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Timely completion of design cycles for complex systems ranging from consumer electronics 
to hypersonic vehicles relies on rapid simulation-based prototyping. The latter typically 
involves high-dimensional spaces of possibly correlated control variables (CVs) and 
quantities of interest (QoIs) with non-Gaussian and possibly multimodal distributions. 
We develop a model-agnostic, moment-independent global sensitivity analysis (GSA) 
that relies on differential mutual information to rank the effects of CVs on QoIs. The 
data requirements of this information-theoretic approach to GSA are met by replacing 
computationally intensive components of the physics-based model with a deep neural 
network surrogate. Subsequently, the GSA is used to explain the surrogate predictions, 
and the surrogate-driven GSA is deployed as an uncertainty quantification emulator to 
close design loops. Viewed as an uncertainty quantification method for interrogating 
the surrogate, this framework is compatible with a wide variety of black-box models. 
We demonstrate that the surrogate-driven mutual information GSA provides useful and 
distinguishable rankings via a validation step for applications of interest in energy storage. 
Consequently, our information-theoretic GSA provides an “outer loop” for accelerated 
product design by identifying the most and least sensitive input directions and performing 
subsequent optimization over appropriately reduced parameter subspaces.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction: GSA and deep learning for simulation-aided design

Simulations are a key component of product design as they enable rapid prototyping by guiding costly laboratory tests 
and investigating regions of the parameter space that are difficult to explore experimentally. To optimize design under 
uncertainty, an “outer loop” can be included to predict the impact of tunable inputs or control variables (CVs) on a system’s 
quantities of interest (QoIs) [1]. In this approach, CVs are treated as random quantities whose distributions are derived 
from available experimental data, manufacturing constraints, design criteria, engineering judgment, and/or other domain 
knowledge. Statistical post-processing of repeated solves of a physics-based model for multiple samples of CVs yields the 
distributions of QoIs. In the context of optimal and robust design and uncertainty quantification (UQ), this outer loop 
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constitutes a many query problem that becomes prohibitively expensive when queries rely solely on direct simulation of 
physics-based models.

Data-driven surrogate modeling seeks to alleviate this computational cost by constructing a statistical model or emulator 
for QoIs. Off-the-shelf software such as TensorFlow and PyTorch facilitates the construction of deep learning surrogates, 
e.g., deep neural networks (DNNs), from data generated by the underlying physics-based model. This process, which typically 
involves supervised learning, makes very few assumptions about the nature of the data or data-generating process. This 
agnosticism makes DNNs suitable for dependent/correlated inputs and non-Gaussian, skewed, multimodal, and/or mutually 
correlated output QoIs, typically observed in complex real-world systems. While DNNs (e.g., see [2–6]) can tremendously 
speed up the design pipeline by accelerating and fully automating the prediction of QoIs, they represent black boxes that do 
not shed any light on the form of the function they are approximating. They provide no clear link between this function and 
the network weights. Moreover, they are non-identifiable, since two DNNs with the same topology, but different weights, 
can yield very similar outputs for a given set of input data [7].

Global sensitivity analysis (GSA) [8] provides an opportunity to “peek” inside a black-box deep neural networks sur-
rogate and to interpret its predictions by identifying constellations of input parameters that are likely to yield a targeted 
model response. GSA facilitates exploration of the entire parameter space and quantifies both first-order (individual) and 
higher-order (interaction) effects that characterize the contribution of variations in CVs to changes in QoIs. Variance-based 
GSA methods rank input parameters by their contributions to the total variance of a QoI (e.g., Sobol’ indices [9] and total 
effects [10]). Their interpretation is ambiguous when spaces of correlated CVs are large [11,12] and QoIs are highly non-
Gaussian [13,14], a situation representative of complex multiscale/multiphysics systems. In contrast, moment-independent 
GSA approaches are easy to interpret regardless of the nature of the data or data-generating process [15–17]; however, 
they require knowledge of the CV and QoI distributions or availability of sufficient data to approximate them. DNNs provide 
sufficient data to capitalize on moment-independent approaches.

A major goal of this study is to harness the synergy between moment-independent GSA and black-box surrogates and to 
exploit their shared agnosticism to the nature of data and a data-generating process. To this end, we develop UQ emulators 
for moment-independent GSA, based on information-theoretic quantities, that utilize a DNN surrogate. Information theory 
has been used to carry out both local sensitivity analysis using Fisher information matrix methods [18–22] and global 
sensitivity analysis using mutual information [23–28]. Furthermore, information inequalities can be used for robust UQ of 
QoIs in problems with model uncertainty arising, e.g., when models reflect both physics and sparse or multi-sourced data 
[29,30].

Our GSA utilizes the concept of differential mutual information (MI) [31,32] to compute Mutual Information Sensitivity 
Indices (MISIs). The latter allow one to interrogate a black-box model by quantifying the dependence of the output QoI 
with respect to tunable CVs, and to ascertain and rank which CVs are the most influential. As such, MISIs are rigorously the 
GSA of the black-box surrogate model but correspond indirectly to the original physics-based model and are expected to 
coincide in the asymptotic limit of “infinite” data. The UQ emulator workflow presented in this work, combining surrogate 
modeling, global effect rankings, and tools for distinguishing effect rankings, enables an “outer loop” for accelerated design. 
Moreover, this approach addresses the twin challenges of correlated/dependent CVs and non-Gaussian, skewed, multimodal, 
and/or mutually correlated QoIs encountered in the modeling of complex systems. These features make MISIs an ideal 
decision-making tool for simulation-aided design.

Viewed as an uncertainty quantification method for interrogating surrogates, our MI-based GSA is compatible with any 
black-box model such as physics-informed neural networks [5,33–35] and “data-free” physics-constrained neural networks 
[4,36–38]. We leverage a Graph-Informed Neural Network (GINN) [6] that is tailored for multiscale physics and systems 
with correlated CVs. The GINN’s ability to generate “big data” allows us to consider higher-order effects due to interactions 
between the CVs. In turn, the MI-based rankings help to explain the GINN’s black-box predictions by placing them in 
context. We validate these rankings by evaluating response curves along sensitive and insensitive directions and comparing 
these to their counterparts computed with a physics-based model. This comparison provides a clear interpretation of the 
GINN’s predictions in terms of the physics-based model and enables the use of the GINN to close engineering design loops 
by deploying it to estimate effect rankings in parameter subspaces yielding optimal QoI values.

Gradient-based methods are often used to interpret DNN predictions. Typically, these methods compute derivatives of 
the loss function of outputs with respect to inputs using back propagation. Large derivatives with respect to the input, 
in a suitable metric, are considered influential to the output and, correspondingly, small derivatives are considered less 
influential. Focusing on a particular class of machine learning tasks related to image classification and pattern recognition 
and on particular convolutional neural network architectures, these methods use gradients to, e.g., construct saliency maps 
via local perturbations of the input image [39,40], learn importance features through propagation of activation differences 
[41], and construct importance scores that accumulate (integrate) gradients over subsets of perturbations [42]. A different 
approach [43] is to consider interpretability in terms of the filters of a convolutional neural network by adding an MI term 
in the loss function in order to retain only mutually independent parts of the DNN during training. In contrast, our work 
focuses on applying GSA to scientific machine learning tasks and uses MI (gradient-free) to interrogate surrogate models 
where the interpretability is understood in relation to the physics-based model.

