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We design and implement a novel algorithm for computing a multilevel Monte Carlo 
(MLMC) estimator of the joint cumulative distribution function (CDF) of a vector-valued 
quantity of interest in problems with random input parameters and initial conditions. 
Our approach combines MLMC with stratified sampling of the input sample space by 
replacing standard Monte Carlo at each level with stratified Monte Carlo initialized with 
proportionally allocated samples. We show that the resulting stratified MLMC (sMLMC) 
algorithm is more efficient than its standard MLMC counterpart due to the additional 
variance reduction provided by the stratification of the random parameter’s domain, 
especially at the coarsest levels. Additional computational cost savings are obtained by 
smoothing the indicator function with a Gaussian kernel, which proves to be an efficient 
and robust alternative to recently developed polynomial-based techniques.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Simulation of many complex systems, such as subsurface flows in porous media [1,2] or reaction initiation in heteroge-
neous explosives [3], is complicated by a lack of information about key properties such as permeability or initial porosity. 
Uncertainty in a medium’s properties or initial state propagates into uncertainty in predicted quantities of interest (QoIs), 
such as mass flow rate or the material’s temperature.

Probabilistic methods, which treat an uncertain input or initial state of the system as a random variable, provide a 
natural venue to quantify predictive uncertainty in a QoI. These techniques render the QoI random as well, i.e., it takes on 
values that are distributed according to some probability density function (PDF). Such approaches include stochastic finite 
element methods (FEMs), which characterize the random parameter fields in terms of a finite set of random variables, e.g., 
via a spectral representation or a Karhunen-Loève expansion. This finite set of random variables defines a finite-dimensional 
outcome space on which the solution to the resulting stochastic partial differential equation (PDE) is defined. Examples 
of stochastic FEMs include stochastic Galerkin, which expands the solution of a stochastic PDE in terms of orthogonal 
basis functions, and stochastic collocation, which samples the random parameters at predetermined values or “nodes” [4]. 
While such methods perform well when the number of stochastic parameters (aka “stochastic dimension”) is low and these 
parameters exhibit a long correlation length, for many stochastic degrees of freedom and short correlation lengths their 
performance decreases dramatically [5]. In addition, since nonlinearity degrades the solution’s regularity in the outcome 
space, stochastic FEMs also struggle with solving highly nonlinear problems [6]. Another class of probabilistic techniques 
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involves the derivation of deterministic equations for the statistical moments [7,8] or PDF [9,10] of the QoI. While these 
methods do not suffer from the “curse of dimensionality”, they require a closure approximation for the derived moment or 
PDF equations. Such closures often involve perturbation expansions of relevant quantities into series in the powers of the 
random parameters’ variances, which limits their applicability to parameters with low coefficients of variation.

Monte Carlo simulations (MC) [11] remain the most robust and straightforward way to solve PDEs with random param-
eters/initial conditions. The method samples the random variables from their distribution, solves the deterministic PDE for 
each realization, and computes the resulting statistics of the QoI. While combining a nonintrusive character with a con-
vergence that is independent of the stochastic dimension, MC converges very slowly: the standard deviation of the MC 
estimator for the QoI’s expectation value is inversely proportional to 

√
N where N is the number of realizations [11]. While 

this drawback spurred the development of alternative probabilistic methods such as those listed above, efforts to combine 
MC with the multigrid concept, by Heinrich [12,13] and later by Giles [14], have sparked renewed interest in MC under 
the form of the multilevel Monte Carlo (MLMC) method. MLMC aims to achieve the same solution error as MC but at a 
lower computational cost by correcting realizations on a coarse spatial grid with sampling at finer levels of discretization. 
By sampling predominantly at coarsest levels, where samples are cheaper to compute, it aims to outperform fine-resolution 
MC (for a fixed discretization error). The related technique of multifidelity MC (also referred to as solver-based MLMC as a 
opposed to traditional grid-based MLMC) generalizes this approach by using models of varying fidelities and speeds on the 
different levels [15–17].

Most work on MLMC deals with estimators of expected values and variances of QoIs (see, e.g., [18–21]). The information 
contained in these first two moments is insufficient to estimate, e.g., quantiles or the probability of rare events. This task 
requires the construction of the QoI’s PDF or, equivalently, its cumulative distribution function (CDF) [22–24]. Consider a 
QoI Q ≡ (Q 1, . . . , Q n)� with n ∈N0 that is a function of a random input ξ , i.e., Q = Q(ξ); the continuous random variable 
ξ : � →R is a measurable function with a sample space �. The joint CDF F of Q at a point q = (q1, . . . , qn)� ∈Rn is given 
by the expected value E[IAq(Q)] of the indicator function

IAq(s) =
{

1 if s = (s1, . . . , sn)
� ∈ Aq

0 otherwise,
(1)

where Aq ≡ (−∞, q1] × · · · × (−∞, qn]. To fix the key ideas of the proposed approach, we restrict our presentation to a 
single random input variable ξ ; generalization to high-dimensional, correlated random input fields ξ is left for a follow-up 
study.

Application of MLMC to the estimation of distributions started but a few years ago. Giles et al. [25] developed an 
algorithm to estimate PDFs and CDFs using the indicator function approach, while Bierig et al. [26] approximated PDFs via 
a truncated moment sequence and the method of maximum entropy. Both approaches were used to approximate CDFs of 
molecular species in biochemical reaction networks [27]. Elfverson et al. [28] used MLMC to estimate failure probabilities, 
which are single-point evaluations of the CDF. Lu et al. [29] calibrated the polynomial smoothing of the indicator function 
proposed in [25] to optimize the smoothing bandwidth for a given value of the error tolerance, and enabled an a posteriori 
switch to MC if the latter turned out to have a lower computational cost. Krumscheid et al. [30] developed an algorithm 
for approximating general parametric expectations, including CDFs and characteristic functions, simultaneously deriving 
robustness indicators such as quantiles and conditional values-at-risk.

To reduce the computational cost of MLMC further, the standard MC approach at each discretization level can be re-
placed with a more efficient sampling strategy. For example, quasi-Monte Carlo uses quasi-random, rather than random or 
pseudo-random, sequences to achieve faster convergence than MC, and has been used to speed up the MLMC computation 
of the mean system state [31]. Furthermore, a number of “variance reduction” techniques have been developed to obtain 
estimators with a lower variance than MC for the same number of realizations. These include stratification, antithetic sam-
pling, importance sampling, and control variates [11]. Recently, importance sampling was incorporated into MLMC for a 
more efficient computation of expected values of QoIs [32]. Ullman et al. [33] estimated failure probabilities for rare events 
by combining subset simulation using Markov chain Monte Carlo [34] with multilevel failure domains defined on a hierarchy 
of discrete spatial grids with decreasing mesh sizes.

We propose a novel indicator-function based MLMC algorithm for the estimation of CDFs. It replaces simple MC sampling 
of the QoI at each discretization level with its stratified counterpart by dividing the domain of a random input parameter 
or initial condition into a number of regions or strata, and samples the random variable from each of these strata. We use 
the resulting “stratified” MLMC (sMLMC) approach to estimate the joint CDF of the vector-valued QoI Q. Furthermore, we 
develop a smoothing technique for the indicator function based on Kernel Density Estimation (KDE), and combine this with 
the sMLMC algorithm to magnify the variance reduction (and hence cost savings).

A mathematical description of CDF estimators of vector-valued QoIs in general, and smoothed MLMC and sMLMC esti-
mators and their associated cost and error in particular, is provided in Section 2. In Section 3, we formulate two testbed 
problems, one for a scalar QoI and one for a vector-valued QoI, which are used to compare the performance of the various 
MLMC and sMLMC algorithms. Section 4 contains results of the numerical experiments we performed on each of these 
problems. Conclusions and future research directions are reserved for Section 5.



