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Abstract Heterogeneity and a paucity of measurements of key material properties undermine the
veracity of quantitative predictions of subsurface flow and transport. For such model forecasts to be
useful as a management tool, they must be accompanied by computationally expensive uncertainty
quantification, which yields confidence intervals, probability of exceedance, and so forth. We design and
implement novel multilevel Monte Carlo (MLMC) algorithms that accelerate estimation of the cumulative
distribution functions (CDFs) of quantities of interest, for example, water breakthrough time or oil
production rate. Compared to standard non‐smoothed MLMC, the new estimators achieve a significant
variance reduction at each discretization level by smoothing the indicator function with a Gaussian kernel or
replacing standard Monte Carlo (MC) with the recently developed hierarchical Latinized stratified sampling
(HLSS). After validating the kernel‐smoothed MLMC and HLSS‐enhanced MLMC methods on a
single‐phase flow test bed, we demonstrate that they are orders of magnitude faster than standard MC for
estimating the CDF of breakthrough times in multiphase flow problems.

1. Introduction

Physics‐based models of subsurface flow and transport play a critical role in management of groundwater,
hydrocarbon, and geothermal resources. A typical model takes the form of a numerical solution of
(a coupled system of) partial differential equations (PDEs) representing relevant conservation laws. Such
models are parametrized with a set of material (and fluid) properties, such as intrinsic and relative perme-
abilities, porosity, and dispersivity. Since most subsurface environments exhibit a large degree of heteroge-
neity on the multiplicity of scales, their properties vary in space and cannot be represented exactly in a
numerical model due to incomplete and/or inaccurate measurements. Hence, values of any or all of these
parameters should be considered uncertain (Tartakovsky & Winter, 2008), and this input uncertainty leads
to uncertainty in output quantities of interest (QoIs).

A probabilistic framework for quantification of predictive uncertainty treats uncertain input parameters and
model outputs (QoIs) as random variables/fields/processes. Thus, a single choice of parameter values, and a
resulting prediction of QoIs, is thought of as a sample from corresponding probability distributions of the
model's input and output. Probabilistic formulation of a subsurface model consists of specifying input para-
meters in terms of their probability density functions (PDFs) or cumulative distribution functions (CDFs). A
solution of this problem takes the form of PDFs/CDFs of the system state or derived QoIs.

Monte Carlo (MC) simulations (Fishman, 1996) are routinely used to compute such solutions or their
moments (e.g., means and variances of QoIs). The popularity of MC stems from its ease of use and nonintru-
sive character, that is, the ability to use existing solvers and “off‐the‐shelf” software. On a more technical
level, MC benefits from a convergence (i.e., the number of realizations,N, needed to achieve a required sam-
pling accuracy) that is independent of the number of random inputs (the so‐called stochastic dimension).
Unfortunately, this convergence is slow: The standard deviation of an MC estimator of the QoI's expected

value (aka mean or average) is inversely proportional to
ffiffiffiffi
N

p
. This renders MC computationally demanding,

and often prohibitively so, when each model run is expensive (e.g., when a high spatial and/or temporal
resolution is required).

To achieve the same sampling error (estimator variance) with fewer realizations, standard MC may be
replaced with a more computationally efficient sampling design, which is one of the main drivers of uncer-
tainty quantification (UQ) research (Tartakovsky, 2017). UQ techniques based on stochastic finite elements,
including stochastic Galerkin and stochastic collocation, outperform MC simulations in problems with
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relatively low stochastic dimensions (Tartakovsky, 2017, and the references therein). However, they become
less efficient thanMC for problems with either high stochastic dimensions (Taverniers & Tartakovsky, 2017)
—a feature commonly referred to as the curse of dimensionality—or strong nonlinearities and moderately
large parametric uncertainty (Barajas‐Solano & Tartakovsky, 2016). Other methods, such as moment differ-
ential equations (Neuman et al., 1996) and the method of distributions (Tartakovsky et al., 2009; Venturi
et al., 2013), are not affected by the curse of dimensionality but require closure approximations that are often
derived via perturbation expansions in the variance of a random input. This formally limits their applicabil-
ity to problems with small parametric uncertainty or mild heterogeneity, even though the applicability range
is often significantly larger than the theory suggests (Z. Lu et al., 2002; Ye et al., 2004) and can be extended
further by means of random domain decompositions (Winter & Tartakovsky, 2002; Winter et al., 2003). Just
like the stochastic Galerkin method, these algorithms are intrusive, that is, require one to solve a set of deter-
ministic equations that differ from the underlying PDEs with random coefficients.

Unlike the aforementioned UQ techniques, variance‐reduction sampling methods aim to preserve MC's
attractive features while improving upon its poor convergence. This class of methods includes antithetic
sampling, control variates, importance sampling, Latin hypercube sampling (LHS), and stratification
(Fishman, 1996). An alternative strategy to controlling the MC cost is to minimize the overall error of an
MC estimator of a QoI's expected value for a given amount of available computational resources (Moslehi
et al., 2015). Following the general philosophy of the resource‐constrained model selection (Sinsbeck &
Tartakovsky, 2015), this approach subdivides the overall mean square error (MSE) of the estimator into sam-
pling (variance) and discretization (bias) components. The former is estimated via a sample variance, while
the latter is approximated by a polynomial in powers of the discrete spatial and/or temporal mesh size.

Another approach to variance reduction combines standardMCwith the multigrid method for solving PDEs
(Giles, 2008; Heinrich, 1998, 2001). This method, which we adopt in the current study, has become known as
multilevel MC (MLMC). It seeks to outperform MC by correcting cheaper‐to‐compute realizations on a
coarse spatial grid with more expensive samples at finer levels of discretization. While originally designed
to perform standard MC at each level, MLMC may be accelerated by replacing the latter with a modified
sampling strategy such as Quasi‐MC (Crevillén‐García & Power, 2017; Kuo et al., 2017) or one of the
variance‐reduction schemes listed above (Kebaier & Lelong, 2018).

Most MLMC studies focus either on the estimation of statistical moments of a QoI (Kumar et al., 2019;
Linde et al., 2017; Müller et al., 2013, 2016) or on the single‐point evaluation of its CDF to estimate rare
events, for example, probability of failure (Ullmann & Papaioannou, 2015). Much less work has been
done on MLMC for estimation of the full CDF/PDF of a QoI. A key challenge here is the slow decay
of the variance of the indicator function with discretization level, which may render MLMC less efficient
than standard MC at the finest resolution (D. Lu et al., 2016). Polynomial smoothing of the indicator
function can improve computational efficiency for estimating CDFs (Giles et al., 2015; D. Lu et al.,
2016), as can approximation of PDFs via a truncated moment sequence (Bierig & Chernov, 2016).
Indirect estimation of a CDF via an appropriate primitive function (Krumscheid & Nobile, 2018) provides
yet another tool to speed up the computation.