In the context of multiscale design [28], we employ the MISI rankings to interpret the surrogate model’s predictions 
by identifying parameter regions that elicit targeted responses and then using new empirical response data predicted by 
the GINN for those parameter subspaces to refine an existing prototype. We illustrate how MI-based GSA for explainable 
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DNN predictions enables outer-loop tasks, such as uncertainty quantification and optimal design, to benefit from scientific 
machine learning. These rankings play a role similar to Shapley values [44], partial dependence plots [45], and individual 
conditional expectation plots [46] found in the statistical learning and data mining literature. Similar to MISIs, these met-
rics elucidate the relationship between predicted responses and one or more features in regression models and classifiers 
based on changes in certain conditional expectations. Unlike these metrics, MISIs depend on distributional—as opposed 
to moment—information and provide a framework for estimating and ranking higher-order effects, or interactions, among 
correlated CVs that prove to be crucial for design of complex systems (cf. Fig. 7).

In Section 2, we develop a GSA framework that includes both first- and higher-order MISIs. In Section 3, this methodology 
is combined with a GINN in the context of a testbed problem related to the design of a supercapacitor. Validation of the 
MI-based rankings and closure of design loops through subsequent rankings in the reduced parameter space with optimal 
QoI values are performed in Section 4. In Section 5, we summarize the main conclusions drawn from this study and discuss 
future work.

2. MISIs for model-agnostic GSA

We consider a model M of a complex physical system,

Y = M(X) , (1)

that predicts the response of a collection of QoIs Y ∈ Rq to a collection of tunable CVs X ∈Rp . The model M propagates 
distributions on CVs to distributions on QoIs query-by-query, i.e., it generates one sample response Y (m) , m = 1, . . . , M , for 
each input sample or observation X (m) . We place no restrictions on the dependence structure of the CVs or on the nature 
of their functional relationship to the response.

2.1. First-order effects described by differential MI

Differential MI is a pseudo-distance used in machine learning [47,48] and model selection [49], among others. Quantify-
ing the amount of shared information between V ∈Rd1 and W ∈Rd2 , the differential MI is defined as [31]

I(V ; W ) :=
¨

V⊗W

log
(

f V ,W (v, w)

f V (v) f W (w)

)
f V ,W (v, w)dvdw , (2)

where f V , f W , and f V ,W denote marginal and joint probability density functions (PDFs) with support V , W , and V ⊗ W , 
respectively. The differential MI possesses many of the same properties as the discrete MI, including symmetry I(V ; W ) =
I(W ; V ) and non-negativity I(V ; W ) ≥ 0 (with equality if and only if V and W are independent). Unlike its discrete 
counterpart, the differential MI can take on infinite values, e.g., if V = W . The following features make the differential MI 
appropriate for GSA in multiscale design:

(i) its interpretation does not rely on the dependence structure of the CVs,
(ii) its moment independence makes it suitable for a wide range of CV and QoI PDFs, and

(iii) its continuous nature is suitable for analysis of continuous systems.

The first two features enable a model-agnostic implementation, while the last one facilitates uncertainty quantification for 
downstream computations relying on continuous QoIs.

To describe the first-order effect of a CV X ∈ X on a target QoI Y ∈ Y , we define a MISI,

SY (X) := I(X; Y ), (3)

and interpret it as a measure of the strength of the association between X and Y . A large score indicates that X is a globally 
influential CV in the design of Y relative to the PDF of X . In complex systems, Y is unlikely to be completely described by 
a single CV X , so the value of SY (X) in (3) is likely to remain finite. Since SY (X) places equal importance on linear and 
nonlinear relationships due to the self-equitability of the MI [50], it recovers the rankings of Sobol’ indices in the setting of 
independent CVs X , i.e., when Sobol’ rankings are justified.

The MISI SY (X) in (3) can be estimated from empirical data generated by querying the model M. A plug-in Monte Carlo 
estimator for SY (X),

ŜY (X) := 1
M

M∑

m=1

log

(
f̂ X,Y (X (m), Y (m);bX ,bY )

f̂ X (X (m);bX ) f̂ Y (Y (m);bY )

)

, (4)

can be computed via joint and marginal kernel density estimators (KDEs) f̂ at input-output data pairs {X (m) , Y (m)}, m =
1, . . . , M [51,52]. A Gaussian kernel KDE f̂ Z for an unknown PDF f Z based on M ′ identically distributed observations 
Z (1), . . . , Z (M′) of Z ∈Rd is given by [53]

3



S. Taverniers, E.J. Hall, M.A. Katsoulakis et al. Journal of Computational Physics 444 (2021) 110551

f̂ Z (z;b) := (2π)−d/2

M ′ ∏d
j=1 b j

M ′∑

m=1

d∏

j=1

exp

⎡

⎢⎣−

(
z j − Z (m)

j

)2

2b2
j

⎤

⎥⎦ , z ∈Rd. (5)

Among many algorithms for the automated computation of the positive bandwidth parameters b = (b1, . . . , bd)
⊤ , we chose 

a direct plug-in bandwidth selector called the improved Sheather–Jones method [54]. To ensure that the joint and marginal 
KDEs in (4) are defined consistently, i.e., thatˆ

X

f̂ X,Y (x, y;bX ,bY )dx = f̂ Y (y;bY ) and
ˆ

Y

f̂ X,Y (x, y;bX ,bY )dy = f̂ X (x;bX ) ,

we require the smoothing bandwidths for the joint and marginal PDFs to be equal. That is, the bandwidths related to X in 
f̂ X and f̂ X,Y must be the same.

The KDE-based direct plug-in estimator ŜY (X) in (4) is easy to implement. However, its computation is not sample-
efficient and, hence, unfeasible in the absence of an efficient surrogate; moreover, KDEs are anticipated to fail in high 
dimensions [51]. In such circumstances, one can deploy alternative strategies for estimating MI, such as a non-parametric k-
nearest neighbor algorithm [55] and a non-parametric neural estimation approach suitable for high-dimensional PDFs [56]. 
Contrary to the discrete MI indices [23,25], non-parametric density estimators, such as (4), introduce no bias associated 
with a quantization of the QoIs, whose continuous nature may need to be preserved for the purpose of downstream com-
putations.

Remark 1 (Independent input-output). The plug-in estimator (4) involves the joint PDFs, i.e., is useful when input-output 
sample pairs are available. A change of measure in (2) yields an equivalent estimator,

Ŝ ⊥
Y (X) := 1

M

M∑

m=1

log

(
f̂ X,Y (X (m), Y (m);bX ,bY )

f̂ X (X (m);bX ) f̂ Y (Y (m);bY )

)
f̂ X,Y (X (m), Y (m);bX ,bY )

f̂ X (X (m);bX ) f̂ Y (Y (m);bY )
, (6)

that is suitable for independent samples from the input and output distributions as the expectation is no longer with respect 
to the joint PDF but with respect to each marginal PDF (cf. [28]).