S. Taverniers, D.M. Tartakovsky / Journal of Computational Physics 419 (2020) 109572 3
2. Multilevel Monte Carlo for CDFs

Let the QoI Q ∈ Rn be an output derived from a numerical solution of a PDE obtained, e.g., via finite volume or finite 
difference. Its computation requires a discretization of the simulation domain with a spatial grid TM and introduces a 
sequence of random variables QM , where M is the number of cells in TM , which converges to Q as M increases. Our goal 
is to approximate the distribution of QM , rather than of Q, i.e., to estimate the joint CDF F M of QM on a compact set 
A ≡ [a1, b1] × · · · × [an, bn] ⊂Rn . At each point q ∈ A, F M(q) is given by

F M(q) = E[IAq(QM)], (2)

where Aq ≡ (−∞, q1] × · · · × (−∞, qn] and q = (q1, . . . , qn)
� . This approach is justified if QM converges to Q as M → ∞

both in the mean and in the sense of distributions, i.e.,

E[QM − Q] = O(M−α1), E[IAq(QM) − IAq(Q)] = O(M−α2), (3)

as M → ∞ for α1, α2 ∈R independent of M and q.
Consider a set of points Sh = {a1 = q1,0 < q1,1 < . . . < q1,S1 = b1} × . . . × {an = qn,0 < qn,1 < . . . < qn,Sn = bn}, where 

qi,vi (vi = 0, . . . , Si) are equidistant nodes on [ai, bi] with separation distance hi , and h = (h1, . . . , hn)
� . At each of 

these points, F M is computed by defining an unbiased estimator Îv,M of E[Iv(QM)] where Iv(QM) ≡ IAqv
(QM), with 

Aqv ≡ (−∞, q1,v1 ] × . . . × (−∞, qn,vn ] and v = (v1, . . . , vn)� . At any other q ∈ A, F M(q) is evaluated via an n-dimensional 
piecewise polynomial interpolation. The latter’s degree, max(d, 1), is determined by the smoothness of the PDF f M

of QM : f M needs to be d-times continuously differentiable on [a1 − ζ1, b1 + ζ1] × . . . × [an − ζn, bn + ζn] for some 
d ∈ N0 and ζ = (ζ1, . . . , ζn)� ∈ Rn

>0. We employ a cubic spline interpolation, i.e., assume that the PDF f M is at least 
three times continuously differentiable on its support. The resulting estimator (i.e., after interpolation) is referred to as 
F̂h,M(q).

The discrepancy between the estimator F̂h,M(q) and the true CDF of Q, Fh(q), is due to both the discretization error 
from approximating Fh by Fh,M and the sampling error from approximating Fh,M by F̂h,M .1 This yields a bound for ε2

est, 
the mean squared error (MSE),

E[‖Fh − F̂h,M‖2∞]︸ ︷︷ ︸
ε2

est

≤E[‖ F̂h,M −E[ F̂h,M ]‖2∞] + ‖Fh,M − Fh‖2∞ (4)

≤ max
v∈S V [Îv,M ]︸ ︷︷ ︸

ε2
sam

+max
v∈S |E[Iv(QM) − Iv(Q)]|2︸ ︷︷ ︸

ε2
dis

Here S = {0, . . . , S1} ×· · ·× {0, . . . , Sn}; ‖ · ‖∞ refers to the L∞ norm; V [·] denotes the variance operator; and εsam and εdis
are, respectively, the sampling and discretization errors, in the root mean squared sense.

2.1. Standard MLMC with smoothing based on kernel density estimation (KDE)

The first estimator F̂ we consider is grounded in the standard MLMC approach for estimating distributions [25]. 
While the original algorithm discussed in Appendix A.1 uses the indicator function directly, the slow decay of its vari-
ance with discretization level due to its jump discontinuity suggests regularization via a sigmoid, e.g., a polynomial 
gG [25]. Polynomial-based smoothing replaces the indicator function Iv(Q) with a product of polynomials, 

∏n
i=1 gG[(Q i −

qi,vi )/δG,i], where δG,i (i = 1, . . . , n) is the smoothing bandwidth, i.e., the distance over which the discontinuity is 
smeared out, along the ith dimension of Q. As demonstrated in [29], this enhances variance decay with increasing l
and hence speeds up the algorithm. A brief overview of the polynomial-smoothed MLMC estimator is provided in Ap-
pendix A.2.

We propose an alternative approach inspired by KDE [35]. Specifically, we replace Iv(Q) with the product of Gaussian 
kernels, gK,

Iv(Q) ≈
n∏

i=1

	[(qi,vi − Q i)/δK,i] ≡
n∏

i=1

gK[(qi,vi − Q i)/δK,i],

1 We assume the interpolation error is negligible for the number of interpolation points ∏n
i=1(Si + 1) used.
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where 	 is the standard Gaussian CDF, and δK,i is the smoothing bandwidth along the ith dimension of Q. This approxima-
tion transforms (A.7) into

gv(Y( j)
l ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∏n
i=1 gK

⎛
⎝qi,vi − Q ( j)

i,Ml

δK,l,i

⎞
⎠− gK

⎛
⎝qi,vi − Q ( j)

i,Ml−1

δK,l,i

⎞
⎠ 1 ≤ l ≤ Lmax

∏n
i=1 gK

⎛
⎝qi,vi − Q ( j)

i,Ml

δK,l,i

⎞
⎠ l = 0,

(5)

where the subscript l of the bandwidth indicates its level-dependence.
Finding an optimal value of the bandwidths δl,i (given by δG,l,i for polynomial smoothing or δK,l,i for KDE-based smooth-

ing) at a given error tolerance ε is crucial to the performance of MLMC. The mean squared smoothing error, (εMLsm
smooth)2, 

defined in (A.9) should be as close as possible to its maximum allowable value, (α/2)ε2, with 0 < α < 1, in order to 
maximize the smoothing and, hence, the variance decay. We pursue the following strategy.

1. Given the error tolerance ε , at level l = 0 estimate the bandwidths δl,v,i (i = 1, . . . , n) for each interpolation point qv in 
Sh by solving

1

N0
l

∣∣∣∣∣∣∣
N0

l∑
j=1

⎡
⎣ n∏

i=1

g

⎛
⎝± Q ( j)

i,Ml
− qi,vi

δl,v,i

⎞
⎠− Iv(Q( j)

Ml
)

⎤
⎦
∣∣∣∣∣∣∣= ε

√
α

2
(6)

based on a set of initial samples {Q( j)
Ml

}N0
l

j=1, where “+” is used for polynomial smoothing and “-” for KDE-based smooth-
ing.

2. Define the smoothing parameter for level l = 0 along the ith dimension, δ0,i , as

δ0,i = max
v∈S δ0,v,i . (7)

3. Repeat steps 1 and 2 for each new level.

We follow the numerical algorithm in Appendix A.3 to compute F̂ MLsm
h,δ,M and to measure the associated computational 

cost (see Section 2.3). This algorithm is inspired [18,29].

2.2. Stratified MLMC (sMLMC)

Let ξ = ξ(ω) : � → D be a random input parameter with the sample space �, the input domain D, and the output 
QoI Q(ξ). In stratified Monte Carlo (sMC), one divides D into r mutually exclusive and exhaustive regions Dk (k = 1, . . . , r) 
called strata.

