its evolution within the pore space P
is governed by a diffusion equation

@c

@t
¼ r $ ðDrcÞ; x 2 P; t > 0; (1)

where spatial variability of the diffusion coefficient D(x)
(L2/T) accounts for the possibility of having Fickian diffu-
sion in mesopores and Knudsen diffusion in nanotubes (see
Fig. 1). Equation (1) is subject to a uniform initial condition

cðx; 0Þ ¼ cin; x 2 P: (2)

A boundary condition at the fluid-solid interface C with unit
normal vector n(x) is constructed from mass conservation,
such that the normal component of the solute mass flux,
%Dn $rc, is balanced by the rate change of absorbed solute

%Dn $rc ¼ q m
@s

@t
; x 2 C; t > 0; (3a)

where q ðx; tÞ ¼ q msðx; tÞ is the adsorption amount per unit
area of the C (mol/l2), q m (mol/l2) is the maximal adsorption
amount, and s(x, t) is the fractional coverage of C. The latter
is assumed to follow Lagergren’s pseudo-first-order rate
equation:17,18

ds

dt
¼ cðseq % sÞ; (3b)

where c (1/T) is the adsorption rate constant and the equilib-
rium adsorption coverage fraction seq satisfies Langmuir’s
adsorption isotherm

seq ¼
Kc

1þ Kc
; (3c)

with the adsorption equilibrium constant K (l3/mol).

B. Darcy-scale model

Darcy-scale models treat a porous material as a contin-
uum, without separating fluid and solid phases. Thus, a
volume-averaged concentration,

Cðx; tÞ ' 1

kUk

ð

UðxÞ

cðn; tÞdn ¼ 1

kUk

ð

PU ðxÞ

cðn; tÞdn

¼ /
jjPUjj

ð

PU ðxÞ

cðn; tÞdn; x 2 V; (4)

is defined at every “point” x of the material V. Here, jj $ jj
indicates the volume of the corresponding domain, and /

FIG. 1. Schematic representation of a
hierarchical nanoporous material (left)
and its unit cell (right).
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' jjPVjj=jjVjj ¼ jjPUjj=jjUjj is the porosity. Generalizing
the homogenization via multiple-scale expansions in Ref. 11
to account for spatial variability of D, it is easy to show that
the Darcy-scale solute concentration C(x,t) satisfies a
reaction-diffusion equation

/
@C

@t
¼ r $ ðDeffrCÞ % /q mceff

KC

1þ KC
; (5)

where “the effective rate constant” ceff (1/L) is defined in
purely geometric terms

ceff ¼
jjCUjj
jjPUjj

; (6)

while the effective diffusion coefficient Deff, a second-rank
tensor, depends on both pore geometry and pore-scale pro-
cesses. Specifically, it is computed as

Deff ¼
1

jjUjj

ð

PU

ðIþrnv
> Þdn; (7a)

where I is the identity matrix and the closure variable vðnÞ, a
U-periodic vector defined on PU , satisfies a Laplace equation

rn $ ðDrnvÞ ¼ 0; n 2 PU ; (7b)

and the normalizing condition

hvi ' 1

jjUjj

ð

PU

vðnÞdn ¼ 0: (7c)

Equation (7b) is subject to the boundary condition along the
fluid-solid segments CU ,

n $rnv ¼ %n $ I; n 2 CU ; (7d)

and the U-periodic boundary conditions along the remaining
(“fluid”) segments Cf of the boundary of PU . In the case of
the hierarchical nanoporous material shown in Fig. 1, these
take the form

v1ð%a; n2Þ ¼ v1ða; n2Þ ¼ 0;

@v1

@n2

ðn1; 0Þ ¼
@v1

@n2

ðn1; bÞ ¼ 0; (7e)

and

v2ðn1; 0Þ ¼ v2ðy1; bÞ ¼ 0;

@v2

@n1

ð%a; n2Þ ¼
@v2

@n1

ða; n2Þ ¼ 0; (7f)

where a ¼ R cos h and b¼ 2 Rþ l. Here, R is the mesopore
radius; h is the angle of overlap between any two adjacent
mesopores in a nano-tunnel, and d and l are, respectively, the
diameter and length of nanotubes which serve as nano-
bridges between adjacent nano-tunnels.