We employ the hierarchical Latinized stratified sampling (HLSS) method (Shields, 2016) to design a more
efficient MLMC algorithm for estimation of the CDF or, equivalently, exceedance probability of a QoI. We
also replace the polynomial smoothing (Giles et al., 2015) with a kernel‐based smoothing in order to regular-
ize the indicator function within a standard multilevel framework (i.e., using standard MC at each level).
Inspired by the framework developed inMoslehi et al. (2015) and following Giles et al. (2015) and D. Lu et al.
(2016), theMSE between the estimated CDF and its exact counterpart is decomposed into a sampling error, a
bias error, and (if applicable) a smoothing error. Rather than fixing the computational cost and minimizing
the MSE (Moslehi et al., 2015), we specify the MSE tolerance and minimize the computational cost via a
combination of the standard Lagrange multiplier approach to estimate the optimal numbers of samples at
each discretization level (for the kernel‐smoothed standard MLMC algorithm) and/or a tunable parameter
to control the relative magnitudes of the allowable sampling error and bias.

In section 2, we discuss various MC‐based approaches to CDF estimation and introduce two complementary
strategies for MLMC acceleration: standard MLMC with kernel‐based smoothing and HLSS‐enhanced
MLMC. Section 3 contains a description of the single‐ and two‐phase flow problems used to assess the
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performance of these MLMC algorithms. Section 4 describes the results of our numerical experiments. Main
conclusions and future research directions are presented in section 5.

2. MC Estimation of CDFs

Consider a QoIQ ∈ R that depends on p continuous random input variables ξ¼ (ξ1,… ,ξp), that is, Q¼Q(ξ).
Each input variable ξ i :Ωi→R is a measurable function with the sample space Ωi. The CDF F(q) of Q can be
defined as the expected value E½Ið−∞; q�ðQÞ� of the indicator function

Ið−∞; q�ðsÞ ¼
1 for s ∈ ð−∞; q�
0 for s ∈ ðq; þ∞Þ;

�
(1)

which establishes its relation to the PDF f(q) of Q

FðqÞ ¼
Z ∞

−∞
Ið−∞; q�ðsÞ f ðsÞ ds ¼

Z q

−∞
f ðsÞ ds: (2)

Our goal is to estimate F(q), at any point q in some compact interval ½a; b� ⊂ R, from its values at a set of S+ 1
equidistant pointsSh ¼ fa ¼ q0<q1<…<qS ¼ bgwith separation distance h. We do so by employing piece-
wise polynomial interpolation of degreemaxfd; 1g (Giles et al., 2015), whered ∈ N0 is related to the smooth-
ness of f(q), so that f(q) is at least d times continuously differentiable on [a− ξ0,b+ ξ0] for some ξ0 > 0.We use
cubic spline interpolation, in which case d¼ 3. An alternative is to employ Lagrange basis polynomials ϕn (n
¼ 0,…, S) (D. Lu et al., 2016), for which the approximation Fh(q) of F(q) in (2) is given by (In our simulations,
we compute the cubic spline interpolant using a built‐in MATLAB® function)

FhðqÞ ¼ ∑
S

n¼0
E½InðQÞ�ϕnðqÞ; InðQÞ≡Ið−∞; qn�ðQÞ: (3)

In hydrogeological applications and beyond, the QoI Q is an output computed from the numerical solution
of a PDE with, for example, finite difference or finite volume methods. These strategies require the compu-
tational domain to be discretized with a spatial gridTM consisting ofM cells. Subsequent solution of the dis-
cretized PDE yields a QoI approximation QM, which converges to Q as M increases. We assume this
convergence to hold both in the mean and in the sense of distribution, such that

E½QM − Q� ¼ OðM−α1Þ; E½Ið−∞; q�ðQMÞ−Ið−∞; q�ðQÞ� ¼ OðM−α2Þ as M→∞; (4)

for α1; α2 ∈ Rþ independent of M and q. Following (3), an approximation of the CDF FM(q) of QM on [a,b]
is given by

Fh;MðqÞ ¼ ∑
S

n¼0
τn;MϕnðqÞ; τn;M≡E½InðQMÞ�: (5)

Another approximation stems from the replacement of ensemble means with sample means, that is, E½Inð
QMÞ� ≈ În;M , yielding the CDF estimator

F̂ h;MðqÞ ¼ ∑
S

n¼0
În;MϕnðqÞ: (6)

To sum up, the estimation error introduced by the above approximations, that is, the discrepancy between

the true CDF F(q) and its estimator F̂ h;M, has two sources: the discretization error (or bias) related to approx-

imating Fh by Fh,M and the sampling error related to approximating Fh,M by F̂ h;M . (For all estimators F̂ h;M

considered in this work, we assume that the number of interpolation points S+ 1 is large enough for the
interpolation error to be negligible.) The MSE of this estimation, ε2est, is bounded by
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E½jjFh − F̂ h;M jj2∞�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ε2est

≤ E½jjF̂ h;M − E½F̂ h;M �jj2∞�þjjFh;M − Fhjj2∞
≤ max

0 ≤ n ≤ SV½În;M �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ε2sam

þ max
0 ≤ n ≤ S jE½InðQMÞ−InðQÞ�j2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ε2dis

;

(7)

where ||· ||∞ denotes the L∞ norm; V½ · � refers to the variance operator; and εsam and εdis are, respectively,
the sampling and discretization error, in the root mean square sense.

In the remainder of this section, we consider the random input variables ξ1,… ,ξp to be mutually uncorre-
lated and characterized by their respective CDFs Fξ i . As discussed in section 4, these variables can be used

to build a correlated permeability field via a Karhunen‐Loève (KL) expansion.

2.1. Standard MLMC With Kernel‐Based Smoothing

The standard MLMC estimator (Giles et al., 2015) of F(q) is described in Appendix A1. The jump discontinu-
ity in the indicator function used to construct a CDF may lead to a slow decay of its variance with increasing
spatial resolution. This may render MLMC less efficient than fine‐resolution MC for sufficiently large values
of the error tolerance ϵ (D. Lu et al., 2016). To obviate this problem, one can replace the indicator function
with a pth degree polynomial of a certain bandwidth δG,l at level l (see Appendix A2 for details). Finding the
optimal smoothing function therefore requires tuning two parameters: the bandwidth and the polynomial
degree.