Let Fξ denote the CDF of ξ , and pk = P (ξ ∈ Dk) be the probability of ξ being in stratum Dk . Then, the expected value 
of QM(ξ) is given by

E[QM(ξ)] =
r∑

k=1

pkζ k. (8)

Here ζ k (k = 1, . . . , r) is the expected value of QM(ξ) for ξ ∈Dk . Its ith component (i = 1, . . . , n) is given by

ζk,i = 1

pk

∫
Dk

Q i,M(w) dFξ (w). (9)

The sMC estimator for E[QM(ξ)] is

Q̂sMC
M =

r∑
k=1

pk

nk

nk∑
j=1

Q( j,k)
M , (10)

where nk is the number of independent samples of QM (ξ) with ξ ∈Dk for each k = 1, . . . , r with 
∑r

k=1 nk ≡ N; and Q( j,k)
M is 

the jth sample of QM that has a corresponding input parameter (ξ ) in Dk . The variance of the ith component (i = 1, . . . , n) 
of Q̂sMC is
M
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V [Q̂ sMC
i,M ] =

r∑
k=1

σ 2
k,i p2

k

nk
, σ 2

k,i = 1

pk

∫
Dk

(Q i,M(w) − ζk,i)
2dFξ (w), (11)

where σ 2
k,i is the variance of Q i,M(ξ) with ξ ∈Dk . We refer to these variances as “strata variances”, with the understanding 

that they apply to the output space (of Q) rather than the input space (of ξ ).
Two common choices for nk are proportional and optimal allocations [11]. In the former, nk = pk N and

Q̂sMC
M = 1

N

r∑
k=1

nk∑
j=1

Q( j,k)
M , (12)

V [Q̂ sMC
i,M ] = 1

N

r∑
k=1

σ 2
k,i pk = V [Q̂ MC

i,M ] − 1

N

r∑
k=1

pk(ζk,i −E[Q i,M ])2, (13)

which shows that stratification produces an estimator with a lower variance than its MC counterpart. We use proportional 
allocation to initialize the values of nk on each level of the multilevel algorithm.

When estimating E[Iv(QM)], we replace (10) with

ÎsMC
v,M (QM) =

r∑
k=1

pk

nk

nk∑
j=1

Iv(Q( j,k)
M ). (14)

We incorporate (14) into the multilevel framework and obtain the following “stratified” MLMC (sMLMC) estimator for 
E[Iv(QM)] (cf. (A.3))

ÎsML
v,M =

Lmax∑
l=0

ÎsMC
v (Yl) (15)

=
Lmax∑
l=0

r∑
k=1

pk

nk,l

nk∑
j=1

Iv(Y( j,k)

l ),

where Iv(Yl) with l = 0, . . . , Lmax are defined in (A.2b). The MSE of the non-smoothed sMLMC estimator F̂ sML
h,M for Fh,M is 

bounded by

E[‖Fh − F̂ sML
h,M‖2∞]︸ ︷︷ ︸

ε2
est

≤ max
v∈S

Lmax∑
l=0

V [ÎsMC
v (Yl)]

︸ ︷︷ ︸
(εsML

sam)2

+ max
0≤n≤S

|E[Iv(QMLmax
) − Iv(Q)]|2︸ ︷︷ ︸

(εsML
dis )2

, (16)

with MLmax = M .
To reduce the computational cost further, we smooth the indicator function. This introduces an additional error term 

in (16) similar to (εMLsm
smooth)2 in (A.9). The resulting sMLMC estimator with smoothing for E[Iv(QM)] is defined as

ÎsMLsm
v,M =

Lmax∑
l=0

ÎsMCsm
v (Yl), (17)

where ÎsMCsm
v (Yl) =∑r

k=1(pk/nk,l) 
∑nk,l

j=1 gv(Y( j,k)

l ) and

gv(Y( j,k)

l ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∏n
i=1 gK

(
qi,vi

−Q ( j,k)

i,Ml
δK,l,i

)
− gK

(
qi,vi

−Q ( j,k)

i,Ml−1
δK,l,i

)
1 ≤ l ≤ Lmax

∏n
i=1 gK

(
qi,vi

−Q ( j,k)

i,Ml
δK,l,i

)
l = 0

(18)

for KDE-based smoothing, and similarly for polynomial smoothing. The sMLMC estimator with smoothing for Fh,M is then 
given by

F̂ sMLsm
h,δ,M (q) =

S1∑
v1=0

· · ·
Sn∑

vn=0

ÎsMLsm
v,M

n∏
i=1

φvi (qi), (19)
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where δ refers to either δG or δK depending on whether we consider polynomial or KDE-based smoothing, respectively.
To compute F̂ sMLsm

h,δG,M and F̂ sMLsm
h,δK,M , and to measure the associated computational cost, we deploy the algorithm in Ap-

pendix A.4.

2.3. Relative cost of standard and stratified MLMC versus MC

For a given error tolerance ε , we estimate the total cost C of computing the MLMC estimator without smoothing of Fh,M

as an average over Nreal independent realizations of the multilevel algorithm,

C( F̂ ML
h,M) = 1

Nreal

Nreal∑
p=1

Lε
max,p∑
l=0

w̄(p)

l N(p)

l , (20)

where w̄(p)

l is the average cost of computing a sample of QMl on level l for the pth realization, and Lε
max,p denotes the 

finest discretization level at which the sampling is performed for this realization at tolerance ε .
To compare the performance of F̂ ML

h,M with that of MC, on the pth run we conduct the latter at the finest discretization 
level, Lε

max,p , to ensure that both algorithms satisfy the given discretization error tolerance, εdis . This procedure is detailed 
in Appendix A.3 and leads to the cost for F̂ MC

h,M ,

C( F̂ MC
h,M) = 1

Nreal

Nreal∑
p=1

w̄(p)

Lε
max,p

N(p)
MC, (21)

where N(p)
MC is the number of samples computed in the pth realization of the MC algorithm.

For the multilevel variants other than non-smoothed MLMC, we fix the maximum discretization level at the most fre-
quently observed value of Lε

max,p over all Nreal runs, which we denote by Lε
max (see Section 4 for a detailed explanation). 

For sMLMC without smoothing, this yields

C( F̂ sML
h,M) = 1

Nreal

Nreal∑
p=1

Lε
max∑

l=0

r∑
k=1

w̄(p)

k,l n(p)

k,l , (22)

where w̄(p)

k,l is the average cost of computing a sample of QMl with corresponding input (ξ ) in stratum Dk on level l for the 
pth realization.

Expression (21) provides a single average cost against which to compare C( F̂ ML
h,M ), C( F̂ MLsm

h,δ,M), C( F̂ sML
h,M) and C( F̂ sMLsm

h,δ,M ).

3. Numerical experiments

We consider two testbed problems: fluid flow described by inviscid Burgers’ equation with an uncertain initial condition, 
and ion diffusion in an electrically charged isotropic nanoporous material with an uncertain input parameter.

3.1. One-dimensional inviscid Burgers’ equation

Consider an inviscid Burgers’ equation

∂u

∂t
+ 1

2

∂

∂x
(u2) = 0, x ∈ (−5,5), t > 0 (23a)

subject to boundary and initial conditions

u(−5, t) = uL, u(5, t) = uR (23b)

u(x,0) =
{

U1 −5 < x ≤ 0

uR 0 < x < 5.
(23c)

The initial state U1 is uncertain, while the boundary values uL and uR are known with certainty. Equation (23) repre-
sents a double Riemann problem at x = −5 and x = 0. The solution at time t consists of two right-moving shock waves 
corresponding to the solutions ua and ub given by

ua(x, t) =
{

uL x < sat

U1 x > sat
(24)
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Fig. 1. A unit cell comprising an isotropic nanoporous material with lpor = 0.75 nm (half of the pore throat size in each direction). Adapted from [36].

and

ub(x, t) =
{

U1 x < sbt

uR x > sbt,
(25)

where sa = (uL + U1)/2 and sb = (U1 + uR)/2 are the speeds of the leftmost and rightmost shock, respectively.
The initial state U1 is drawn from a truncated lognormal PDF with support �U1 = [u1,�, u1,r]

fU1(u1;μ,σ , u1,�, u1,r) =
√

2√
πσu1

⎧⎪⎪⎨
⎪⎪⎩

exp(− (ln u1−μ)2

2σ 2 )

erf
(

ln u1,r−μ√
2σ

)
− erf

(
ln u1,�−μ√

2σ

) u1 ∈ �U1

0 otherwise,

(26)

where μ and σ are, respectively, the mean and standard deviation of the parent normal distribution. Our goal is to estimate 
the CDF F of the total energy in the system at time t = 1,

Q = 1

2

5∫
−5

u2(x,1) dx, (27)

which depends on U1.
In the simulations reported below, we set uL = 10, uR = 0, μ = 1.5, σ = 1, u1,� = 0, and u1,r = 10. We discretize (23)

using the Godunov method, which is first-order accurate in both space and time. This is a conservative finite volume scheme, 
which solves a Riemann problem at each inter-cell boundary.