III. GLOBAL SENSITIVITY ANALYSIS (GSA) AND
UNCERTAINTY QUANTIFICATION

Equations (6) and (7) map the pore-structure parameters
p ¼ fR; h; d; lg ' fp1;…; p4g onto the macroscopic material
properties

Deff ¼ DeffðpÞ; ceff ¼ ceffðpÞ: (8)

These maps allow us both to investigate sensitivity of the
macroscopic parameters to variations in the pore geometry
and to relate uncertainty in the latter to uncertainty in the for-
mer. We treat the uncertain parameters pi ði ¼ 1;…; 4Þ as
statistically independent random variables with probability
density functions (PDFs) fpi , so that the joint PDF of p is
fp ¼

Q
fpi . This simplifying assumption is made to facilitate

the subsequent variance-based sensitivity analysis even
though the geometrical properties characterizing a pore
structure are generally interdependent.

We present our global sensitivity analysis (GSA) and
uncertainty quantification (UQ) for the longitudinal diffusion
coefficient D11

eff ' DLðpÞ. All the other functions of p in (8)
are treated identically.

A. Global sensitivity analysis

Thorough expositions of the GSA can be found in several
monographs,19,20 here we briefly describe it in terms relevant
to our study. The (explicitly unknown) function DL (p) has a
unique expansion into summands of p ¼ fp1;…; p4g, e.g.,21

DLðpÞ ¼ D0 þ
X4

i¼1

DiðpiÞ þ
X4

i¼1

X

j<i

Dijðpi; pjÞ þ $ $ $

þ D1234ðp1;…; p4Þ; (9a)

where

D0 ¼
ð

R4

DLdp; Di ¼
ð

R3

DL

Y

k 6¼i

dpk%D0; i( 1; (9b)

Dij ¼
ð

R2

DL

Y

k 6¼i;j

dpk % D0 % Di % Dj; (9c)

etc. By construction, for all summands

ð

R

Di1$$$is dpik ¼ 0 and

ð

R4

Di1$$$is Dj1$$$jr dp ¼ 0: (10)

The ensemble mean and variances of DL (p) are defined as

hDLi ¼
ð

R4

DLðp0Þfpðp0Þdp0 and

r2
DL
¼
ð

R4

D2
Lðp

0Þfpðp0Þdp0 % hDLi2; (11)

respectively. Substituting (9) into (11), while accounting for
the orthogonality condition (10), yields the so-called analysis
of variance (ANOVA) decomposition

r2
DL
¼
XNpar

i¼1

r2
i þ

XNpar

i¼1

X

j<i

r2
ij þ $ $ $ þ r2

1234; (12)

where the partial variances r2
i1$$$is are computed as
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r2
i1$$$is ¼

ð

R4

D2
i1$$$isðp

0
i1
$ $ $ p0isÞfpðp0Þdp0: (13)

The Sobol’ sensitivity indices22 are defined by dividing both
sides of (12) with r2

DL
, such that the first- and second-order

Sobol’ indices are defined as

Si ¼
r2

i

r2
DL

and Sij ¼
r2

ij

r2
DL

; (14)

respectively. The total Sobol’ sensitivity index, which quan-
tifies the total effect of uncertainty in the ith parameter pi on
the overall uncertainty in the macroscopic parameter DL, is

Ti ¼
1

r2
DL

X

a2Ii

r2
a; (15)

where Ii is the set of all subset of fp1;…; p4g containing the
ith parameter.