We propose an alternative regularization of the indicator function based on kernel density estimation (KDE)
(Rosenblatt, 1956), which has only one tuning parameter (the bandwidth). To implement our KDE‐based
smoothing, we replace the indicator function InðQÞ, where n¼ 0,… , S, with Φ[(qn−Q)/δ]≡ gK[(qn−Q)/
δ], where Φ is the CDF of the standard normal distribution and δ is the bandwidth over which the jump dis-
continuity is smeared out. The resulting MLMC estimator with smoothing for τn,M is

ÎMLsm
n;M ¼ ∑

Lmax

l¼0
ÎMCsm

n ðYlÞ; (8a)

where ÎMCsm
n ðYlÞ ¼ N−1

l ∑Nl
j¼1gnðY ðjÞ

l Þ and

gnðY ðjÞ
l Þ ¼

gK
qn − QðjÞ

Ml

δK; l

 !
− gK

qn − QðjÞ
Ml − 1

δK; l

 !
1 ≤ l ≤ Lmax

gK
qn − QðjÞ

Ml

δK; l

 !
l ¼ 0:

8>>>>><
>>>>>:

(8b)

The chosen bandwidth (δK,l) is level dependent, similar to its counterpart for polynomial smoothing
(Appendix A2). The superscript MLsm stands for “smoothed MLMC”.

The MSE of the kernel‐smoothed MLMC estimator F̂MLsm
h; δK;M for Fh,M is bounded by

E½jjFh − F̂
MLsm
h; δK;MÞjj2∞�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðεMLsm
est Þ2

≤ E½jjF̂MLsm
h; δK;M − E½F̂MLsm

h; δK;M
�jj2∞�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðεMLsm
sam Þ2

þ jjFh;M − Fhjj2∞|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ðεMLsm

dis Þ2

þ jjE½F̂MLsm
h; δK;M �−Fh;M jj2∞|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðεMLsm

sm Þ2

: (9)

To satisfy a user‐specified error tolerance ϵ, we follow the procedure described in Appendix A2.

Our method has several advantages over the polynomial‐smoothed MLMC (D. Lu et al., 2016):
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1. Only one tunable parameter (bandwidth) instead of two (bandwidth and polynomial degree) is required
to define the regularization of the indicator function. This reduces algorithmic complexity by eliminating
an extra loop over possible polynomial degrees to find the optimally efficient estimator.

2. The use of a polynomial of degree d requires the QoI's PDF to be at least d times continuously differenti-
able (Giles et al., 2015). This introduces an additional constraint that needs to be taken into account.

3. Rather than estimating the optimal number of samples at each level after the maximum level has been
reached, our method optimizes the number of samples required to satisfy the sampling error tolerance
throughout the entire algorithm and at each level also recomputes prior estimates at all previous levels.
This improves the accuracy of the sample size estimation (Cliffe et al., 2011).

4. The introduction of a free parameter α (Appendix A2) allows for more flexibility in the division between
sampling and discretization error, enabling additional tuning of the algorithm to minimize the computa-
tional cost.

An implementation of our kernel‐smoothed MLMC estimator, including a computation of its cost, is pro-
vided in Appendix C1. Our algorithm allows for computing its fine‐resolution MC counterpart and the lat-
ter's computational cost. That information is used only for comparison purposes, rather than for a
“hybrid” scheme, which switches to MC if no speedup is achieved with MLMC (D. Lu et al., 2016).
Numerical experiments reported in section 4 demonstrate that, for error tolerances typically encountered
in subsurface flow applications, our kernel‐based MLMC is more efficient than fine‐resolution MC.
Future refinements to the algorithm (see section 5) could result in further speedup, especially for
rare‐event estimation where only tails of a CDF need to be characterized.

2.2. HLSS‐Enhanced MLMC
2.2.1. Hierarchical Latinized Stratified Sampling
The Latinized stratified sampling (LSS) method (Shields & Zhang, 2016) aims to combine the benefits of stra-
tified sampling (SS) and LHS. SS is good at reducing the variance associated with interactions between input
variables and works well in low stochastic dimensions p (Shields & Zhang, 2016; Shields et al., 2015), while
LHS provides strong variance reduction for additive (main) effects (Stein, 1987). LHS is superior to SS in high
stochastic dimensions,p > log2ðNÞwhere N denotes the number of samples (Shields et al., 2015). LSS simul-
taneously defines an LHS design and a p‐dimensional SS design on the unit hypercube [0, 1]p, which
requires enforcement of two compatibility conditions between both strategies: All SS strata must coincide
with an LHS stratum boundary, and they must all be equally weighted hyperrectangles.

The hierarchical LHS method (Shields, 2016) extends the sample size of an LSS design by breaking up exist-
ing strata and adding the unallocated samples to the newly created empty stratum. This is more optimal than
adding samples to the existing strata (Shields et al., 2015). The HLSS estimator for τn,M based on NHLSS inde-
pendent samples of QM is

ÎHLSS
n;M ¼ 1

NHLSS
∑

NHLSS

j¼1
InðQðjÞ

M Þ: (10)

Since HLSS can be regarded as a stratified, proportionally allocated sampling design with one sample per

stratum, the variance of ÎHLSS
n;M is given by (B7),

V½ÎHLSS
n;M � ¼ V½ÎMC

n;M �−
1

N2
HLSS

∑
NHLSS

j¼1
ðμj; n − τn;MÞ2; (11)

where the first term on the right‐hand side is defined in (A2) and μj,n is the mean of InðQMÞ over the jth
stratum.

HLSS requires at least a doubling of the number of samples upon each sample size extension. The refined
LSS method (Shields, 2016) resolves this drawback by allowing for unequal sample weights. However, the
latter necessitates the computation of strata variances to calculate the estimator variance. This introduces
additional complexity in the case of a one‐sample‐per‐stratum design (Shields, 2018) and invalidates (11).
Hence, we consider only the HLSS sampling design.

10.1029/2019WR026984Water Resources Research

TAVERNIERS ET AL. 5 of 25



2.2.2. Integrating HLSS Into a Multilevel Estimator
Integration of the HLSS approach (section 2.2.1) into the multilevel framework yields additional variance
reduction compared to the standard MLMC estimator with simple MC in each discretization level. We refer
to the resulting algorithm as HLSS‐MLMC. Its estimator for τn,M is

ÎHLSS ‐ML
n;M ¼ ∑

Lmax

l¼0
ÎHLSS

n ðYlÞ ¼ ∑
Lmax

l¼0

1
Nl

∑
Nl

j¼1
InðY ðjÞ

l Þ; (12)

where InðYlÞ with l¼ 0,… , Lmax are defined in (A3b). Its variance is given by (McKay et al., 2000)

V½ÎHLSS ‐ML
n;M � ¼ ∑

Lmax

l¼0
V½ÎMC

n ðYlÞ�− 1
N2

l

∑
Nl

j¼1
ðμj; n; l − τn; lÞ2

" #
; (13)

where V½ÎMC
n ðYlÞ� is defined analogously to (A2), μj,n,l is the jth stratum mean of InðYlÞ, and τn,l is the

mean of InðYlÞ over the entire sample space. The MSE of the HLSS‐MLMC estimator for Fh,M, F̂
HLSS ‐ML
h;M ,

is bounded in a similar fashion to its counterpart for F̂ML
h;M . We use the algorithm from Appendix C2 to

compute F̂HLSS ‐ML
h;M and measure its computational cost.