3.2. Two-dimensional ion diffusion in charged nanoporous materials

The second test deals with ion transport in an electrically charged isotropic nanoporous medium used as a battery 
electrode [36]. Formation of an electrical double layer (EDL) at solid/electrolyte interfaces affects energy storage capabilities. 
Optimal design of such nanoporous materials requires the knowledge of a map between microscopic parameters (such as 
pore geometry and ion concentration in the electrolyte), and macroscopic quantities (such as effective diffusion coefficients 
and electrolyte conductivities). The latter serve as inputs to macroscopic transport models which treat the nanoporous 
material as a continuum with no distinction between pores and the solid skeleton.

Following [36], we compute effective diffusion coefficients Deff± for cations (+) and anions (-) by solving the Poisson 
equation for the electrical double layer (EDL) potential ϕEDL on a unit cell U representative of the material’s pore structure 
(Fig. 1). Expressed in dimensionless quantities, this is given by [36]

∇̂2ϕ̂EDL = �2ĉ�
b

ε2λ2
D

sinh(zϕ̂EDL), ŷ ∈ P̂U ; ϕ̂EDL = ϕ̂�, x̂ ∈ �̂U . (28)

Here ϕ̂EDL = F ϕEDL/(RT ) with the Faraday constant F = 96485 C/mol, the gas constant R = 8.314 J/(mol K), and temper-
ature T ; ĉ�

b = c�
b/cin with a characteristic ion concentration in the system, c�

b , e.g., its initial or average value, and cin the 
initial ion concentration in the electrolyte; λD is the Debye length, a characteristic length of the EDL; � is the characteristic 
pore size; ε ≡ �/L with the characteristic length of the porous material, L; z is the ion valence; ϕ̂� = F ϕ�/(RT ) is the 
(dimensionless) boundary potential; and P̂U and �̂U are the (dimensionless) pore space and fluid-solid interface contained 
in the unit cell. The effective diffusion tensors Deff± are obtained via
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Deff± = Dω

G±

∫
P̂U

e∓zϕ̂EDL(I + ∇yχ
�±)dy, G± =

∫
P̂U

e∓zϕ̂EDL dy, (29)

where D is the molecular diffusion coefficient, ω is the porosity, and I is the identity matrix. The closure variables χ±(y)

are U -periodic vector functions computed as solutions of the boundary value problems

∇y[e∓zϕ̂EDL(I + ∇yχ
�±)] = 0, y ∈ P̂U ; (30a)

n(I + ∇yχ
�±) = 0, y ∈ �̂U ; (30b)∫

P̂U

χ±dy = 0. (30c)

Given the symmetry of U , the diffusion coefficients in (29) are scalars, denoted by Deff+ and Deff− .
The effective conductivity of the electrolyte, κeff , is defined in terms of the cation and anion effective diffusion coeffi-

cients as [36]

κeff = νz2 F 2cin

RT
(Deff+ + Deff− ). (31)

To quantify the impact of pore-scale parameters on the effective (macroscopic) QoIs above, we treat the former as 
random variables that vary over some specified range, and estimate the CDF of the marginal and/or joint distributions of 
the latter using MLMC. In particular, we compute the joint CDF of the normalized cation effective diffusion coefficient, 
Deff,norm

+ ≡ Deff+ /D, and the effective conductivity of the electrolyte, κeff . (Half of) the pore throat size, lpor, (Fig. 1) serves 
as the uncertain input parameter with uniform distribution on [0.375, 1.125] nm, which constitutes an interval of ±50%
around the base value of 0.75 nm taken from [36]. Equations (28)–(31) are solved using a co-simulation framework of
COMSOL Multiphysics® and MATLAB

® software packages.

4. Simulation results

We investigate the relative efficiency of sMLMC with and without KDE smoothing, KDE-smoothed MLMC, MLMC with and 
without polynomial smoothing, and fine-resolution MC. These estimators are labeled below by the abbreviations sMLMCsm, 
sMLMC, MLMCsm (KDE), MLMCsm (polynomial), MLMC, and MC, respectively. The comparison is reported in terms of their 
computational cost C averaged over Nreal = 10 independent runs for error tolerances ε = 0.01, 0.005 and 0.001 (inviscid 
Burgers’), and averaged over Nreal = 5 independent runs for error tolerance ε = 0.03 (ion diffusion in nanopores). At each 
level l we first compute N0

l (l = 0, . . . , Lmax) warm-up (aka “pilot”) samples to obtain an initial estimate of the indicator 
function’s variance; then, we supplement those with additional samples as needed to satisfy the required sampling error 
tolerance (Appendix A.3 and Appendix A.4).

The warm-up sampling constitutes an integral part of the overall sampling procedure and does not yield any overhead 
cost, as long as oversampling is minimized. We do that by tuning N0

l for each tolerance and each estimator separately 
through some initial trial runs; the resulting values are then used for all Nreal independent runs of the algorithm. For 
sMLMC and sMLMCsm, we define the number of warm-up samples n0

k,l in each stratum k = 1, . . . , r, based on N0
l and the 

proportional allocation strategy; the values of n0
k,l are identical for all independent runs. Representative values of N0

l for the 
two test problems in Section 3 are provided below.

The results reported below are obtained with the following procedure, for each value of ε:

1. Do Nreal runs of MLMC to obtain maximum levels Lε
max,p (p = 1, . . . , Nreal). Denote the most frequently observed maxi-

mum level by Lε
max.

2. At the end of the pth run (p = 1, . . . , Nreal), perform MC at level Lε
max,p , re-using already computed samples from the 

MLMC run.
3. Do Nreal runs of MLMCsm (polynomial) with a computed smoothing parameter δG,l at each level l, fixing the maximum 

level for each run at Lε
max.

4. Do Nreal runs of MLMCsm (KDE) with a computed smoothing parameter δK,l at each level l, with maximum level Lε
max.

5. Do Nreal runs of sMLMC, with maximum level Lε
max.

6. Do Nreal runs of sMLMCsm with a computed smoothing parameter δG,l (which may be different from the value for its 
non-stratified counterpart) at each level l, with maximum level Lε

max.

This procedure sets the maximum level for all multilevel variants, other than (non-smoothed) MLMC, to Lε
max. That 

is because the lower number of samples at finer levels (especially, in each stratum on the finer levels of sMLMC/sMLM-
Csm) may not yield sufficiently accurate estimates of the discretization error; these are based on a sample estimate of 
maxv∈S |E[Iv(Yl)]| in accordance with (A.5). The discretization error is dictated by the maximum discretization level, and 



S. Taverniers, D.M. Tartakovsky / Journal of Computational Physics 419 (2020) 109572 9
Fig. 2. CDF of Q for the inviscid Burgers’ problem computed with a representative set of multilevel estimators for ε = 0.005. The reference CDF computed 
with MC at the highest (l = 3) discretization level using 40000 samples is also shown for validation purposes.