2.2. Higher-order effects described by conditional differential MI

For large spaces of possibly correlated CVs, it is of interest to also consider the impact of interactions among subsets 
of CVs on a given QoI. To describe the effects of pairwise interactions between X1, X2 ∈ X on a target QoI Y , we define a 
second-order MISI,

SY (X1, X2) := I(X1; X2 | Y ), (7)

in terms of the conditional differential MI,

I(V ; W | U ) :=
˚

U⊗V⊗W

log
(

f (u) f (u, v, w)

f (u, w) f (u, v)

)
f (u, v, w)dwdvdu. (8)

The latter represents the MI between V and W conditioned on U that we express in terms of joint and marginal PDFs.2

The conditional MI in (8) is related to the MI in (2) through the chain rule,

I(V 1, V 2, . . . , Vk; W ) =
k∑

i=1

I(V i; W |V i−1, V i−2, . . . , V 1), (9)

for V 1, V 2, . . . , Vk ∈ V and W ∈ W where zero-indexed sets in the conditioning are empty. To see that (7) captures only 
the second-order effects, we note that I(X1, X2; Y ) describes the full effect of the pair (X1, X2) on Y . According to (9), the 
full second-order effect is expressed as

I(X1, X2; Y ) = I(X1; Y ) + I(X2; Y ) − I(X1; X2) + I(X1; X2 | Y ), (10)

which includes first-order effects I(X1; Y ) and I(X2; Y ), while I(X1; X2) captures the interaction between X1 and X2 (the 
latter term vanishes if X1 and X2 are independent). The remaining conditional differential MI in (10) describes the desired 
second-order effect.

2 Here and in the sequel we suppress the labels on densities when the distribution is clear from the context.
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A plug-in Monte Carlo estimator for the second-order index (7) is

ŜY (X1, X2) := 1
M

M∑

m=1

log

(
f̂ (Y (m);bY ) f̂ (X (m)

1 , X (m)
2 , Y (m);bX1 ,bX2 ,bY )

f̂ (X (m)
1 , Y (m);bX1 ,bY ) f̂ (X (m)

2 , Y (m);bX2 ,bY )

)

, (11)

based on input-output triples (X (m)
1 , X (m)

2 , Y (m)), m = 1, . . . , M . The plug-in estimator is justified in the context of surrogate 
modeling and is easy to implement using KDEs (5) with suitably equalized bandwidths. It can be built from the same 
sample data used to evaluate (11) and comes with the same caveats.

A kth-order MISI (with k > 2) is defined as

SY (X1, . . . , Xk) := I(X1; X2; . . . ; Xk | Y ). (12)

It quantifies the impact of the interaction among the collection of variables {X1, . . . , Xk} ⊂ X on Y . The conditional multi-
variate differential MI is defined inductively,

I(X1; X2; . . . ; Xk | Y ) = I(X2; . . . ; Xk | X1, Y ) − I(X2; . . . ; Xk | Y ). (13)

It is symmetric with respect to permutation of the variables X j , with 1 ≤ j ≤ k. For example, the third-order effect of the 
interactions among the triple X1, X2, and X3 on Y is given by the third-order MISI,

SY (X1, X2, X3) = I(X1; X2; X3 | Y ) = I(X2; X3|X1, Y ) − I(X2; X3 | Y ). (14)

The conditional multivariate MI in (13) and, hence, SY in (12) can be either positive or negative. They are related to a 
conditional form of the “interaction information” [57] and the “co-information” [58]. Instead of interpreting such higher-
order (k > 2) effects, we focus on algorithms for ranking the first- and second-order effects with appropriate confidence 
intervals (cf. Fig. 4 for first-order and Fig. 5 for second-order effect rankings).

2.3. Algorithms for MISI ranking with confidence

We assume the availability of a surrogate model M for generating large amounts of response data. While based on 
slightly different theoretical approaches, the two algorithms described below enable the construction of first- and higher-
order effect rankings for a given QoI with a focus on the generation of associated confidence intervals. When considering 
effect rankings, confidence intervals are an important tool for distinguishing closely-ranked pairs of CVs, particularly if some 
automation of the process is desirable. True to form, each confidence interval is a random interval, estimated from a set of 
observed responses, that may or may not contain the true (theoretical) response value.

2.3.1. Algorithm 1: compute MISIs with confidence intervals adjusted for ranking
Algorithm 1 (see the pseudocode) constructs the plug-in estimators ̂SY (X j) in (4) with confidence intervals selected such 

that pairwise comparisons of the MISIs and their accompanying intervals determine the effect ranks. For fixed Y , we order 
the ŜY (X j) as

ŜY (X j1) > ŜY (X j2) > · · · > ŜY (X jp ). (15)

Then, the ranked first-order MISI estimators are

(θ̂1, . . . , θ̂p) :=
(̂

SY (X j1), . . . , ŜY (X jp )
)
, (16)

where the individual (additive) effects of the CVs are arranged in order of importance, from the greatest (θ̂1) to the least 
(θ̂p). The (true) rank r j of CV X j is estimated by the plug-in quantity,

r̂ j := p − #{̂SY (Xi) < ŜY (X j), i = 1, . . . , p}, (17)

where #{·} denotes the cardinality of the set, such that

θ̂ r̂ j = ŜY (X j). (18)

Since the MISI SY (X) in (3) is a global measure of sensitivity, (16) represents a global ranking of the first-order effect of 
each CV relative to the distribution of X .

One could approximate the standard 100 · (1 − α)% confidence interval for θk with

(θ̂k − z[α/2]σ̂k, θ̂k + z[α/2]σ̂k), σ̂k :=
√

Var
[
θ̂k

]
=

√
Var

[̂
SY (X jk )

]
, (19)

5



S. Taverniers, E.J. Hall, M.A. Katsoulakis et al. Journal of Computational Physics 444 (2021) 110551

Algorithm 1: Compute first-order MISIs with confidence intervals adjusted for ranking.
input : M ◃ Surrogate model (1)

input : (X (1)
1 , . . . , X (1)

p ), . . . , (X (M)
1 , . . . , X (M)

p ) ◃ M independent samples of CVs
input : γ̄ , TOL ◃ Non-overlap sig. and tolerance
output : (θ̂1 ± z[β/2]σ̂1 , . . . , ̂θp ± z[β/2]σ̂p) ◃ Rankings with adjusted intervals (23)

begin
Compute target QoI observations
for m ∈ {1, . . . , M} do

Y (m) ← M(X (m)
1 , . . . , X (m)

p )

Compute and rank first-order MISI estimators
for j ∈ {1, . . . , p} do

G(x, y) ← log
[

f̂ X j ,Y (x, y)
]
− log

[
f̂ X j (x) f̂ Y (y)

]

ŜY (X j) ← 1
M

∑
1≤m≤M G(X (m)

j , Y (m)) ◃ First-order MISI (4)

for j ∈ {1, . . . , p} do
r̂ j ← p − #{̂SY (Xi) < ŜY (X j) , i = 1, . . . , p} ◃ Rank of jth CV (17)
θ̂ r̂ j ← ŜY (X j) ◃ Ranked MISI (18)

σ̂ r̂ j ←
(
Var[̂SY (X j)]

)1/2 ◃ MISI standard error (19)

Compute comparison-adjusted confidence intervals with average type I error γ̄
for k, l ∈ {1, . . . , p} do

skl ← (σ̂k + σ̂l)/(σ̂
2
k + σ̂ 2

l )1/2

f (z) ← γ̄ − 4
p(p−1)

∑
1≤k<l≤p(1 − '(zskl)) ◃ Average non-overlap sig. (22)

f ′(z) ← 4
p(p−1)

∑
1≤k<l≤p ϕ(zskl) · skl ◃ Normal PDF ϕ = '′

z0 ← '−1(1 − γ̄ /2) · (σ̂ 2
1 + σ̂ 2

2 )1/2/(σ̂1 + σ̂2)

i ← 0
while erri < TOL do

zi+ 1 ← zi − f (zi)/ f ′(zi) ◃ Newton-Raphson iterations
erri ← |zi+ 1 − zi |/zi
i ← i + 1

z[β/2] ← zi+ 1 ◃ Difference level (23)

return (θ̂1, . . . , ̂θp), (σ̂1, . . . , ̂σp), z[β/2]

where '(z[α/2]) = 1 − α/2 for the standard normal cumulative distribution function ', and σ̂k is the standard error.3