One can smooth the indicator functionInðYlÞ by replacing it with gn(Yl) defined in (8b) to obtain additional
variance reduction. The smoothing will result in an additional term in the estimator's MSE.

2.3. Costs of MLMC and Fine‐Resolution MC

To estimate the costC of computing the non‐smoothed MLMC estimator, FML
h;M, for an error tolerance ϵ, we

consider an average over Nreal independent realizations of the algorithm,

CðF̂ML
h;MÞ ¼

1
N real

∑
Nreal

p¼1
∑

Lϵmax; p

l¼0
�w ðpÞ
l NðpÞ

l : (14)

HerewlðpÞ is the average cost of computing a sample ofQMl
on level l for the pth realization, andLϵmax; p is the

finest discretization level at which sampling is performed for this realization at tolerance ϵ.

To compare the cost of F̂ML
h;M with that of MC, we perform the latter on the finest level, Lϵmax; p, to ensure that

both estimators satisfy the discretization part of the tolerance ϵ. The cost of the fine‐resolutionMC estimator,

F̂MC
h;M , is

CðF̂MC
h;MÞ ¼

1
N real

∑
Nreal

p¼1
�w ðpÞ
Lϵmax; p

N ðpÞ
MC; (15)

where N ðpÞ
MC is the number of samples computed in the pth realization of the algorithm.

We fix the maximum level for all multilevel variants, other than F̂ML
h;M, to the most frequently observed max-

imum level across allNreal realizations of the latter; this value is denoted byLϵmax. We do so because the smal-
ler number of samples at finer levels for those estimators may not yield sufficiently accurate estimates of the
discretization error; these are based on a sample estimate ofmax0 ≤ n ≤ SjE½InðYlÞ�j in accordance with (A7).
Since the discretization error is dictated by the maximum discretization level, and since the discretization

tolerance is taken to be identical for all estimators, it is reasonable to assume that if F̂ML
h;M satisfies the

required discretization error tolerance for a certain maximum level Lϵmax , then the other estimators also
satisfy this tolerance when having Lϵmax as their maximum level.

3. Numerical Experiments

To demonstrate the performance of our accelerated MLMC algorithms, we investigate one‐ and two‐phase
flows in heterogeneous porous media. In the following sections, we describe the governing equations of
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these test beds and their discretization and explain the upscaling of material properties from finer to coarser
levels.

3.1. One‐Dimensional Single‐Phase Flow

Spatiotemporal evolution of hydraulic head h(x,t) in a one‐dimensional heterogeneous porous medium D is
described by

∂h
∂t

¼ ∂
∂x

kðxÞ∂h
∂x

� �
; x ∈ D; t ∈ ð0; T�; (16a)

where k(x)¼ K(x)/S denotes the spatially varying hydraulic conductivity K(x) normalized with a constant
specific storage S. This equation is subject to an initial condition

hðx; 0Þ ¼ hinðxÞ; x ∈ D (16b)

and boundary conditions

Bðh; x; tÞ ¼ bðx; tÞ; x ∈ ∂D; t ∈ ð0; T�; (16c)

where the boundary operatorB represents Dirichlet and/or Neumann boundary conditions. As a practical
matter, it is impossible to know k(x) exactly at each point x∈D, rendering its spatial distribution uncer-
tain. Consequently, (16) is recast in the probabilistic framework, which treats the input k(x) and output

h(x,t) as random fields. Let ðΩ; F; PÞ be a complete probability triple, where Ω is the sample space, F ⊆
2Ω is the σ‐algebra of events, andP:F→½0; 1� is the probability measure. We extend the domain of defini-
tion of k(x) to the sample space Ω, so that k ¼ kðx; ωÞ:D ×Ω→R. Following the standard practice in sto-
chastic hydrogeology, we assume that the random field k(x,ω) is lognormally distributed and that its
natural logarithm Yðx; ωÞ ¼ ln kðx; ωÞ has a continuous autocovariance function CY ðx; yÞ ¼ Ef
½Yðx; ωÞ−μY ðxÞ�½Yðy; ωÞ−μY ðyÞ�g where μY ¼ EðYÞ . For the sake of simplicity, we assume the initial
and boundary conditions to be deterministic.

We represent the Gaussian field Y(x,ω) via a truncated KL expansion

Ŷðx; ξpðωÞÞ ¼ μY ðxÞþ∑
p

l¼1

ffiffiffiffi
γl

p
ϕlðxÞξ lðωÞ; (17)

where the number of terms, p, retained in the otherwise infinite series is referred to as the stochastic
dimension; γl and ϕl(x) are, respectively, the eigenvalues and eigenfunctions of the autocovariance function
CY(x,y); and ξp(ω)¼ (ξ1,… , ξp)

⊤ is a set of i.i.d. standard Gaussian random variables; that is, it is character-
ized by a standard multivariate Gaussian PDF

ρðsÞ ¼ ð2πÞ−p=2expð−1
2
s ⊤ sÞ (18)

with support Rp. For a given variance of Y(x,ω), the value of p required to approximate the full KL expan-
sion with a given accuracy depends on the rate of decay of the eigenvalues γl. This decay rate is given by
the regularity of the autocovariance kernel CY(x,y); however, regardless of the degree of regularity of CY,
the value of p increases as the autocorrelation length of Y(x,ω) decreases. We choose p¼ 17 such that the
truncated KL expansion (17) captures 95% of the energy of the field Y as determined by the square roots of
the eigenvalues γl.

A random solution h(x,t,ω) of (16) is approximated by a random solution ĥðx; t; ωÞ of (16) with k(x,ω)

replaced by k̂ðx; ξpÞ ¼ exp½Ŷðx; ξpÞ�. According to the Doob‐Dynkin lemma, the latter solution is a function

of ξp. The solution hp(x,t,ξp) is referred to as a stochastic response surface.

In the single‐phase flow simulations reported below, we assume all quantities have been nondimensiona-
lized, setD¼ (0,2), T¼ 0.2, andhinðxÞ ¼ 200þ 200tanh½2ðx − 1Þ�, and choose Dirichlet boundary conditions
with bð0; tÞ ¼ 200þ 200tanhð−2Þ and bð2; tÞ ¼ 200þ 200tanhð2Þ . The Gaussian field Y has zero mean,
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μY(x)¼ 0, and exponential covariance CY ðx; yÞ ¼ σ2Yexp½−jx − yj=λY �
with the variance σ2Y ¼ 0:8 and the correlation length λY¼ 0.2. This
translates into the coefficient of variation (CV) of k ¼ expðYÞ,

CVðkÞ≡ σk
⟨k⟩

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½expðσ2Y Þ−1�expð2μY þ σ2Y Þ

p
exp½μY þ ðσ2Y=2Þ�

¼ 1:1:

The stochastic counterpart of (16) is discretized in space using a central
finite difference scheme; the resulting system of initial‐value problems is
solved with the implicit Euler method. The matrix associated with the
resulting linear system is tridiagonal. Hence, we apply the Thomas algo-
rithm to solve it at reduced computational complexity. This numerical
scheme is second‐order accurate in space and first‐order accurate
in time.