Table 1
Number of warm-up samples as a function of level (from coarse to 
fine going to the right) used for each estimator in the inviscid Burgers’ 
problem at tolerance ε = 0.005.

Estimator Number of warm-up samples

MLMC 20000 3000 2000 1400
MLMCsm (polynomial) 30000 100 40 15
MLMCsm (KDE) 30000 100 30 15
sMLMC 8 strata 2000 1000 800 500
sMLMC 16 strata 1500 800 700 500
sMLMCsm 8 strata 1500 20 8 8
sMLMCsm 16 strata 300 16 16 16

the corresponding discretization tolerance is taken to be identical for all estimators. Therefore, it is reasonable to assume 
that if the MLMC estimator satisfies the required discretization error tolerance for a certain maximum level Lε

max, then the 
other estimators also satisfy this tolerance when having Lε

max as their maximum level.
For the inviscid Burgers’ problem, we use α = 1/2, while for the problem of ion diffusion in nanopores, we set α = 1/3. 

This allows for a larger discretization error, and hence fewer levels, when modeling the 2D ion transport relative to the 1D 
Burgers’ case. In both problems, we assume that the PDF of the QoI Q is at least 3 times continuously differentiable so that 
we can interpolate the point estimates of its CDF F via cubic splines.

The numerical experiments for inviscid Burgers’ were performed on an Ubuntu system with 10 cores (20 hyperthreads) 
running at 4.20 GHz, while those for ion diffusion in nanopores were conducted on an Ubuntu system with 8 cores (16 
hyperthreads) running at 2.60 GHz. Both workstations have 64 GB of RAM.

4.1. Inviscid Burgers’ equation

The support of the PDF f of the total energy Q is defined by considering the minimum and maximum values of U1: 
Q = 250 for U1 = 0 and Q = 500 for U1 = 10. Hence, the corresponding CDF F is estimated over the interval [a, b] =
[250, 500]; we use S + 1 = 501 interpolation points, i.e., set h = 0.5, omitting the relevant subscripts in Section 2 since the 
QoI Q is a scalar. The computational domain [−5, 5] is discretized via a (tolerance-dependent) hierarchy of spatial grids TMl

(l = 0, . . . , Lε
max), where Ml = 2Ml−1 and M0 = 200.

To perform a visual quality check of the various multilevel estimators considered in this work, Fig. 2 exhibits, for 
ε = 0.005, the estimated CDF obtained via MLMC, MLMCsm (KDE), sMLMC with 16 strata, and sMLMCsm with 16 strata, 
along with a reference CDF computed with MC at the highest (l = 3) level using 40000 samples (about twice the re-
quired number for converging the sampling error tolerance). The smoothed estimators, MLMCsm and sMLMCsm, display 
a higher discrepancy near the left tail. This illustrates the limitations of using the L∞ norm in the variance estima-
tion, which does not allow sufficient control on the error in specific regions of the CDF. In problems where accurate 
estimation of tails is needed, such as rare event probability estimation, using the L1 or L2 norm may be more appro-
priate.

Table 1 shows the number of warm-up samples as a function of level specified for all CDF estimators at this tolerance. As 
alluded to above, the number of pilot samples is tuned to minimize oversampling, and is therefore reduced going from the 
most expensive estimator (MLMC) to the least expensive estimator (sMLMCsm with 16 strata). For the sMLMCsm estimators, 
we found that the least amount of oversampling occurred when using only one sample per stratum at the finest levels, 
despite the resulting breakdown of our procedure to estimate strata variances at those levels.
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Fig. 3. Computational cost (in seconds) of MC, MLMC, MLMCsm (KDE and polynomial), and sMLMC and sMLMCsm with 8 or 16 strata for the inviscid 
Burgers’ problem. The cost values are shown for tolerances ε = 0.1, 0.005, and 0.001. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Fig. 4. Evolution of the variance (left) and number of samples (right) with level for a single run of the inviscid Burgers’ problem and ε = 0.001.

Fig. 3 collates the computational cost of the various multilevel estimators, and fine-resolution MC. For all tolerances 
considered, MLMCsm (KDE) is slightly more efficient than its counterpart smoothed with a third-degree polynomial. In [29], 
a higher polynomial degree was shown to increase the optimal smoothing bandwidth δG and to yield a more efficient 
multilevel estimator. However, our tests show that using a ninth-degree rather than a third-degree polynomial leads to 
a higher computational cost; e.g., for ε = 0.001, smoothing with the former costs C = 1.1779 · 105 s while for the latter 
C = 1.0525 ·105 s (averaged over Nreal = 10 independent runs). These findings suggest that polynomial smoothing might ne-
cessitate the inclusion of an additional loop over different polynomial degrees in the multilevel algorithm to find the optimal 
polynomial order yielding the most efficient estimator. However, doing so would further increase computational complex-
ity. KDE-based smoothing only requires optimization over the smoothing bandwidth δK. Moreover, polynomial smoothing 
puts more stringent requirements on the PDF f of Q : a polynomial of degree d + 1 requires f to be d times continuously 
differentiable. We conclude that KDE-based smoothing constitutes a more efficient and robust approach. It is used in all 
subsequent simulations related to our stratified multilevel estimators.

The computational savings gained by smoothing the indicator function are rather modest in this test case (Fig. 3). Stratify-
ing �U1 , the sample space of U1, into 8 or 16 strata of equal width leads to a substantially higher reduction in computational 
cost than smoothing does. When combined with KDE-based smoothing, the savings are further increased and amount to 
two orders of magnitude for the sMLMCsm estimator with 16 strata at the lowest tolerance of 0.001. Increasing the number 
of strata invariably reduces the computational cost, but the maximum number of strata may be limited by the (low) number 
of samples at the finer levels.

The computational savings discussed above can be attributed to the variance decay of the indicator function or 
its approximation by a smoothing function. Fig. 4 (left) illustrates the dependence on level l of maxv∈S Ṽ [Iv(Q Ml )], 
maxv∈S Ṽ [Iv(Yl)] and maxv∈S Ṽ [gv(Yl)] (for both polynomial and KDE-based smoothing), for a single run and ε = 0.001. 
Here Ṽ denotes a sample estimate of V , and S = {0, . . . , S}. While maxv∈S Ṽ [Iv(Q Ml )] remains approximately con-
stant as the spatial resolution increases, maxv∈S Ṽ [Iv(Yl)] and maxv∈S Ṽ [gv(Yl)] decay as the spatial mesh is refined, 
so that fewer samples are needed at higher levels of discretization (Fig. 4, right). The decay of maxv∈S Ṽ [gv(Yl)] is 
faster than that of maxv∈S Ṽ [Iv(Yl)], making the MLMCsm estimators more efficient than their non-smoothed counter-
part.
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Fig. 5. Values of the ratio εest/ε for MLMC, the ratio εsam/εsam for sMLMC, and the ratio (εsam + εsmooth)/(εsam + εsmooth) for MLMCsm (KDE), at all 
considered tolerances ε for the inviscid Burgers’ problem.

To define an equivalent to maxv∈S Ṽ [Iv(Yl)] for sMLMC, we compare the variance contribution at each level l for MLMC, 
N−1

l maxv∈S V [Iv(Yl)], to (13) (replacing Q with Y ), and hence consider Nl · maxv∈S V [ÎsMC
v (Yl)]. Proportional allocation 

only holds at the warm-up sampling stage and hence becomes an approximation after warm-up is completed. A similar 
equivalency is defined for the smoothed indicator function. Fig. 4 (left) demonstrates that, for sMLMC, the variance at the 
coarsest level is an order of magnitude lower than its counterpart for MLMCsm, but decays slower with increasing level. 
This translates into a much lower number of coarse samples but a higher number of finer samples for sMLMC compared 
to MLMCsm. Overall, this still lowers the computational cost of the former compared to the latter. Addition of KDE-based 
smoothing to sMLMC is the most optimal strategy with strong variance reduction (and hence a lower number of samples) 
at all levels, yielding a much cheaper estimator. The number of samples at the finest levels for both sMLMCsm estimators 
is so low that their variance estimates are omitted in Fig. 4 (left).