However, this confidence interval does not readily distinguish the rankings. The fact that the 100 · (1 − α)% confidence 
intervals for the ranked effects θk and θl , with k ̸= l, fail to overlap does not necessarily mean that the difference in the 
rankings is statistically significant at the α level. Following [59], Algorithm 1 reports confidence intervals with comparison-
adjusted widths, such that the non-overlap significance level meets a given threshold on average. Assuming normality and 
independence of θ̂k and θ̂l , the confidence intervals at level β do not overlap if

|θ̂k − θ̂l| > z[β/2](σk + σl). (20)

Inequality (20) holds with probability 1 − γkl , where the pairwise non-overlap significance level γkl is given by

γkl := 2 − 2'
(

z[β/2]σk + σl

σkl

)
, σkl :=

√
σ 2

k + σ 2
l . (21)

We select the level β to ensure that the average of the pairwise errors γkl over all 1 ≤ k < l ≤ p is at a predefined level γ̄
(set to γ̄ = 0.01), i.e.,

γ̄ − 2
p(p − 1)

∑

1≤k<l≤p

γkl = 0. (22)

The level β , for which (22) holds, is found via Newton–Raphson iteration (cf. Algorithm 1) using sample estimates for the 
standard errors. For each ranked effect θk , the approximate confidence interval at level β is

(
θ̂k − z[β/2]σ̂k, θ̂k + z[β/2]σ̂k

)
, 1 ≤ k ≤ p; (23)

the error bars indicate that the non-overlap significance level is γ̄ on average. The intervals (23) provide the visual compar-
ison of pairwise effects with clear interpretation: overlapping/non-overlapping intervals imply that the associated ranks are 
indistinguishable/distinguishable.

3 Here, z[α] denotes the value such that '(z[α]) = 1 − α, i.e., the value such that the standard normal PDF in the right-hand tail is equal to α.
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With a slight modification, Algorithm 1 can be used to rank the second-order MISI estimators (7),

(̂ζ1, . . . , ζ̂p′) :=
(

ŜY (X j1 , Xk1), . . . , ŜY (X jp′ , Xkp′ )
)

, (24)

where p′ := p!/(2!(p − 2)!) is the number of pairs (X j, Xk) with j < k that can be formed from X . The computation of (24)
replaces that of the first-order indices in Algorithm 1; the computation of the comparison-adjusted confidence intervals for 
ζi , i = 1, . . . , p′ , proceeds analogously to that of the first-order confidence intervals (23) with the non-overlap significance 
averaged over all pairs (̂ζk, ̂ζl) with 1 ≤ k ≤ l ≤ p′ .

2.3.2. Algorithm 2: rank MISIs with percentile confidence intervals
Algorithm 2 (see the pseudocode) constructs non-parametric estimates with confidence intervals for the unknown rank-

ings rk directly from the sampling distribution. In contrast to Algorithm 1 which uses normality theory, the present method 
builds a distribution for each rank by repeated observation of the MISIs using the surrogate model. For each X j ∈ X , we 
compute MISI replications,

ŝ (n)
j := Ŝ (n)

Y (X j) , n = 1, . . . , N , (25)

from input-output sample pairs (X (m)
j , Y (m)), m = 1, . . . , M . That is, for each replication, we generate M new input-output 

pairs (X, Y ) using the surrogate model and compute (25) for every j = 1, . . . , p with these observations. From these repli-
cations, we use (17) to compute rank replications ̂r (n)

k , k = 1, . . . , p. The rank estimators are

r̂k = 1
N

N∑

n=1

r̂ (n)
k , (26)

and the corresponding δ percentile confidence intervals are

(̂rk[δ/2], r̂k[1 − δ/2]), 1 ≤ k ≤ p. (27)

The equal-tail percentiles ̂rk[δ/2] and ̂rk[1 − δ/2] are estimated from the replications in the spirit of the bootstrap percentile 
confidence intervals [60].

The computational burden of Algorithm 2 is greater than that of Algorithm 1, since the estimator is computed for each 
of the N replications. Yet, this method is non-parametric and its results are anticipated to be more easily interpretable for 
large numbers of CVs and higher-order effect calculations.

3. Interrogation of black-box surrogates using MISIs

As highlighted in the introduction, our MI-based approach to GSA is applicable to any black-box surrogate model. To 
illustrate the ability of MI-based GSA to deal with correlated CVs, for which variance-based GSA approaches are of limited 
value, we combine it with a GINN, a domain-aware DNN surrogate introduced in [6] to overcome computational bottlenecks 
in complex multiscale and multiphysics systems. We consider two applications of interest in energy storage: the Langmuir 
adsorption model and a multiscale formulation of the dynamics of electrical double-layer supercapacitors with nanoporous 
electrodes.

3.1. Langmuir adsorption model

To highlight the application of the MISI rankings, we first consider a simplified Langmuir adsorption model. This setting 
allows us to compare GINN-based rankings to ground truth rankings computed from the physics-based model. The Lang-
muir biomolecular adsorption model is widely used to describe competitive dissociative adsorption of two species on a 
catalyst surface [61], e.g., hydrogen oxidation in fuel cells [62–65]. The coverage dynamics ϑA and ϑB of species A and B , 
respectively, are found by long-time integration of the system of nonlinear ODEs,

dϑA

dt
= kads

A P A(1 − ϑA − ϑB)2 − kdes
A ϑ2

A , ϑA(0) = ϑ0
A , (28a)

dϑB

dt
= kads

B P B(1 − ϑA − ϑB)2 − kdes
B ϑ2

B , ϑB(0) = ϑ0
B , (28b)

where P denotes partial pressure, kads denotes the adsorption rate constant, and kdes denotes the desorption rate constant. 
The system (28) has a steady-state solution

ϑA = (K A P A)1/2

1 + (K A P A)1/2 + (K B P B)1/2 , (29a)

ϑB = (K B P B)1/2

1 + (K A P A)1/2 + (K B P B)1/2 , (29b)

7
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Algorithm 2: Rank first-order MISIs with percentile confidence intervals.
input : M ◃ Surrogate model (1)
input : N ◃ Number of replications
input : M ◃ Number of observations per replication
input : δ (δl := δ/2, δu := 1 − δl) ◃ Equal tail percentile level
output : (̂r1, . . . , ̂rp) ◃ Ranks (26)
output : (̂r1[δl], ̂r1[δu ]) , . . . , (̂rp[δl], ̂rp [δu ]) ◃ Percentile confidence intervals (27)

begin
Compute N replications of MISI first-order effect ranks
for n ∈ {1, . . . , N} do

Generate M input-output samples
for m ∈ {1, . . . , M} do

sample (X (m)
1 , . . . , X (m)

p )

Y (m) ← M(X (m)
1 , . . . , X (m)

p )

Calculate one replication of each MISI
for j ∈ {1, . . . , p} do

G(x, y) ← log
[

f̂ X j ,Y (x, y)
]
− log

[
f̂ X j (x) f̂ Y (y)

]

ŝ (n)
j ← 1

M

∑
1≤m≤M G(X (m)

j , Y (m)) ◃ nth replication MISI (25)

Calculate one replication of each rank
for j ∈ {1, . . . , p} do

r̂ (n)
j ← p − #{̂s (n)

i < ŝ (n)
j , i = 1, . . . , p} ◃ nth replication rank (17)