3.2. Two‐Dimensional Two‐Phase Flow

Our second test deals with horizontal two‐phase flow of incompressible
and immiscible fluids in a random heterogeneous porous medium D that
is both incompressible and isotropic. Propagation of the saturation Sℓ(x,t)
of the ℓth phase (ℓ¼ 1,2) is described by the mass conservation equation

ϕ
∂Sℓ
∂t

þ ∇ · uℓ þ qℓ ¼ 0; x ≡ ðx1; x2Þ ⊤ ∈ D; t ∈ ½0; T�; (19a)

and continuity (pressure) equation

∇ · utot ¼ 0: (19b)

Here utot ¼ ∑ 2
ℓ¼1uℓ with uℓ the Darcy velocity (flux) of the ℓth phase given by

uℓðxÞ ¼ −kðxÞkrℓ
μℓ

· ∇Pℓðx; tÞ; ℓ ¼ 1; 2: (19c)

In (19a), ϕ is the porosity; Sℓ(x,t) satisfies the compatibility condition S1 + S2¼ 1; and qℓ is a source/sink
term that, in our numerical experiments, is taken to be zero but may represent, for example, one or more
pumping wells. In (19c), k(x) is the intrinsic permeability tensor; since the medium is isotropic, k(x)
becomes a scalar and will be denoted by k from now on. The quantities krℓ(Sℓ) and μℓ are the relative perme-
ability and viscosity of the ℓth phase, respectively. We ignore capillary forces, that is, assume the equality of
fluid pressure in the two phases, P1¼ P2≡ P(x,t), and capture multiphase effects through the relative perme-
ability relationships. The latter are described by the Corey (1954) constitutive model. For the sake of concre-
teness, we take the subscripts ℓ¼ 1 and 2 to stand for water and oil, respectively. Yet this formulation
broadly applies to other multiphase flow processes such as contaminant migration, carbon sequestration,
and geothermal flow.

We consider a square simulation domain D of size 150 × 150 m2 shown in Figure 1. The Dirichlet conditions
for both pressure p and water saturation S1 are enforced along the vertical boundaries Γl and Γr: P¼ 10.2
MPa and S1¼ 1.0 on Γl and P¼ 10.0MPa and S1¼ 0.0 on Γr. The remaining two boundaries, Γu and Γd,
are impermeable to flow; that is, the homogeneous Neumann conditions are imposed on them. The simula-
tions use a dummy third dimension to run in a general code. The domain size in this third dimension does
not influence the solution for this test case as the problem is incompressible and the Dirichlet boundary con-
ditions at Γl and Γr naturally scale with the volume of the cells. The initial conditions are P¼ 10.1MPa and
S1¼ 0.0.

All input parameters except for the intrinsic permeability field k(x) are assumed to be known with cer-
tainty. As before, we consider Y ¼ ln k to be Gaussian, with mean μY(x)¼ 0 and exponential covariance

Figure 1. Domain setup for the two‐phase flow problem and visualization
of one realization of the log permeability field Y ¼ ln k (with k in mDarcy)
simulated at a resolution of 128 × 128 cells.
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CY ðx; yÞ ¼ σ2Y expð−jx − yj=λY Þ with variance σ2Y ¼ 2:0 and correlation length λY¼ 19.0 m. The resulting
CV for k ¼ expðYÞ is

CVðkÞ ≡ σk
⟨k⟩

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½expðσ2Y Þ−1�expð2μY þ σ2Y Þ

p
exp½μY þ ðσ2Y=2Þ�

¼ 2:53:

One realization of the log permeability field Y(x,ω) is shown in Figure 1. As in section 3.1, Y(x,ω) is
approximated via a truncated KL expansion (17), with the number of terms in the expansion, p¼ 31, cho-
sen to capture 95% of the energy of the field Y as determined by the square roots of the eigenvalues of its
autocovariance.

The transport equation (19a) and pressure equation (19b) are discretized using a finite volume scheme in
space and an implicit Euler scheme in time (Aziz & Settari, 1979). As this system of equations is highly non-
linear, at each time step we obtain the solution iteratively using the Newton‐Raphson method, applying
modified Appleyard saturation update damping (Appleyard et al., 1981) to improve convergence. That is,

large updates in saturation values are chopped to a preset limit, jSðν þ 1Þ
ℓ; i − SðνÞℓ; ij ≤ 0:3 for each cell i and phase

ℓ, where ν is the iteration number and i is the control volume index. To ensure convergence of both the flow
(pressure) and transport (saturation) solutions, three convergence criteria are specified: normalized residual
norm, maximum saturation update, and maximum relative pressure update:

max
i

Δt
rℓ; i
ϕVi

� �				
				<ϵ1; max

i
jSðν þ 1Þ

ℓ; i − SðνÞℓ; ij<ϵ2; max
i

jP
ðν þ 1Þ
i − PðνÞ

i

PðνÞ
i

j<ϵ3: (20)

The tolerances are set to ϵ1¼ 10−6, ϵ2¼ 10−2, and ϵ3¼ 10−3. Here Vi is the volume of cell i, and rℓ,i is the resi-
dual of the mass balance equation of phase ℓ for cell i. Note that the densities cancel and hence are not pre-
sent in the normalization.

3.3. Upscaling of Material Properties

As MLMC relies on multiple grid resolutions to compute the CDF of a QoI, the medium's properties need to
be consistent across levels. We achieve this with local single‐phase upscaling, which is illustrated using a 2 ×
2 block of the fine‐scale (isotropic) permeability field as a concrete example (see Figure 2):

1. Denote the fine‐scale permeability tensor by k̂ f , and consider one realization of this random field.
2. Obtain the corresponding realization of its coarse‐scale counterpart, k̂c, by clustering cells along the flow

direction via length‐weighted harmonic averaging and clustering cells perpendicular to the flow direc-

tion through area‐weighted arithmetic averaging. The resulting tensor k̂c is still diagonal but anisotropic.
3. Repeat this procedure as many times as needed to complete the sampling of the QoI at the coarser level.