The statistical moments in (11)–(15) can be estimated
with, e.g., Monte Carlo simulations (MCS) consisting of
NMCS deterministic solves of (7) in which realizations
~pi ði ¼ 1;…;NMCSÞ of the pore-scale parameters p are drawn
from the distribution fp, such that

~r2
DL
¼ 1

NMCS % 1

XNMCS

i¼1

D2
Lð~piÞ % h ~DLi;

h ~DLi ¼
1

NMCS

XNMCS

i¼1

DLð~piÞ: (16)

This MCS procedure has a slow convergence rate of
)1=

ffiffiffiffiffiffiffiffiffiffiffi
NMCS

p
. One alternative, which we pursue in this study,

is to use a polynomial chaos expansion.23 This approach to
GSA is nonintrusive in that it can be seamlessly combined
with any solver used to solve deterministic realizations of
(7), e.g., the finite element method in COMSOL used in our
simulations. We deployed the GSA implementation in the
software DAKOTA.24

B. Uncertainty quantification

Uncertainty in the pore-scale parameters p gives rise to
uncertainty in the macroscopic parameters, e.g., DL. The lat-
ter is expressed in terms of its PDF fDL

ðgÞ, which is com-
puted as follows. First, we deploy DAKOTA24 to construct a

surrogate model of DL(p) by using a (generalized) polyno-
mial chaos expansion (PCE),25–27 truncated after NPCE terms

DLðpÞ ¼
X1

i¼0

D̂iWiðpÞ *
XNPCE%1

i¼0

D̂iWiðpÞ;

NPCE % 1 ¼
ðnþ NparÞ!

n!Npar!
; (17)

where n is the polynomial degree, Wi(p) are the orthogonal
multivariate polynomials, and D̂i are the expansion coeffi-
cients. The set of Wi(p) is derived from the Askey scheme of
hypergeometric orthogonal polynomials26 to match continu-
ous PDFs of Npar ¼ 4 parameters p. Specifically, since in the
simulations reported below each pk ðk ¼ 1;…; 4Þ follows a
uniform distribution, Wi(p) are multivariate Legendre polyno-
mials. Convergence properties of (17) have been the subject
of many studies.26 Figure 2 demonstrates the convergence of
estimates of the ensemble means hDLi; hDTi, and hceffi in
terms of both the polynomial degree n and the number of sam-
ples used to compute the means from (17). Based on these
results, we use n¼ 4 (NPCE ¼ 626) and NDL

¼ NDT
¼ Nceff

¼ 108 samples in the simulation results presented below.
Second, we use (17) to compute NDL

samples of
DLi ¼ DLð~piÞ, with i ¼ 1;…;NDL

, corresponding to NDL

realizations of the random parameter vector p. Then, fDL
ðgÞ

is computed with a kernel density estimator (KDE)

fDL
ðgÞ ¼ 1

NDL

ffiffiffiffiffiffiffiffiffiffi
2ph2
p

XNDL

i¼1

exp %ðg % DLiÞ2

2h2

# $
; (18)

where h is the kernel bandwidth. Since uncertainty in the
macroscopic parameters in (8) stems from their dependence
on the same set of uncertain pore-scale parameters p, they
are expected to be correlated. Joint PDFs of the macroscopic
parameters, e.g., the longitudinal (DL) and transverse
(D22

eff ' DT) components of the effective diffusion coefficient
tensor Deff, are estimated with a KDE as

fDLDT
ðgL; gTÞ ¼

1

NDL
2phLhT

+
XNDL

i¼1

exp %ðgL % DLiÞ2

2h2
L

% ðgT % DTiÞ2

2h2
T

" #

:

(19)

FIG. 2. Ensemble means of the normalized longitudinal diffusion coefficient, hDLi=D, normalized transverse diffusion coefficient, hDTi=D, and rate constant,
hceffi. The means are computed from (17) with the second (n¼ 2), third (n¼ 3), and fourth (n¼ 4) degree polynomials, using, respectively, NDL

; NDT
, or Nceff

realizations of the mutually independent and uniformly distributed microscopic parameters p¼ {R, h, d, l}.
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Kernel bandwidths—h in (18), and hL and hT in (19)—are
computed with the modified Sheather-Jones method.28

Once computed, the (joint) PDFs of the macroscopic
parameters Deff and ceff complete a probabilistic formulation
of the Darcy-scale problem (5). This problem can be solved
with any standard uncertainty quantification method, includ-
ing the MCS and PCE described above.