Compute rank statistics from replications
for j ∈ {1, . . . , p} do

r̂ j ← 1
N

∑
1≤n≤N r̂ (n)

j

r̂ j [δl] ← quantile ({̂r (1)
j , . . . , ̂r (N)

j }, δl)

r̂ j [δu ] ← quantile ({̂r (1)
j , . . . , ̂r (N)

j }, δu )

return (̂r1, . . . , ̂rp) , (̂r1[δl], ̂r1[δu ]) , . . . , (̂rp[δl], ̂rp [δu ]) ◃ cf. Algorithm 1 output

where K = kads/kdes denotes an equilibrium constant. Our goal is to quantify the uncertainty in predicted coverages at 
equilibrium as functions of E A and E B , the changes in adsorption energy of each species,

ϑA = ϑA(E A, E B) and ϑB = ϑB(E A, E B) . (30)

These QoIs are highly nonlinear functions of E A and E B ; the equilibrium constants are expressed by the Arrhenius law,

K A = exp
(

− G A

kB T

)
(P A + P B)−1 , (31a)

K B = exp
(

− G B

kB T

)
(P A + P B)−1 , (31b)

where kB is the Boltzmann constant; T is the temperature; and the Gibbs free energy of adsorption,

G A ∝ −2E A and G B ∝ −2E B , (32)

are, according to density functional theory, given by changes in adsorption energy plus additional terms that are not a 
function of the catalyst surface [66]. The Gibbs free energy of adsorption is measured “experimentally” for a variety of metal 
catalyst surfaces via density functional theory, that is, quantum computations for actual metals. In [66], where competitive 
dissociative adsorption of H2 and O2 is considered, the changes in adsorption energy are observed to be correlated and are 
described by a linear model.

We generate synthetic data, given in Fig. 1, according to the following program. We assume that E A is drawn from a 
Gamma distribution (with shape α and scale β)

E A ∼ Gamma(α = 33,β = 0.0870) . (33a)

We then sample correlated E B according to the model

E B = −2 + 2.5E A + ϵ , (33b)

where each ϵ ∼ N (0, σ 2) is a mean-zero noise. Assuming unit partial pressure, we consider the simplified statistical-
mechanics approximation

8
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Fig. 1. Response surfaces for the QoIs (a) ϑA and (b) ϑB (equilibrium coverages (30)) based on inputs E A and E B (changes in adsorption energy (33)) 
simulated using a physics-based model, i.e., the simplified statistical-mechanics approximation (34) and the steady-state solution (29) for the Langmuir 
model (28). The equilibrium coverages are a nonlinear function of the changes in adsorption energy arising from Arrhenius law (31) and the calculation of 
the Gibbs free energy of adsorption (32).

G A = −2E A + 5 , G B = −2E B + 10 , (34a)

K A = exp(−G A/2) , K B = exp(−G B/2) . (34b)

Taking advantage of the closed form equilibrium solution (29), we generate a corpus of Nsam = 1.25 × 106 input-output 
data (XE A , XE B , YϑA , YϑB ) that allows us to construct “ground truth” rankings. As the input layer contains correlations, we 
consider a GINN [6] surrogate and learn two models: a fully resolved GINN that is trained and tested on the full corpus and 
a sparse GINN that is trained on a subset of 1.25 × 104 data points. For simplicity of presentation we omit the full details 
on training and testing (see e.g. Section 3.3.1).4

In Fig. 2, we demonstrate the first-order MISI obtained using Algorithm 1 and associated ranks calculated according 
to Algorithm 2, both with 95% confidence intervals. In panels (a) and (c), estimated MISIs (4) based on M = 106 samples 
from the physics-based model form a “ground truth”. These MISIs are compared to the surrogate indices estimated using 
M = 106 predictions from both the resolved and sparse GINN surrogate models. Although there is some bias in the learned 
surrogate models, the estimates based on large numbers of predictions are largely consistent with the ground truth rank-
ings. In contrast, the estimate based on limited samples from the sparse GINN surrogate has larger confidence intervals 
(Figs. 2a and 2c), and the bias in the sparse GINN surrogate severely underestimates the MISI value I(E B ; ϑB) (Fig. 2c). All 
the estimated rankings resulting from Algorithm 2 are consistent and have vanishingly small confidence intervals (Figs. 2b 
and 2d). The ground truth ranking and the resolved GINN estimates were computed with N = 102 replications of M = 103

samples and the sparse GINN model (trained on restricted data) was computed with N = 10 replications of M = 102 sam-
ples. Taken together, this experiment demonstrates that, although bias or error in the trained GINN can impact predictions, 
the surrogate-driven mutual information-based GSA provides useful rankings. Although evaluating the information flow be-
tween the physics-based model and its surrogate is beyond the scope of the present work, we point to an analysis [67] of 
the information-theoretic limits of DNNs, assuming the inputs have a known model and are conditionally independent.

3.2. Multiscale supercapacitor dynamics

We consider an electrical double-layer capacitor [68], whose electrodes are made of a conductive hierarchical nanoporous 
carbon structure [69]. Electrolyte (an ionized fluid) fills the nanopores and contributes to the formation of the electrical 
double layer at the electrolyte-electrode interface (see, e.g., Fig. A8 in [6]). Identification of an optimal pore structure of 
the carbon electrodes holds the promise of manufacturing supercapacitors which boast high power and high energy den-
sity [70,71]. This and other advancements, such as lower self-discharge electrolytes [72] for enhanced long-term energy 
storage, position electrical double-layer capacitors as a viable replacement of Li-ion batteries in electric vehicles or personal 
electronic devices. Attractive features of electrical double-layer capacitors are their shorter charging times, longer service 
life, and reduced reliance on hazardous materials [73].

4 We consider an architecture comprised of two hidden layers, each with 50 neurons and ReLU (Rectified Linear Unit) activations, and a linear output 
layer. In both cases, the training is set 80% of the available data with remaining 20% reserved for testing and the training and testing tolerance is O (10−5).

9
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Fig. 2. Plug-in Monte Carlo estimators of the first-order MISIs (4) for both a fully resolved GINN surrogate (learned from all available data) and a sparse GINN 
surrogate (learned from a restricted data set) are compared to a physics-based ground truth. For Algorithm 1 (left column), we observe that the large-sample 
estimates based on M = 106 samples are largely consistent. For Algorithm 2 (right column), we observe that surrogate-driven mutual information-based 
GSA provides useful and consistent rankings. Note in the (b), (c), and (d) that the 95% confidence intervals are vanishingly small.

Two macroscopic QoIs affect electrical double-layer capacitor performance: effective electrolyte conductivity κeff and 
transference number t+ (fraction of the current carried by the cations), such that Y := {Yκeff , Yt+ }. These QoIs are influenced 
by seven tunable CVs: the electrode surface (fluid-solid interface) potential ϕ. , initial ion concentration cin, temperature T , 
porosity ω, (half) pore throat size lpor, solid radius r, and Debye length λD , such that X := {Xϕ. , Xcin , XT , Xω, Xlpor , Xr, XλD }. 
A physics-based model M, derived in [74] via homogenization, relates the inputs X to the outputs Y . This model involves 
closure variables (second-order tensors) χ ± and electrical double-layer potential ϕEDL, whose determination is expensive 
and constitutes computational bottlenecks Z := {Zχ ± , ZϕEDL}. Optimal design of the nanoporous electrodes in electrical 
double-layer capacitors involves the tuning of the CVs X to elicit changes in the QoIs Y .