The local single‐phase upscaling strategy described above is cheap and effective. It can be replaced withmore
accurate yet more expensive techniques (Boso & Tartakovsky, 2018; Durlofsky, 2005). Regional or global
multiphase upscaling can lead to a notable reduction in the total discretization error, that is, a smaller term

ðεMLsm
dis Þ2 in (9). As a result, advanced upscaling methods might improve convergence rates of MLMC at an

additional computational cost.

Finally, the above upscaling of the permeability field defines the KL expansion (17) only on the finest discre-
tization level. Alternatives to this method include formulating KL expansions at each level with a
level‐dependent number of terms (Gittelson et al., 2013; Teckentrup et al., 2013).

4. Simulation Results

We compare the performance of KDE‐smoothedMLMC andHLSS‐enhancedMLMCwith and without KDE
smoothing to that of fine‐resolution MC and MLMC with and without polynomial smoothing on the
single‐phase (section 3.1) and two‐phase (section 3.2) flow problems. We label these estimators below as
MLMCsm (KDE), HLSS‐MLMCsm, HLSS‐MLMC, MC, MLMCsm (poly), and MLMC, respectively. We
report the comparison in terms of their computational cost C, averaged over Nreal¼ 5 independent runs,
for error tolerances ϵ¼ 0.004 and 0.0015 (single‐phase flow) and ϵ¼ 0.06, 0.02, and 0.04 (two‐phase flow).
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These values enable us to test our estimators with different numbers of
discretization levels: ϵ¼ 0.004 and 0.0015 typically yield Lmax¼ 4 and
Lmax¼ 5, respectively, for single‐phase flow, while ϵ¼ 0.06, 0.04, and
0.02 result in Lmax¼ 3, 4, and 5, respectively, for two‐phase flow. These
tolerances lie in the pre‐asymptotic regime typical for real‐world subsur-
face flow simulations (Mukherjee, 2013), which is defined as ϵ> 10−4(D.
Lu et al., 2016). The choice of tolerance Oð10−2Þ rather than Oð10−3Þ in
the two‐phase case is driven by both computational requirements and
our aim to demonstrate that even at these higher tolerances our
MLMC‐based estimators outperform fine‐resolution MC. All numerical
experiments were performed on an Ubuntu system with 10 cores (20
hyperthreads) running at 4.20 GHz and having 64 GB of RAM.

The upscaling procedure in section 3.3 utilizes Nmax or Nmax,strat samples

of k̂ on the finest level for the standard or HLSS‐enhanced multilevel
approaches, respectively. These numbers are chosen to be higher than
the maximum number of samples of Q required at the coarsest (l¼ 0)
level. For Nmax,strat, we choose the multiple of 2 closest to Nmax; that is
because HLSS‐MLMC is initiated from a single sample at each level l
and then doubles the number of samples at each sample size extension.
The fine‐scale permeability realizations are upscaled to their
coarser‐scale counterparts to compute the corresponding samples of Q
on those coarser levels.

For MLMC, MLMCsm (KDE), and MLMCsm (poly), we first compute N0
l

(l¼ 0,… , Lmax) warm‐up or pilot samples of Q to produce an initial esti-
mate of the indicator functions variance; additional samples are then

added as required to satisfy the sampling error tolerance. This warm‐up procedure is an integral part of the
overall sampling design and does not yield any overhead cost provided that oversampling is minimized.

This is done by determining N0
l for each tolerance and each (standard) multilevel estimator separately

through some initial trial runs; the resulting values are then employed for all Nreal independent algorithm
runs. The HLSS‐MLMC and HLSS‐MLMCsm algorithms are initiated with a single sample at each level l;
then the sample size is extended through successive refinements of the univariate strata. For each value of
ϵ, we

1. perform Nreal runs of MLMC, yielding maximum levels Lϵmax; p (p¼ 1,… ,Nreal), and denote the most fre-
quently observed maximum level by Lϵmax;

2. at the end of the pth run, performMC at levelLϵmax; p, reusing already computed samples from the MLMC
run;

3. perform Nreal runs of MLMCsm (KDE) with a computed smoothing parameter δK,l at each level l, fixing
the maximum level for each run at Lϵmax;

4. perform Nreal runs of MLMCsm (poly) with a computed smoothing parameter δG,l at each level l, fixing
the maximum level for each run at Lϵmax;

5. perform Nreal runs of HLSS‐MLMC, with maximum level Lϵmax; and
6. perform Nreal runs of HLSS‐MLMCsm, with maximum level Lϵmax.

The reason for fixing the maximum level for MLMCsm (KDE and poly), HLSS‐MLMC, and HLSS‐MLMCsm
to Lϵmax was given in section 2.3.

For the single‐phase flow problem, we set the parameter α defining the relative magnitudes of the different
error sources (sampling error, bias, and, if applicable, smoothing error) to 0.5 (D. Lu et al., 2016). For the
two‐phase flow problem, we use α¼ 0.23. Increasing the discretization tolerance enables us to satisfy the
overall error tolerance with fewer levels. This significantly reduces the overall computational cost, since
the two‐phase simulations are very expensive at the finest levels.

Finally, we assume the PDFs of the QoIs to be at least 3 times continuously differentiable so that cubic

splines can be used to interpolate the estimated CDF point values F̂ h;MðqÞ with q ∈ Sh.

Figure 2. Coarsening procedure for a 2 × 2 block of the fine‐scale
permeability field k̂ f . The red and blue colors correspond to regions of
high and low permeability, respectively, in line with the color scheme used
in Figure 1. When upscaling this block to a single cell, the resulting

coarse‐scale permeability tensor k̂c is diagonal but anisotropic; its diagonal

elements are k̂ c¼
x1x1

AAfHA½k̂ f
x1x1

ð1Þ; k̂ f
x1x1

ð2Þ�; HA½k̂ f
x1x1

ð3Þ; k̂ f
x1x1

ð4Þ�g and

k̂ c¼
x2x2AAfHA½k̂ f

x2x2 ð1Þ; k̂ f
x2x2 ð3Þ�; HA½k̂ f

x2x2 ð2Þ; k̂ f
x2x2 ð4Þ�g. Here the notation

(i), with i¼ 1,… ,4, refers to the fine‐scale cell with index i; and HA[a,b] and
AA{a,b} represent a functional form of length‐weighted harmonic averaging
and area‐weighted arithmetic averaging, respectively. With the present

color scheme, we expect k̂ c
x2x2 to be low (closer to blue) and k̂ c

x1x1 to be of
medium magnitude (between blue and red).
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4.1. Single‐Phase Flow

Our QoI in this example is the average pressure (hydraulic head) in a sample,

Q ¼ 1
2

Z 2

0
hðx; t ¼ 0:2Þdx: (21)

The goal is to estimate the CDF of Q, F(q), on the interval 0≤ q≤ 1,000 using S+ 1¼ 1,001 interpolation
points. The flow domain D¼ [0,2] is discretized with a hierarchy of spatial grids TMl indexed by l ¼ 0; … ;

Lϵmax, where Ml¼ 2Ml− 1, M0¼ 100, and Lϵmax ¼ 4 for tolerance ϵ¼ 0.004 and 5 for ϵ¼ 0.0015. For MLMC,

MLMCsm (KDE), andMLMCsm (poly), we generateNmax¼ 5 · 105 samples of k̂ at l¼ 5 (the finest level con-
sidered); for HLSS‐MLMC and HLSS‐MLMCsm, we choose Nmax,strat¼ 219¼ 524,288.