IV. SIMULATION RESULTS

We consider the hierarchical nanoporous material,
whose assembly template is shown in Fig. 1. In the absence
of information about the statistical properties of the pore-
scale parameters p, we take each pi (i¼ 1,…, 4) to have a
uniform distribution on the respective interval ½pmin

i ; pmax
i -.

(The methods described above can also accommodate more
informative priors.) The values of pmin

i and pmax
i , for

(i¼ 1,…, 4), are reported in Table I; the large intervals over
which these parameters are allowed to vary are representa-
tive of typical variability of natural (e.g., geologic) materials
or initial uncertainty about optimal values of pore-scale
parameters used in material design. We used a constant value
of molecular diffusion D throughout the pore space PU .

For given values of the parameter set p, i.e., for a given
computational domain PU in Fig. 1, first, the closure vector
variable vðnÞ is computed by solving (7b)–(7f) with
COMSOL. Second, the normalized components of the

effective diffusion tensor, DL/D and DT/D, are computed by
numerically evaluating the quadrature in (7a). The corre-
sponding values of the effective rate constant ceff are com-
puted with (6). The results of these calculations are exhibited
in Figs. 3 and 4. They demonstrate the complex interplay of
the pore-scale parameters p and their opposing effects on the
macroscopic material properties. While the effective diffu-
sion coefficients DL/D and DT/D increase with the mesopore
radius R and overlap angle h, the effective rate constant ceff

decreases as these parameters increase.

A. Global sensitivity analysis

Since the parameters p are uniformly distributed, we
take Wi(p) in the PCE (17) to be Legendre polynomials; the
series is truncated after NPCE – 1¼ 625 terms, i.e., using the
n¼ 4 degree polynomials in the pore-scale parameters pi

(i¼ 1,…, 4), each of which is defined on its respective inter-
val in Table I. The longitudinal (DL) and transverse (DT)
components of the effective diffusion coefficient Deff and the
effective reaction rate constant ceff are calculated for NDL

¼ NDT
¼ Nceff

¼ 108 realizations of the microscopic parame-
ters {R, h, d, l}. These realizations are then used in (17) to
compute the variances of the macroscopic parameters, and in
(9)–(15) to compute the corresponding first-order and total
Sobol’ sensitivity indices. Table II summarizes the results of
these calculations, and Figs. 5 and 6 provide their visual
representation.

Both the longitudinal (DL) and transverse (DT) compo-
nents of the effective diffusion coefficient tensor D are most
sensitive to the overlap angle h, which determines the pore-
throat size. While longitudinal diffusion coefficient DL is vir-
tually insensitive to the variability in the nanotube size (d
and l), it has a major impact on transverse diffusion coeffi-
cient DT. Both DL and DT exhibit an intermediate sensitivity

TABLE I. Intervals of determination, ½pmin
i ; pmax

i -, of the four pore-scale
parameters describing the pore structure in Fig. 1.

p1¼R, (nm) p2¼ h, (rad) p3¼ d, (nm) p4¼ l, (nm)

pmin
i 10.00 0.07 4.0 8.00

pmax
i 60.00 0.70 8.0 18.00

FIG. 3. Dependence of the normalized
longitudinal, DL/D, (left column) and
transverse, DT/D, (right column) diffu-
sion coefficients on R and h for either
fixed l¼ 13.0 nm and d¼ 6.0 nm
(upper row) or d and l for fixed
R¼ 35.0 nm and h¼ 0.38 (bottom
row).
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to pore radius R. This is in contrast to the effective rate con-
stant, ceff, whose variance is dominated by variability in R
and, to a significantly smaller extent, by l. Its values are vir-
tually insensitive to h and d.