Finally, to illustrate the ability of our CDF estimators to satisfy the required error tolerance, one could compute the ratio 
εest/ε , averaged over Nreal runs of the algorithm. However, as discussed at the beginning of this Section, a low number 
of samples at the finest level might impact the accuracy of the sample estimate of the root mean square discretization 
error, εdis. Therefore, we use the maximum discretization level from the MLMC estimator for all other multilevel variants as 
well. Fig. 5 shows the ratio of total root mean square error to total tolerance only for MLMC: the value of εest/ε < 1 for all 
tolerances ε considered. For the other multilevel estimators, we leave out the discretization portion of the total error and 
compare the resulting error to the corresponding fraction of the total tolerance. While applying the formulae for computing 
the optimum number of samples in each stratum (Appendix A.4) should theoretically allow the sMLMC estimator to satisfy 
the sampling error tolerance, Fig. 5 yields a ratio εsam/εsam ≈ 1.5. This result should be interpreted with caution as it is 
difficult to estimate strata variances with a low number of samples in each stratum. Smoothing exacerbates this problem, 
and hence we omitted the corresponding result for the sMLMCsm estimators.

4.2. Effective diffusion in nanoporous materials

We estimate the joint CDF F of Q 1 = Deff,norm
+ and Q 2 = κeff defined in Section 3.2; half of the pore throat size in each 

direction, lpor, serves as an uncertain input. We approximate F with tolerance ε = 0.03 over the domain [0.1, 0.6] × [2, 9]. 
Its size is determined by first doing an MLMC run using only the coarsest level, over [0, 1] × [0, 10]; refining this initial 
estimate based on the values of Q 1,M0 and Q 2,M0 for which the CDF approached 0 and 1; and applying a safety factor 
to allow for samples at higher levels to lie slightly outside this area. The initial lower bounds are based on the physical 
constraint that Q 1 and Q 2 are positive. The initial upper bound for Q 1 follows from the definition of Q 1 = Deff+ /D and 
the realization that the cation effective diffusion coefficient Deff+ is smaller than the molecular diffusion coefficient D. The 
initial upper bound for Q 2 is estimated from numerical experiments based on [36]. We use (S1 + 1) × (S2 + 1) = 11 × 15
interpolation points, i.e., set h1 = 0.05 and h2 = 0.5. The computational domain is discretized via a hierarchy of unstructured 
spatial grids TMl (l = 0, . . . , 3) obtained via Delaunay triangulation. In COMSOL, the user can specify the mesh resolution 
with a number ranging from 9 (“extremely coarse”) to 1 (“extremely fine”). We set the level l = 0 to resolution “4” in
COMSOL. Finally, given our findings for the inviscid Burgers equation, we use only KDE-based smoothing.

Fig. 6 depicts representative plots of the estimated CDFs obtained using MLMC, MLMCsm (KDE) and sMLMC with r = 2. 
As in the Burgers’ case, the larger error is near the tail area for the smoothed estimator. The sMLMC estimator does not 
suffer from this issue, while offering comparable efficiency (Fig. 7). Details on the warm-up sampling, aimed at minimizing 
oversampling, are collated in Table 2.

Fig. 7 compares the computational cost of MLMC, MLMCsm, sMLMC and sMLMCsm with that of MC performed at the 
finest discretization level. While MLMC is less efficient than MC, applying KDE-based smoothing yields a multilevel estimator 
that is faster than its MC counterpart. This demonstrates that for non-scalar QoIs, in the absence of other variance reduction 
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Fig. 6. Representative plots of the estimated CDFs computed with MLMC (a), MLMCsm (KDE) (b), and sMLMC with 2 strata (c).

Fig. 7. Computational cost (in seconds) of MC, MLMC, MLMCsm, and sMLMC and sMLMCsm with 2 strata for the problem of ion diffusion in nanopores. 
The cost values are shown for tolerance ε = 0.03.



S. Taverniers, D.M. Tartakovsky / Journal of Computational Physics 419 (2020) 109572 13
Table 2
Number of warm-up samples as a function of level (from coarse to fine 
going to the right) employed for each estimator in the problem of ion 
diffusion in nanopores.

Estimator Number of warm-up samples

MLMC 800 300 200 100
MLMCsm KDE 800 30 20 10
sMLMC 2 strata 400 190 140 2
sMLMC 4 strata 200 130 100 4
sMLMCsm 2 strata 250 20 10 2
sMLMCsm 4 strata 100 10 4 4

Fig. 8. Dependence of the variance (a) and the number of samples (b) on level l, for a single run of the ion diffusion problem.

techniques, smoothing the indicator function may be essential for a multilevel algorithm to outperform fine-resolution MC, 
especially at O(10−2) tolerances typical for real-world engineering applications.

Stratification of the sample space of lhor with r = 2 yields an estimator with a slightly lower computational cost than its 
MLMCsm counterpart. Fig. 8 (left) shows that stratification reduces the variance mostly at the coarsest level, leading to a 
corresponding reduction in the number of samples at that level (Fig. 8, right). The increase in the number of strata from 2 
to 4 magnifies this effect, reduces the computational cost by an order of magnitude, compared to fine-resolution MC. This 
finding demonstrates that the benefits of a stratified approach generalize to vector-valued QoIs. Combining stratification 
with KDE-based smoothing of the indicator function provides the strongest level of variance (and hence computational cost) 
reduction (Fig. 7 and Fig. 8, left).

5. Conclusions and future work

We constructed a stratified multilevel Monte Carlo (sMLMC) algorithm for estimating the cumulative distribution function 
(CDF) of a quantify of interest (QoI) in a problem with a random initial state or random input parameters. Our method 
combines the benefits of multigrid from standard multilevel Monte Carlo (MLMC) with variance reduction from stratified 
sampling in each of the discretization levels. We also explored the use of Gaussian Kernel Density Estimator (KDE) in lieu 
of the currently used polynomial-based smoothers.

Our study yields the following major conclusions:

1. For all test problems and error tolerances considered, the computational cost of non-smoothed sMLMC is smaller than 
that of non-smoothed MLMC. This is due to the steeper decay of the variance, predominantly at the coarsest levels, in 
sMLMC due to the stratification of the input sample space.

2. For the same smoothing error tolerance, KDE-based smoothing is more efficient than its polynomial-based counterpart, 
especially considering the fact only one parameter (bandwidth) instead of two (bandwidth and polynomial degree) 
needs to be tuned.

3. For estimating joint CDFs of non-scalar QoIs, smoothing of the indicator function is found to be of crucial importance 
to making MLMC more efficient than MC performed at the finest discretization level.

4. For both the scalar and non-scalar QoIs, stratification of the input sample space yields a higher reduction in computa-
tional cost than smoothing of the indicator function.

5. Combining indicator function smoothing and input stratification yields the most efficient estimator, providing order-of-
magnitude computational cost savings.