Figure 3 shows the CDF approximations computed using a single run of the various multilevel estimators for
ϵ¼ 0.004, along with a fine‐grid MC estimator for reference. The largest discrepancy with fine‐grid MC can
be seen near the distribution's left tail for MLMCsm and HLSS‐MLMCsm. This illustrates the limitations of
the currently used L∞ norm for expressing an estimator's MSE, which does not allow tight control over the
error in specific regions of the CDF such as its tails. In future iterations of our algorithms, we may therefore
consider switching to the L1 or L2 norm.

Figure 4 collates the computational costsC of all the estimators at the two tolerance levels. For ϵ¼ 0.004,C

ðF̂ML
h;MÞ is less than half of CðF̂MC

h;MÞ, the cost of MC performed at the finest level Lϵmax ¼ 4, whereM≡MLϵmax
.

The difference in cost increases for the lower tolerance of 0.0015 since Lϵmax increases from 4 to 5 and hence
the fine‐scale MC simulations become more expensive. Applying KDE‐based smoothing to the indicator
function InðYlÞ at each level l ¼ 0; …; Lϵmax , and using a bandwidth δK; l computed via the procedure in
Appendix A2, yields about a factor of 3 savings for ϵ¼ 0.004 and nearly half an order‐of‐magnitude speedup
for ϵ¼ 0.0015. Smoothing based on a third‐degree polynomial consistently performs more poorly than its
KDE‐based counterpart, and increasing the polynomial order reduces the efficiency even further. For exam-
ple, at ϵ¼ 0.004, the N real‐averaged cost using a ninth‐degree polynomial is around 93 s, while that using a
third‐degree polynomial is only about 72 s. We conclude that kernel‐based smoothing outperforms the
polynomial‐based techniques.

The different degrees of computational savings obtained by MLMC and MLMCsm compared to MC can be

explained by comparing the evolution of ~V ½InðQMl
Þ� with level to that of ~V ½InðYlÞ� and ~V ½gnðYlÞ�, where

~V denotes a sample estimate of V and gn is a smooth approximation of In. For a single run with ϵ¼ 0.004,

Figure 5a demonstrates that while ~V ½InðQMl
Þ� remains approximately constant as the spatial resolution

increases, ~V ½InðYlÞ� and ~V ½gnðYlÞ� decay as the spatial mesh is refined. That results in fewer required

Figure 3. Estimated CDF of the QoI Q in the single‐phase flow problem obtained via MLMC, MLMCsm (KDE and poly),
HLSS‐MLMC, and HLSS‐MLMCsm, for tolerance ϵ¼ 0.004. The MC estimator computed on the finest level is shown for
reference.
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Figure 5. Evolution of the variance (a) and number of samples (b) with level for a single run of the single‐phase flow
problem and ϵ¼ 0.004.

Figure 4. Computational cost (in seconds) of the standard and HLSS‐enhanced multilevel estimators and their
fine‐resolution MC counterpart for the single‐phase flow test bed at tolerances ϵ¼ 0.004 (left) and 0.0015 (right).
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samples at higher levels of discretization (see Figure 5b). The faster decay

of ~V ½gnðYlÞ� compared to ~V ½InðYlÞ�makes MLMCsmmore efficient than
its non‐smoothed counterpart, with the largest effects seen for KDE‐based
smoothing.

Next, we investigate the speedups achieved by HLSS‐MLMC and
HLSS‐MLMCsm and compare them to the gains from MLMCsm (KDE).
Given the different sampling architecture of HLSS, where at each level
we start from a single sample and then extend the sample size repeatedly
by a constant factor (in our case, 2), the procedure described in
Appendix C2 does not allow for a straightforward comparison. Instead,
we modify it as follows.

1. For each independent realization p¼ 1,… ,Nreal of HLSS‐MLMC/
HLSS‐MLMCsm, pick Nl for each level l to be the multiple of 2 closest
to its counterpart in MLMCsm (KDE).

2. Tweak this initial sampling design until the total estimator variance
across all levels is as close as possible, but still below, the mean square sampling error tolerance, ensuring
a monotonic decay in Nl with increasing l in the process.

3. Compare the resulting average cost, CðF̂HLSS ‐ML
h;M Þ or CðF̂HLSS ‐MLsm

h;M Þ, to that of MLMCsm (KDE).

Figure 4 shows that Latinized stratification produces even higher efficiency gains than KDE‐based smooth-
ing: The speedup is nearly an order of magnitude for ϵ¼ 0.004 and exceeds an order of magnitude for ϵ¼
0.0015. Combining HLSS with KDE‐based smoothing further increases the efficiency by about a factor of
2, as the additional variance reduction from the smoothing reduces the number of samples in some of the
levels and still allows the estimator to satisfy the sampling error tolerance.

To define an equivalent to max0 ≤ n ≤ S ~V ½InðYlÞ� for HLSS‐MLMC (a similar reasoning applies to HLSS‐

MLMCsm), we consider the variance contribution at each level l for MLMC,N−1
l max0 ≤ n ≤ SV½InðYlÞ�, that

is, consider the quantity Nl · max0 ≤ n ≤ SV½ÎHLSS
n ðYlÞ�. The use of HLSS yields a higher variance reduction

compared to MLMC and MLMCsm at the coarser levels (Figure 5a). Thus, it is responsible for the higher
computational efficiency of the HLSS‐enhanced multilevel estimators, with MLMCsm displaying the largest
variance reduction. The rise in variance toward the finer grids for HLSS‐MLMC should be interpreted with
caution because the numbers of samples computed on those fine‐resolution levels are small and, hence, the

corresponding sample estimates of V½ÎHLSS
n ðYlÞ� become less reliable. Moreover, the equivalency defined

above is only an approximation.

Figure 5b shows the breakdown of the numbers of samples on the various levels, for a single run and ϵ¼
0.004, for theHLSS‐MLMCandHLSS‐MLMCsm algorithms. The lower numbers of samples for these estima-
tors compared to their standard multilevel counterparts, particularly on the coarser levels, reflect the signifi-
cant variance reduction achieved through the Latinized stratification of the input sample space.