B. Statistical parametrization of the macroscopic
model

Uncertainty in values of the pore-scale parameters gives
rise to that in values of their macroscopic counterparts.
Nonlinearity of the mappings, (6) and (7), between these two
sets of parameters suggests that PDFs of the macroscopic

material properties can be nontrivial even when PDFs of the
microscopic parameters are. Moreover, the mappings (6) and
(7) imply that even if the pore-scale variables are mutually
independent, the macroscopic parameters might be strongly
correlated.

We use the kernel density estimators in (18) and (19) to
post-process the NDL

¼ NDT
¼ Nceff

¼ 105 realizations of the
three macroscopic parameters, DL, DT, and ceff. Estimation of
the kernel bandwidth with the modified Sheather-Jones
method28 leads to hL ¼ 0.0077, hT ¼ 0.0057, and hc¼ 0.0058
for the KDE in (18), and (hL, hT)¼ (0.0083, 0.0061), (hc,
hL)¼ (0.0088, 0.0093), and (hc, hT)¼ (0.0085, 0.0107) for the

FIG. 4. Dependence of the effective
rate constant ceff (nm%1) on R and h for
either fixed l¼ 13.0 nm and d¼ 6.0 nm
(left) or d and l for fixed R¼ 35.0 nm
and h¼ 0.38 (right).

TABLE II. The first-order (S) and total (T) Sobol’ indices of effective longitudinal (DL) and transverse (DT) diffusion coefficients and effective rate constant

(ceff) for the four pore-scale parameters p¼ {R, h, d, l}.

SDL
TDL

SDT
TDT

Sceff
Tceff

R 1.95+ 10%1 4.90+ 10%2 7.70+ 10%2 1.92+ 10%1 8.72+ 10%1 9.09+ 10%1

h 7.73+ 10%1 9.54+ 10%1 4.61+ 10%1 4.95+ 10%1 9.29+ 10%3 1.24+ 10%2

d 7.50+ 10%4 1.08+ 10%3 3.87+ 10%1 4.14+ 10%1 6.64+ 10%4 1.50+ 10%3

l 1.64+ 10%3 1.60+ 10%3 2.69+ 10%1 5.61+ 10%1 8.01+ 10%2 9.96+ 10%2

FIG. 5. Relative contribution of the
first-order (upper row) and total (bot-
tom row) Sobol’ sensitivity indices to
the total variance of the longitudinal,
DL (left column), and transverse, DT

(right column), components of the
effective diffusion tensor.
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KDE in (19). The resulting (marginal) PDFs, fDL
ðgÞ; fDT

ðgÞ
and fceff

ðgÞ, are shown in Fig. 7. All three PDFs are highly
asymmetric and exhibit long tails. The non-Gaussianity is, of
course, to be expected since these parameters are positive
quantities. This finding undermines the long-standing practice
of assigning standard (e.g., Gaussian or log-normal) distribu-
tions to macroscopic properties of porous media.29–33

Joint PDFs, fDL;DT
ðgL; gTÞ; fceff ;DT

ðgc; gTÞ, and fceff ;DL

ðgc; gLÞ, are shown in Fig. 8. The three macroscopic parame-
ters, DL, DT, and ceff, are neither statistically independent
nor multivariate Gaussian. Like their marginal counterparts
in Fig. 7, they exhibit multimodality. The longitudinal (DL)
and transverse (DT) components of the effective diffusion

tensor are positively correlated (the correlation coefficient
qDL;DT

¼ 0:44), and both are negatively correlated with
the effective sorption rate ceff (qceff ;DL

¼ %0:50 and
qceff ;DT

¼ %0:18).

V. CONCLUSIONS

Ubiquitous uncertainty about pore geometry inevitably
undermines the veracity of pore- and multi-scale simulations
of transport phenomena in porous media. It raises two funda-
mental issues: sensitivity of effective material properties to
pore-scale parameters and statistical parameterization of
Darcy-scale models that accounts for pore-scale uncertainty.
We treated uncertain geometric characteristics of a hierarchi-
cal nanoporous material as random variables to conduct
GSA and to derive probabilistic descriptors of effective dif-
fusion coefficients and effective sorption rate.