This study dealt with a single random input variable. A follow-up study will extend our stratified MLMC algorithm 
to problems with high stochastic dimension, wherein a QoI depends on a correlated random input field. Further efforts 
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are needed to characterize the tails of a distribution, which is important, e.g., when the probability of failure needs to 
be estimated. This may require a number of modifications to our existing algorithm to better control the error in specific 
regions of a CDF. The L∞ norm may fail to detect errors in areas such as tails; the L1 or L2 norm might be more appropriate. 
Finally, since fewer samples are drawn at higher discretization levels, future iterations of our algorithm will allow for the 
number of discrete points (bins) at which the CDF is estimated to be level-dependent. This would avoid having too few 
samples in some of the CDF bins at the finest levels.
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Appendix A. Derivation and computation of estimators F̂ MLsm
h,δ,M and F̂ sMLsm

h,δ,M

A.1. Standard multilevel Monte Carlo without smoothing

The MC estimator for E[Iv(QM)] based on NMC independent samples of QM is defined by

ÎMC
v,M = 1

NMC

NMC∑
j=1

Iv(Q( j)
M ), (A.1)

where Q( j)
M is the jth sample of QM . Rather than sampling QM on a single spatial mesh, one may consider a sequence of 

approximations QMl (l = 0, . . . , Lmax) of Q associated with discrete meshes {TMl , l = 0, . . . , Lmax}. Here Ml is the number 
of cells in mesh TMl , which increases with level l (a common rule for rectilinear grids is Ml−1 = 2−d Ml , where d is the 
spatial dimension). The idea behind this approach is to start by performing cheap-to-compute samples on a coarse mesh, 
and then gradually correct the resulting estimate of Fh,M by sampling on finer grids, where generating a realization is more 
computationally expensive. One rewrites E[Iv(QM)] as a telescopic sum

E[Iv(QM)] = E[Iv(QM0)] +
Lmax∑
l=1

E[Iv(QMl ) − Iv(QMl−1)] ≡
Lmax∑
l=0

E[Iv(Yl)], (A.2a)

where Iv(Yl) are given by

Iv(Yl) =
{
Iv(QMl ) − Iv(QMl−1) 1 ≤ l ≤ Lmax

Iv(QMl ) l = 0,
(A.2b)

and MLmax ≡ M . The non-smoothed multilevel Monte Carlo (MLMC) estimator for E[Iv(QM)] is defined as

ÎML
v,M =

Lmax∑
l=0

ÎMC
v (Yl) =

Lmax∑
l=0

1

Nl

Nl∑
j=1

Iv(Y( j)
l ). (A.3)

(We use the shorthand notation ML to refer to MLMC in estimator expressions.) While V [Iv(QMl )] remains approximately 
constant with l, V [Iv(Yl)] decreases with l, allowing the estimator ÎML

v,M to have the same overall sampling error as its MC 
counterpart ÎMC

v,M using a decreasing number of samples Nl as l increases.

From (4) and (A.3), it follows that the MSE of the non-smoothed MLMC estimator F̂ ML
h,M for Fh,M is bounded by

E[‖Fh − F̂ ML
h,M‖2∞]︸ ︷︷ ︸

ε2
est

≤E[‖ F̂ ML
h,M −E[ F̂ ML

h,M ]‖2∞] + ‖Fh,M − Fh‖2∞ (A.4)

≤max
v∈S

Lmax∑
l=0

N−1
l V [Iv(Yl)]

︸ ︷︷ ︸
(εML

sam)2

+max
v∈S |E[Iv(QMLmax

) − Iv(Q)]|2︸ ︷︷ ︸
(εML

dis )2

.
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To achieve a root mean squared error (RMSE) εest of at most ε , we may choose (εML
dis )2 ≤ (1 − α)ε2 and (εML

sam)2 ≤ αε2, 
where 0 < α < 1. From the triangle inequality, it follows that

max
v∈S |E[Iv(YLmax)| ≈ max

v∈S |E[Iv(QMLmax
) − Iv(Q)]|. (A.5)

Hence, to determine the maximum level Lmax of an MLMC simulation with given tolerance ε , we check if maxv∈S |E[Iv(YL)|
≤ ε

√
1 − α is satisfied for the current level L. If this holds, then Lmax = L and we can compare the performance of MLMC 

to MC by performing the latter on this finest level, re-using the samples already computed with MLMC at this level.

A.2. Standard multilevel Monte Carlo with polynomial smoothing

The jump discontinuity in the indicator function may lead to a slow decay of V [Iv(Yl)] and make MLMC slower than 
MC for sufficiently large values of the error tolerance ε [29]. To accelerate the variance decay and improve the compu-
tational efficiency of MLMC, a sigmoid-type smoothing function g can be used to remove the singularity in the indicator 
function.

For a scalar QoI Q (i.e., n = 1), Giles et al. [25] suggested replacing the indicator function I(−∞,q](Q Ml ) for q ∈ Sh (we 
leave out the subscripts for notational convenience) by a polynomial gG((Q Ml − q)/δG,l) at each level l (l = 0, . . . , Lmax), 
where the bandwidth δG,l is a measure of the width over which the discontinuity in I(−∞,q](Q Ml ) is smeared out. General-
izing to the case of n dimensions, the smoothed MLMC estimator for E[Iv(QM)] is given by

ÎMLsm
v,M =

Lmax∑
l=0

ÎMCsm
v (Yl), (A.6)

where ÎMCsm
v (Yl) = N−1

l

∑Nl
j=1 gv(Y( j)

l ) with

gv(Y( j)
l ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∏n
i=1 gG

(
qi,vi

−Q ( j)
i,Ml

δG,l,i

)
− gG

(
qi,vi

−Q ( j)
i,Ml−1

δG,l,i

)
1 ≤ l ≤ Lmax

∏n
i=1 gG

(
qi,vi

−Q ( j)
i,Ml

δG,l,i

)
l = 0

(A.7)

and the superscript MLsm refers to “smoothed MLMC”. As (A.7) indicates, we allow for the smoothing bandwidth at level l, 
δG,l , to be different in each dimension.

Defining δG,l ≡ (δG,l,1, . . . , δG,l,n)� for notational convenience, the polynomial-smoothed MLMC estimator F̂ MLsm
h,δG,M for Fh,M

is then given by a multidimensional piecewise polynomial interpolation

F̂ MLsm
h,δG,M(q) =

S1∑
v1=0

· · ·
Sn∑

vn=0

Îv,M

n∏
i=1

φvi (qi). (A.8)

The MSE of F̂ MLsm
h,δG,M is bounded by

E[‖Fh − F̂ MLsm
h,δG,M‖2∞]︸ ︷︷ ︸

ε2
est

≤E[‖ F̂ MLsm
h,δG,M −E[ F̂ MLsm

h,δG,M ]‖2∞]︸ ︷︷ ︸
(εMLsm

sam )2

+‖Fh,M − Fh‖2∞︸ ︷︷ ︸
(εMLsm

dis )2

(A.9)

+ ‖E[ F̂ MLsm
h,δG,M ] − Fh,M‖2∞︸ ︷︷ ︸

(εMLsm
smooth)2

.

Compared to (A.4), (A.9) contains an additional term (εMLsm
smooth)2, which is the (mean squared) smoothing error. To achieve 

an RSME εest of at most ε , we may choose (εMLsm
dis )2 ≤ (1 − α)ε2, (εMLsm

sam )2 ≤ (α/2)ε2 and (εMLsm
smooth)2 ≤ (α/2)ε2, where 

0 < α < 1. We choose the tolerance for εMLsm
dis to be the same as that for εML

dis such that the smoothed MLMC estimator 
satisfies the discretization error tolerance for the same number of levels as its non-smoothed counterpart.
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A.3. MLMC with smoothing

Algorithm 1: Standard multilevel Monte Carlo with smoothing.