The complex nonlinear and multiscale relationship between X and Y makes this a challenging engineering design prob-
lem and allows us to highlight the features (i)–(iii) of the MI-based GSA. The joint PDF of the random CVs X systematically 
quantifies uncertainties and errors arising in the physics-based representation. This key quantity for decision support is 
captured by a Bayesian Network (BN) [6,28], which encodes both physical relationships and available domain knowledge 
(Fig. 3). The resulting probabilistic physics-based model M, referred to as a BN PDE, propagates the joint PDF of X , i.e., a 
structured prior, via Z to Y following the conditional relationships in the BN. As in [6], we assume both the CVs XT , Xcin , 
Xr , and Xω to be independent and their prior PDFs to be uniform on an interval of ± 35% (for XT and Xcin ) or ± 25% (for 
Xr and Xω) around their respective baseline values (see Table 1 reproduced from [6]),

Xi | θi ∼ Uniform([θmin
i , θmax

i ]), i = T , cin, r,ω; (35)

where the hyper-parameters θi = {θmin
i , θmax

i } represent the left and right endpoints of the support intervals. The remaining 
CVs, XλD , Xϕ. and Xlpor , are related conditionally (Fig. 3) to these independent inputs through the physical relations,

λD =
√

RT E
2F 2z2νcin

[nm], (36a)

ϕ. = V
2

− ϕecm − 1
CH

√
4E RT z2cin

√

cosh
(

eϕ.

kBT

)
− cosh

(
eϕmin

kBT

)
[V], (36b)

lpor = −r + 0.5

√

4r2 + 4r2

[
π

4 · (1 − ω)
− 1

]
[nm] . (36c)
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Fig. 3. Visualization of the BN PDE (lower route) and GINN surrogate (upper route) for a multiscale model of EDL supercapacitor dynamics. The BN encodes 
conditional relationships between the model variables (both inter- and intrascale) and systematically includes domain knowledge into the physics-based 
model, ensuring the resulting BN PDE makes physically sound predictions. The GINN takes identical inputs X (i.e., structured priors on CVs) to those of the 
BN PDE, but overcomes the latter’s computational bottlenecks Z (dashed box) by replacing them with learned features (solid box) in a DNN to predict the 
QoIs Y . The nodes in the hidden layers of the GINN make it a black box.

Table 1
Statistics of the uniform PDFs of the independent CVs in (35) (from [6]).

Variable label θmin θmax Mean/Baseline Variation Units

T 208 432 320 ± 35% K
cin 0.52 1.08 0.80 ± 35% mol/l
r 1.05 1.75 1.40 ± 25% nm
ω 0.5025 0.8375 0.6700 ± 25% –

Here, F = 96485 C/mol is the Faraday constant, R [J/(mol K)] is the gas constant, kB [J/K] is the Boltzmann constant, T [K] is 
the temperature, E [F/m] is the absolute permittivity of the solvent, z [-] is the ion charge (valence), ν [-] is the dissociation 
constant, V is the external voltage, e [C] is the elementary charge, ϕecm is the electrocapillary maximum, cin [mol/l] is the 
initial ion concentration, and ϕmin is the mid-plane potential (see [6] for further details). The PDFs of these dependent CVs 
are estimated by sampling the uniform distributions (35) and computing a corresponding observation via (36). Hence, the 
physics of the problem induces the correlations between the CVs represented by the conditional relationships in Fig. 3.

3.3. GINNs: surrogate models for multiscale physics

GINNs [6] are domain-aware surrogates for a broad range of complex physics-based models. In the context of electrical 
double-layer capacitors, a GINN can be used to accelerate the propagation of uncertainty from structured priors on CVs X to 
distributions of QoIs Y by replacing the computational bottlenecks Z in the BN PDE (the dashed boxed nodes of the BN in 
Fig. 3) with the GINN’s hidden layers. In so doing, it alleviates the cost of computing the QoIs Y , which includes bypassing 
the need to compute the effective diffusion coefficients of the cations (Deff

+ ) and anions (Deff
− ) according to

κeff:= νz2 F 2cin

RT
(Deff

+ + Deff
− ) [mS/cm] , (37a)

t+ := Deff
+

Deff
+ + Deff

−
[−] . (37b)

11



S. Taverniers, E.J. Hall, M.A. Katsoulakis et al. Journal of Computational Physics 444 (2021) 110551

3.3.1. GINN construction
The workflow for building the GINN surrogate for the supercapacitor dynamics is summarized as follows. Details, includ-

ing the procedures for training and testing the GINN using the BN PDE, can be found in [6].

1. Data generation (BN PDE): Generate Nsam = 4 × 103 input-output samples by drawing the inputs from the structured 
priors on X and computing the corresponding responses Y with the BN PDE, and select Ntrain = 0.75Nsam training 
samples and Ntest = 0.25Nsam test samples from this data set.

2. Training: Using the Ntrain input-output pairs and TensorFlow 2, train with 100 epochs a fully connected NN com-
prising:
a) an input layer consisting of the seven CVs X ,
b) two hidden layers each consisting of 100 neurons,
c) an output layer consisting of the two QoIs Y ,
d) application of the ReLU (Rectified Linear Unit) activation function, and
e) a given training error tolerance of 10−4.

3. Testing: Test the trained GINN on the Ntest input-output pairs to analyze its generalization capability for unseen data 
for a given test error tolerance of 10−4.

4. Prediction: Sample Npred
sam inputs from the structured priors on the CVs, and predict the corresponding responses with 

the trained GINN.

3.3.2. Computational efficiency of the physics- and GINN-based models
For complex numerical simulations, the cost of step 1 outweighs, by orders of magnitude, the combined cost of steps 

2–4 [6]. The GSA results reported below require 3 × 103 samples of the BN PDE (physics-based model) to train the GINN that 
satisfies both the training and test error tolerances.5 Since the generation of new samples with the GINN carries a negligible 
expense compared to the generation of training data with the BN PDE, the computational costs of the physics- and GINN-
based GSAs are virtually identical when carrying out the former using 3 × 103 samples; this allows us to investigate the 
performance of both approaches for a fixed computational budget.

3.4. GINN-based MISI rankings for supercapacitor dynamics

Fig. 4 exhibits the first-order MISI values for Yκeff and Yt+ (left column) and the corresponding ranks of the CVs X
(right column), estimated respectively with Algorithm 1 and Algorithm 2. All of these quantities are computed, alternatively, 
with the physics- and GINN-based models. The MISI values are equipped with the adjusted confidence intervals indicating 
a pairwise non-overlap significance γ̄ = 0.01 (on average, at level β ≈ 0.05). The 95% percentile confidence intervals for 
the CV ranks in (27), i.e., with δ = 0.05, are based on N = 103 replications; samples for the estimator in each replication 
are either predicted using the GINN or are bootstrap resampled from a corpus of 3 × 103 physics-based simulations. For 
both Algorithm 1 and Algorithm 2, the physics- and GINN-based estimators are largely consistent, which is to be expected 
since the GINN surrogate satisfies both a preset training and test error tolerance. The highlighted gaps between clusters 
of MISI values in Fig. 4a,c indicate the groupings of various CVs X by their relative importance. In Fig. 4b,d dashed lines 
correspond to these highlighted gaps; although the clarity of the rankings in Fig. 4b,d facilitates the automation of decisions 
in outer-loop tasks, the ranks themselves do not contain information about the relative importance of each parameter as in 
Fig. 4a,c.