Our analysis leads to the following major conclusions.

1. When combined with a probabilistic framework,
homogenization-based maps between pore-scale parame-
ters and their Darcy-scale counterparts allow one to esti-
mate global sensitivity of Darcy-scale material properties
to geometric characteristics of a material’s pore structure
and to relate PDFs of pore- and Darcy-scale parameters.

2. For the hierarchical porous medium considered, the effec-
tive longitudinal diffusion coefficient (DL) is insensitive to
the size of nanotube bridges, while the effective transverse
diffusion coefficient (DT) exhibits high sensitivity to this
geometric parameter. The longitudinal and transverse com-
ponents of the effective diffusion tensor are positively cor-
related (the correlation coefficient qDL;DT

¼ 0:44) and both

FIG. 6. Relative contribution of the
first-order (left) and total (right) Sobol’
sensitivity indices to the total variance
of ceff.

FIG. 7. Probability density functions fDL
ðgÞ; fDT

ðgÞ, and fceff
ðgÞ of the mac-

roscopic material properties, DL, DT, and ceff, respectively. The microscopic
parameters p¼ {R, h, d, l} are mutually independent and uniformly
distributed.

FIG. 8. From left to right: joint probability density functions fDL ;DT
ðgL; gTÞ; fceff ;DT

ðgc; gTÞ, and fceff ;DL
ðgc; gLÞ of the macroscopic material properties, DL, DT,

and ceff. The microscopic parameters p¼ {R, h, d, l} are mutually independent and uniformly distributed.
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are negatively correlated with the effective sorption rate
ceff (qceff ;DL

¼ %0:50 and qceff ;DT
¼ %0:18).

3. Multiscale solutions typically depend on the volume frac-
tion. Since derivatives of this macroscopic quantity with
respect to the pore space parameters can be evaluated ana-
lytically, it may provide a valuable a posteriori interpreta-
tion of the GSA results.

4. The proposed approach provides a simple tool that enables
a quantitative ranking of the microstructural parameters.

The simulations reported in this study rely on the simpli-
fying assumption of statistical independence of the uncertain
(random) geometric characteristics of hierarchical nanopo-
rous media. In a follow-up study, we will obviate the need
for this assumption by replacing the variance-based GSA
with, e.g., its distribution-based counterpart.

Our analysis is formulated for a solute diffusing through
a fluid-filled pore space, while sorbing to the solid
matrix. Yet it is sufficiently general to be applied to other
multiscale porous media phenomena that are amenable to
homogenization.

ACKNOWLEDGMENTS

This research was supported in part by the Defense
Advanced Research Projects Agency under the EQUiPS
program and by the National Science Foundation under
Grant No. CBET-1563614.

1I. Battiato and D. M. Tartakovsky, “Applicability regimes for macroscopic
models of reactive transport in porous media,” J. Contam. Hydrol.
120–121, 18–26 (2011).

2H. Arunachalam, S. Onori, and I. Battiato, “On veracity of macroscopic
lithium-ion battery models,” J. Electrochem. Soc. 162, A1940–A1951
(2015).

3U. Hornung, Homogenization and Porous Media (Springer, 2012), Vol. 6.
4S. Whitaker, The Method of Volume Averaging (Springer, 2013), Vol. 13.
5M. Schmuck and M. Z. Bazant, “Homogenization of the Poisson-Nernst-
Planck equations for ion transport in charged porous media,” SIAM J.
Appl. Math. 75, 1369–1401 (2015).

6S. Korneev and I. Battiato, “Sequential homogenization of reactive trans-
port in polydisperse porous media,” Multiscale Model. Simul. 14,
1301–1318 (2016).

7X. Zhang and D. M. Tartakovsky, “Effective ion diffusion in charged
nanoporous materials,” J. Electrochem. Soc. 164, E53–E61 (2017).
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