Input : RMSE tolerance ε; set of ∏n
i=1(Si + 1) interpolation points Sh; sequence of discrete meshes {TMl , l = 0, . . . , Lmax}; initial number of 

samples N0
l at each level l; parameter α;

Output : An estimate of the CDF F (q);
Procedure : :
Initialize L = −1;
while L < Lmax do

Set L = L + 1;
Draw N0

L samples of the random input parameter (IP)/initial condition (IC) (�);
if L = 0 then

Compute N0
0 samples of QM0 based on (�);

else
Compute N0

L samples of QML and QML−1 based on (�);
end
Compute δL ;
for v ∈ S do

for j = 1, . . . , N0
L do

Compute gv(Y( j)
L );

end
end
Compute the computational cost at level L, w̄ L ;
for v ∈ S do

Compute ÎMC
v (YL) and ÎMCsm

v (YL);

Compute Ṽ [gv(YL)] =∑N0
L

j=1(gv(Y( j)
L ) − ÎMCsm

v (YL))
2/N0

L

end
See next page

end
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Set NL = ceil

(
max
v∈S

2

αε2

√
Ṽ [gv(YL)]/w̄ L

(
L∑

z=0

√
Ṽ [gv(Yz)]w̄z

))
;

Draw max(NL − N0
L , 0) samples of the random IP/IC (†);

if L = 0 then
Compute max(N0 − N0

0, 0) samples of QM0 based on (†);
else

Compute max(NL − N0
L , 0) samples of QML and QML−1 based on (†);

end
for v ∈ S do

for j = N0
L + 1, . . . , NL do

Compute gv(Y( j)
L );

end
end
Compute the computational cost at level L, w̄ L ;
for v ∈ S do

Compute ÎMC
v (YL) and ÎMCsm

v (YL);

Compute Ṽ [gv(YL)] =∑NL
j=1(gv(Y( j)

L ) − ÎMCsm
v (YL))

2/NL ;

end
Set N�

L = NL ;
for l = 0, . . . , L − 1 do

Set Nl = ceil

(
max

0≤n≤S

2

αε2

√
Ṽ [gv(Yl)]/w̄l

(
L∑

z=0

√
Ṽ [gv(Yz)]w̄z

))
;

Draw max(N0 − N�
0, 0) samples of the random IP/IC (‡);

if l = 0 then
Compute max(N0 − N�

0, 0) samples of QM0 based on (‡);
else

Compute max(Nl − N�
l , 0) samples of QMl and QMl−1 based on (‡);

end
for v ∈ S do

for j = N�
l + 1, . . . , Nl do

Compute gv(Y( j)
l );

end
end
Compute the computational cost at level l, w̄l;
for v ∈ S do

Compute ÎMC
v (Yl) and ÎMCsm

v (Yl);

Compute Ṽ [gv(Yl)] =∑Nl
j=1(gv(Y( j)

l ) − ÎMCsm
v (Yl))

2/Nl ;

end
Set N�

l = Nl ;
end

if (L ≥ 1 and max
v∈S |ÎMC

v (YL)| ≤
√

1 − α ε) or (L = Lmax) then

Compute the cost of MLMC, C( F̂ MLsm
h,δ,M );

Compute the MLMC estimator of F (q), F̂ MLsm
h,δ,M (q);

Set NMC = 2ε−2 maxv∈S Ṽ [Iv(QMLmax
)];

Compute the cost of MC, C( F̂ MC
h,M);

Compute max(NMC − NLmax , 0) samples of QMLmax
;

Compute the MC estimator of F (q), F̂ MC
h,M(q);

end
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A.4. sMLMC with smoothing

Algorithm 2: Stratified MLMC with smoothing.
Input : Input parameters of Algorithm in Section A.3; the strata Dk with k = 1, . . . , r; and their probabilities pk;
Output : An estimate of the CDF F (q);
Procedure :
Initialize L = −1;
while L < Lmax do

Set L = L + 1;
For k = 1, . . . , r , define initial number of samples in stratum k at level L, n0

k,L , based on N0
L and chosen allocation strategy, and draw n0

k,L

samples of random IP/IC from stratum k (�);
if L = 0 then

for k = 1, . . . , r do
Compute n0

k,0 samples of QM0 based on (�);

end
else

for k = 1, . . . , r do
Compute n0

k,L samples of QML and QML−1 based on (�);

end
end
Compute δL with the combined samples from all strata;
for k = 1, . . . , r do

for j = 1, . . . , n0
k,L do

for v ∈ S do
Compute gv(Y( j,k)

L );
end

end

Compute sample variance estimate Ṽ [gv(Y(k)
L )] of V [gv(Y(k)

L )];
end
for k = 1, . . . , r do

Compute the average computational cost per sample in stratum k at level L, w̄k,L ;
end
See next page

end
Set n�

k,L = nk,L for all k = 1, . . . , r;

for v ∈ S do
for k = 1, . . . , r do

Compute nk,L,n = 2
αε2

√
Ṽ [gv(Y(k)

L )]p2
k /w̄k,L

L∑
z=0

r∑
k=1

√
Ṽ [gv(Y(k)

z )]p2
k w̄k,z ;

end
end
for k = 1, . . . , r do

Set nk,L = ceil

(
max
v∈S nk,L,n

)
;

end

Set NL =
r∑

k=1

nk,L ;

See next page



S. Taverniers, D.M. Tartakovsky / Journal of Computational Physics 419 (2020) 109572 19
Draw nk,L − n0
k,L samples of random IP/IC from stratum k;

if L = 0 then
for k = 1, . . . , r do

Draw nk,0 − n0
k,0 samples of QM0 based on (†);

else
for k = 1, . . . , r do

Draw nk,L − n0
k,L samples of QML and QML−1 based on (†);

for k = 1, . . . , r do
for j = n0

k,L + 1, . . . , nk,L do
for v ∈ S do

Compute gv(Y( j,k)
L );

Compute improved estimate Ṽ [gv(Y(k)
L )] of V [gv(Y(k)

L )];
for k = 1, . . . , r do

Compute the average computational cost per sample in stratum k at level L, w̄k,L ;
end
for v ∈ S do

Compute ÎsMC
v (YL) and ÎsMCsm

v (YL);
end
Set n�

k,L = nk,L for all k = 1, . . . , r;

for l = 0, . . . , L − 1 do
for v ∈ S do

for k = 1, . . . , r do

Compute nk,l,n = 2
αε2

√
Ṽ [gv(Y(k)

l )]p2
k /w̄k,l

L∑
z=0

r∑
k=1

√
Ṽ [gv(Y(k)

z )]p2
k w̄k,z ;

end
end
for k = 1, . . . , r do

Set nk,l = ceil

(
max
v∈S nk,l,n

)
;

end

Set Nl =
r∑

k=1

nk,l ;

Draw nk,L − n�
k,L samples of random IP/IC from stratum k;

if l = 0 then
for k = 1, . . . , r do

Compute nk,0 − n�
k,0 samples of QM0 based on (‡);

end
else

for k = 1, . . . , r do
Compute nk,l − n�

k,l samples of QMl and QMl−1 based on (‡);

end
end
See next page (part (a))

end
See next page (part (b))
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(a)
for k = 1, . . . , r do

for j = n�
k,l + 1, . . . , nk,l do

for v ∈ S do
Compute gv(Y( j,k)

l );
end

end

Compute improved estimate Ṽ [gv(Y(k)
L )] of V [gv(Y(k)

L )];
end
for k = 1, . . . , r do

Compute the average computational cost per sample in stratum k at level l, w̄k,l;
end
for n = 0, . . . , S do

Compute ÎsMC
v (Yl) and ÎsMCsm

v (Yl);
end
Set n�

k,l = nk,l for all k = 1, . . . , r;
(b)

if (L ≥ 1 and max
v∈S |ÎsMC

v (YL)| ≤
√

1 − α ε) or (L = Lmax) then

Compute the cost of sMLMC, C( F̂ sMLsm
h,δ,M );

Compute the sMLMC estimator of F (q), F̂ sMLsm
h,δ,M (q);

end
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