For both QoIs, the MISI estimators obtained with the physics-based model lead to indeterminate rankings. For Yκeff , the 
confidence intervals for {Xlpor , Xω} and {Xcin , Xϕ. } overlap, and therefore the difference between their MISI values (i.e., their 
ranking) does not differ at an average significance level γ̄ = 0.01. Similarly, for Yt+ the rankings for {Xlpor , Xr, Xcin} are not 
resolved. In contrast, the differences between the corresponding estimators derived from 5 × 104 (for Yκeff ) or 105 (for Yt+ ) 
GINN-based predictions are pairwise significant at the level γ̄ = 0.01. Likewise, we observe that the ranks generated using 
N = 103 replications with M = 5 × 104 observations for Yκeff or M = 105 observations for Yt+ predicted with the GINN are 
fully resolved (indeed, the 95% percentile confidence intervals are vanishingly small on the plots). Moreover, these ranks are 
consistent with the resolved rankings of the MISI values for Yκeff and Yt+ deduced from the GINN-based estimators obtained 
with Algorithm 1. These findings demonstrate the benefit of a GINN, since resolving the rankings with the physics-based 
model is considerably more expensive given the high cost of generating additional response samples with the BN PDE.

Fig. 4 also compares the direct distributional method of Algorithm 2 to bootstrapped estimators with percentile con-
fidence intervals computed using the physics-based model. Using N = 103 bootstrap (i.e., resampling [53]) replications of 
M = 3 × 103 observations (M is constrained by the fixed computational budget) yields clusters of indeterminate ranks: the 
ranking of {XλD , Xlpor , Xω} and {Xcin , Xϕ.} for Yκeff , and the ranking of {Xlpor , Xr, Xcin} and {Xϕ. , XλD } for Yt+ , cannot be 
resolved at the 0.05 level. In both cases, this is over 70% of the CVs. Again, that ranking of the first-order effects of the CVs 

5 While testing requires the generation of 103 additional input-output samples with the BN PDE, it is not strictly required and hence not taken into 
account when comparing the rankings generated with the physics-based model and the GINN.
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Fig. 4. Plug-in Monte Carlo estimators of the first-order MISIs in (4) indicate the most impactful CVs X for tuning the QoIs Yκeff (top row) and Yt+ (bottom 
row). For Algorithm 1 (left column), the width of the confidence intervals (23) is chosen to achieve a non-overlap significance level γ̄ = 0.01 pairwise 
on average. The highlighted gaps in (a) and (c) indicate clusters of CVs with similar relative importance. For Algorithm 2 (right column), the GINN-based 
estimators for CV ranking with percentile confidence intervals (27) are consistent with the rankings in (a) and (c). These ranks are resolved, which is not 
feasible through bootstrapping the 3 × 103 samples from the physics-based model. In both algorithms, the GINN surrogate enables querying sufficiently 
large amounts of data to distinguish closely-ranked CVs with a high degree of confidence (relative to bootstrapping). In (b) and (d) the dashed lines 
correspond to the gaps identified in (a) and (c), respectively, and we observe that some of the confidence intervals related to the GINN-based estimates are 
vanishingly small.

with a high degree of confidence (relative to bootstrapping) within a constrained computational budget critically depends 
on the availability of a GINN (or, more generally, a surrogate model) to cheaply generate additional response samples.

Since the CVs X are correlated, it is natural to expect higher-order effects due to interactions between the CVs. Fig. 5
displays the second-order MISIs and their ranks estimated using Algorithms 1 and 2, respectively, for the QoI Yκeff . The 
pairwise comparison of the adjusted confidence intervals with non-overlap significance γ̄ = 0.01 reveals that approximately 
80% of the estimators obtained with M = 3 × 103 physics-based observations are indistinguishable (Fig. 5a). In contrast, 
the rankings deduced from the estimators obtained with M = 5 × 104 GINN-based observations are fully resolved. The 
estimated second-order effect ranks based on N = 30 replications of M = 105 GINN-based observations are nearly identical, 
emphasizing the robustness and consistency of Algorithms 1 and 2. A large proportion of the MISI values is clustered and 
equally important. The GINN-based GSA resolves ≈ 40% of the ranks compared to ≈ 15% of the ranks distinguishable from 
N = 103 bootstrap replications of M = 3 × 103 physics-based observations. Here, the number of replications for the GINN-
based ranks is chosen such that the total computational time of implementing Algorithm 2 is similar to that of computing 
all the physics-based bootstrap replications, which is approximately the case when the product N · M is the same for both 
models.

To summarize the key findings from the numerical experiments presented in Figs. 4 and 5: the GINN surrogate enables 
the fast generation of useful distinguishable rankings. These rankings are largely consistent with the budget-constrained 
predictions of the physics-based model. Hence, Algorithms 1 and 2 facilitate the deployment of GINN for the acceleration 
and future automation of outer-loop decision-support tasks.

4. Design with explainable black-box surrogates

Like all deep neural networks, GINNs are black boxes that lack a clear functional relationship between inputs and outputs. 
MI-based GSA aids in interpreting and explaining their predictions, thereby enabling the use of black-box surrogates in 
simulation-based decision-making, including the closure of engineering design loops to facilitate rapid prototyping.

We validate the first-order MISI rankings discussed in Section 3.4, and then use these rankings to explore subregions 
of the original parameter space that deliver high values of the effective electrolyte conductivity, κeff . Subsequent effect 
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Fig. 5. Plug-in Monte Carlo estimators of the second-order MISIs in (11) indicate the most impactful interactions between any two CVs in X for tuning the 
QoI Yκeff . The GINN surrogate improves the resolution of the second-order MISI rankings (relative to bootstrapping) computed with (a) Algorithm 1 or (b) 
Algorithm 2. Although the first-order effect of XT and Xϕ. on Yκeff are not top-ranked (see Fig. 4 (a) and (b)), we observe above that (XT , Xϕ. ) has the 
most important second-order effect on Yκeff .

rankings within this parameter subspace suggest follow-up simulations or novel laboratory experiments, resulting in further 
refinements to the design of nanoporous electrodes for electrical double-layer capacitors.

4.1. Validation of MISI rankings for supercapacitor dynamics

Fig. 6 shows normalized response surfaces, in the form of scatter plots and cubic regression splines based on 103 ob-
servations, for the QoIs κeff and t+ along sensitive and insensitive parameter directions identified by the first-order MISI 
rankings in Fig. 4. The most sensitive parameter directions are λD for κeff and ω for t+ , and the least sensitive are r for 
κeff and λD for t+ . The response surfaces for κeff and t+ (top and bottom rows in Fig. 6, respectively) demonstrate nonlin-
ear relationships with respect to the most sensitive CV directions (Figs. 6a,c). In contrast, the random scatter for the least 
sensitive directions (Figs. 6b,d) suggests the lack of a clear relationship between these CVs and the QoIs. The quality and 
strength of these functional relationships validate the assigned rankings.

The MISI effect ranking and above validation step lend interpretability to the black-box predictions. This enables the use 
of GINNs in design iterations by predicting new response samples in reduced parameter spaces that optimize certain QoIs. 
The next section illustrates this procedure.
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Fig. 6. Response surfaces of the QoIs κeff (top row) and t+ (bottom row) with respect to the respective most (left column) and least (right column) sensitive 
parameters. The plots represent 3 × 103 observations which are fitted with cubic regression splines. These results indicate nonlinear response surfaces for 
the most sensitive parameter directions, (a) and (c), in contrast to the random dispersion of observations for the least sensitive parameter directions, (b) 
and (d). This validates the first-order effect rankings in Fig. 4.

4.2. Design of multiscale systems under uncertainty

The first- and second-order MISI rankings suggest that the CVs λD , lpor, and ω have the largest individual contributions to 
changes in κeff (Fig. 4), and the CV pairs (T , ϕ.), (lpor, λD), (ω, λD) and (ω, lpor) (Fig. 5) have the largest pairwise interaction 
effect. The GINN-generated response surfaces of κeff for these CV pairs (Fig. 7) identify the parameter subspaces in which a 
targeted range of the QoI κeff , e.g., its maximal value, is likely to be achieved. Computation of new MISI rankings in these 
restricted subregions determines which CVs to retain in the next design cycle.

Fig. 7a,b shows a clear gradient in the response surfaces, with κeff being largest when λD is small and either ω or lpor is 
large; this observation follows directly from (36a) and (37a). For the former case, we zoom in on the region T ∈ [208, 360] K
and cin ∈ [0.9, 1.08] mol/l, such that λD ∈ [0.0771, 0.1109] nm and ω ∈ [0.7, 0.8375]. For the latter case, we consider 
the region T ∈ [208, 350] K and cin ∈ [0.95, 1.08] mol/l (such that λD ∈ [0.0771, 0.1065] nm) and r ∈ [1.5, 1.75] nm and 
ω ∈ [0.79, 0.8375] (such that lpor ∈ [1.4030, 2.0965] nm). Fig. 8 visualizes the new first-order MISI rankings in the reduced 
parameter space suggested by the most relevant parameter directions in Fig. 7a,b that were informed by the first-order 
(Fig. 4) and second-order (Fig. 5) effect rankings. While λD still has the biggest impact, ϕ. and T are now the second- and 
third-most important CVs in both cases, while r remains the least important CV. Repeating this process informs subsequent 
decision tasks, yielding a procedure to iteratively refine the materials design. A similar reasoning can be followed based on 
the response surface of κeff for variations in ω and lpor in Fig. 7c. The narrower shape of this surface reflects the correlation 
between these CVs, in accordance with (36c).

Comparison of the first-order rankings in Fig. 4 with the second-order rankings in Fig. 5 reveals that even though 
the individual contributions of ϕ. and T to changes in κeff are smaller than those of λD , lpor and ω, the effect of their 
interactions dominates that of the pairwise interactions between the latter. This can be explained by the different degrees of 
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Fig. 7. GINN-predicted response surfaces of the effective electrolyte conductivity κeff based on 3 × 103 observations identify reduced parameter ranges 
corresponding to a targeted response which can be explored to close design loops. The response surfaces are plotted over two-dimensional subspaces of 
the full input space; in (a), (b), and (c) the CVs correspond to the top-ranked first-order MISIs in Fig. 4 and in (d) they correspond to the highest second-
order MISI in Fig. 5. In (a) and (b) the subspaces enclosed by dashed boxes correspond to high values of κeff and are the focus of the further investigations 
in Fig. 8.

Fig. 8. Plug-in Monte Carlo estimators of the first-order MISI rankings in the large κeff regime. The latter corresponds to the reduced ranges of (a) λD , ω
and (b) λD , lpor indicated by the dashed boxes in Fig. 7a and b, respectively. These new rankings are based on 5 × 104 samples generated by the GINN 
surrogate. They differ from those in Fig. 4 and inform subsequent decision tasks in the multiscale design process.

dependence among these CVs: λD is not directly related to lpor or ω, while the pairs (T , ϕ.) and (ω, lpor) are combinations 
of CVs that depend on each other through physical relations (see (36b) and (36c), respectively). This is reflected by the 
various shapes of the response surfaces in Fig. 7. This result enables one to reduce parameter ranges for ϕ. and T to close 
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design loops and demonstrates the importance of the higher-order effects (i.e., due to interactions between CVs) introduced 
in Section 2.2 for design loop closure in complex systems.

Since the new parameter ranges considered for predicting the effect rankings in Fig. 8 lie inside the original parameter 
space, we used the existing trained GINN to predict the new response samples. Alternatively, the MISI rankings might 
suggest the exploration of new parameter ranges outside the original space, thereby guiding the generation of (a limited 
amount of) new physics-based data corresponding to those ranges and retraining the GINN with this new training dataset. 
For deep neural networks with many hidden layers, transfer learning [75] can be employed to reuse most of the existing 
network and thereby reduce the cost of training the new surrogate.

5. Conclusions and outlook

We developed a UQ emulator for moment-independent global sensitivity analysis (GSA) based on differential mutual 
information (MI). Mutual Information Sensitivity Indices (MISIs) provide a model-agnostic mechanism for ranking the im-
pact of correlated tunable control variables (CVs) on quantities of interest (QoIs). The high computational cost of querying 
physics-based models, typically a barrier to the use of such data-driven methods, is ameliorated by leveraging deep learning-
based surrogate models that enable fast generation of response data. Although these black boxes do not generate engineering 
insights, our MI-based GSA allows one to interrogate surrogates and explain surrogate predictions in the context of the 
physics-based model to close engineering design loops.

We utilized our UQ emulators in conjunction with a recently developed Graph-Informed Neural Network (GINN) [6], 
capable of handling correlated CVs, and tested our approach on two models of interest in energy storage including a mul-
tiscale model of an electrical double-layer capacitor. We presented two algorithms for estimating and ranking MISIs and, 
for the applications of interest, calculated first-order MISIs to capture individual CV effects and second-order MISIs to cap-
ture the effects of pairwise interactions between CVs. We validated the first-order MISI rankings against both physics- and 
GINN-based QoI response surfaces. Finally, we closed the engineering design loop by considering the most sensitive in-
put directions and investigating effect rankings in a reduced parameter space corresponding to large effective conductivity 
values.

Our analysis leads to the following major conclusions.

1. Viewed as uncertainty quantification for surrogate models, our MI-based GSA works seamlessly with the GINN—a 
promising result that encourages its application to interrogate other black-box surrogate models.

2. UQ emulators deliver well-resolved first-order effect rankings, facilitated by either comparison-adjusted (Algorithm 1) 
or percentile (Algorithm 2) confidence intervals. While not as rigorous as UQ for physics-based models, they can never-
theless be used to characterize interventions that enable outer loop control and optimization.

3. For the applications of interest, the resolved first-order effect rankings produced with the GINN-driven UQ emulators 
are consistent between Algorithms 1 and 2 (see Figs. 2 and 4).

4. The most/least sensitive CVs identified through the first-order MISI effect rankings show a nonlinear/nearly flat response 
curve for the QoIs, supporting the validity of the MI-based approach. The relative magnitudes of the largest first-order 
MISIs for both QoIs produced by Algorithm 1 are also in line with the differences between the normalized response 
curves; this holds true for the smallest first-order MISIs as well.

5. The impact of mutual interactions between correlated CVs on the QoIs needs to be taken into account via higher-order 
MISIs. Pairwise interactions between CVs with small individual contributions to the QoIs can dominate those between 
CVs with larger additive effects.

6. Within a reduced parameter space leading to optimal QoI values, the relative importance of the various CVs is different 
from that in the original parameter space (which could be nonlinear, see Fig. 7c,d). This new ranking informs subsequent 
design cycles, spawning an iterative procedure that enables rapid prototyping and reduces time to market.

Motivated by its successful application to GINNs, we aim to pair our MI-based GSA with other deep neural network sur-
rogates including physics-informed and physics-constrained neural networks. In particular, our MISI rankings could help 
simplify the custom loss functions of those deep neural networks by filtering out less important parameters.
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