Finally, to demonstrate that our multilevel estimators satisfy the required error tolerance, one could com-
pute the ratio εest/ϵ, averaged overNreal runs. However, at the finest levels, the low number of samples makes
the sample estimate of the root mean square discretization error, εdis, less reliable (see section 2.3). Figure 6
displays the ratio of total root MSE to total tolerance only for MLMC; for the other multilevel variants, we
remove the discretization portion from the total error and compare the resulting error to the corresponding
fraction of the total tolerance. We find this ratio to be less than one for all our multilevel estimators, both at
ϵ¼ 0.004 and 0.0015.

We conclude that for our 1‐D problem, both KDE‐based smoothing of the indicator function and Latinized
stratification at each level improve upon the efficiency of a non‐smoothed multilevel estimator, with the lat-
ter of the two yielding the highest cost reduction, that is, about an order of magnitude compared to
fine‐resolution MC for Oð10−3Þ error tolerances.
4.2. Two‐Phase Flow

For the problem described in section 3.2, Figure 7 shows the water saturation, S1, and pressure, P, at break-
through time (q¼ 2,856 days) for one realization of the permeability field k at a spatial resolution of 128 ×

Figure 6. Values of the ratio εest/ϵ for MLMC, the ratio εsam/ϵsam for HLSS‐
MLMC, and the ratio (εsam + εsmooth)/(ϵsam + ϵsmooth) for MLMCsm (poly
and KDE) and HLSS‐MLMCsm, at all considered tolerances ϵ for the
single‐phase flow problem.

10.1029/2019WR026984Water Resources Research

TAVERNIERS ET AL. 13 of 25



128 cells (i.e., at level l¼ 4). The QoI Q is the time of water breakthrough
at the right boundary, Γr. We estimate its CDF F(q) on the interval 0≤ q≤
10,950 days (∼30 years) using S+ 1¼ 10,951 interpolation points. This
interval was chosen based on our observation that over 99% of sampled
breakthrough times fell below 10,950 days; we set Q¼ 10,950 days for
runs where breakthrough did not occur within that time frame.

As the early time process is highly nonlinear, we choose the first five time
steps to be less than or equal to 50 days to ensure convergence of the
Newton‐Raphson iterations. The time step is then fixed to 50 days for
the remainder of the simulation. If a certain time step does not con-
verge,the time step is cut in half and taken twice. By doing so, differences
in temporal discretization are minimized. The domain D is discretized
using a hierarchy of spatial grids TMl with l ¼ 0; … ; Lϵ

max , where Ml¼
4Ml− 1, M0¼ 64 (an 8 × 8 grid), and Lϵmax ¼ 3 , 4, and 5 for tolerances
ϵ¼ 0.06, 0.04, and 0.02, respectively. Following the reasoning of
section 4.1, we set Nmax¼ 50,000 and Nmax,strat¼ 215¼ 32,768.

Figure 8 displays the CDF approximations obtained via the different
MLMC estimators at ϵ¼ 0.04, along with a fine‐grid reference MC estima-
tor. The biggest difference between MLMC and fine‐grid MC occurs for
HLSS‐MLMC, which yields a more noisy approximation. Recall that the
tolerance here is an order of magnitude higher than that used in Figure 3
(i.e., 0.04 vs. 0.004). Lowering ϵ to 0.02 reduces the discrepancy with the
reference MC estimate, as expected. Moreover, KDE‐based smoothing of
the indicator function dampens this noise. The use of the L1 or L2 norm
instead of the L∞ norm might improve error control and, hence, reduce
noise in the CDF approximation.

Figure 9 shows that (non‐smoothed) MLMC leads to a modest reduction
in computational cost compared to fine‐resolution MC, amounting to
nearly half an order of magnitude at the lowest tolerance, ϵ¼ 0.02, with
the added discretization levels again increasing the discrepancy between
both estimators' performances. KDE‐based smoothing of the indicator
function InðYlÞ at each level yields significantly higher cost savings.
For ϵ¼ 0.06, the speedup is about an order of magnitude and remains
approximately constant when the tolerance is decreased to 0.04. Further

reduction in the tolerance (to 0.02) increases the speedup to almost 2 orders of magnitude. On the other
hand, smoothing with a third‐degree polynomial yields almost no additional cost savings compared to its
non‐smoothed counterpart. This result is in line with previous findings (D. Lu et al., 2016), according to
which fine‐resolution MC of a related two‐phase flow problem could be faster than MLMCsm (poly) at tol-
erances of Oð10−2Þ. Increasing the polynomial degree to 9 again decreases performance. We conclude that
KDE‐based smoothing offers a major advantage over polynomial techniques in realistic multiphase flow set-
ups at tolerances relevant to engineering applications.

Next, we consider HLSS‐MLMC and HLSS‐MLMCsm and again follow the procedure described in
section 4.1 to determine the appropriate numbers of samples Nl in each level l for these estimators.
Figure 9 demonstrates that HLSS‐MLMC is more efficient than MLMCsm (KDE) for ϵ¼ 0.06 but less effi-
cient than the latter for ϵ¼ 0.04 and 0.02. However, the cost of both methods is on the same order of magni-
tude for all tolerances; the exact values ofC should be interpreted with caution because they are an average
over a finite number of independent runs (Nreal¼ 5) and hence will vary with Nreal to some extent. Adding
KDE‐based smoothing of the indicator function improves the performance of the HLSS‐enhanced estimator,
making it more efficient than MLMCsm (KDE) across all tolerances.

Figure 10a illustrates the variance reduction from KDE smoothing and Latinized stratification responsible
for the large cost savings achieved with MLMCsm (KDE) and HLSS‐MLMC, respectively. As in the

Figure 7. Water saturation S1 (a) and pressure P in MPa (b) at
breakthrough time q¼ 2,856 days for the permeability field k shown in
Figure 1.
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single‐phase flow problem, Latinized stratification provides more variance reduction at the coarser levels,
reducing the numbers of samples at those levels (Figure 10b). Polynomial smoothing follows the trend of
its non‐smoothed counterpart and is only slightly more efficient than the latter (it satisfies the
discretization error tolerance with only four levels). KDE‐based smoothing achieves a much larger
variance reduction and associated decrease in the number of samples with level. This causes the run
shown in Figure 10 to carry a lower computational cost than its polynomial‐smoothed counterpart despite
employing one extra level. Similar behavior was observed for the other runs, leading to a lower average
cost for MLMCsm (KDE) compared to MLMCsm (poly).

The above results suggest that, for two‐phase flow, our implementation of MLMC provides significant com-
putational savings even at relatively high tolerances. Specifically, it yields up to nearly 2 orders of magnitude
speedup compared to MC when KDE‐based smoothing is applied to the indicator function or LSS is
employed at each level. At tolerances of Oð10−3Þ and Oð10−4Þ, which fall within the pre‐asymptotic regime
(Mukherjee, 2013), 3 or more orders of magnitude in cost savings could be achieved by these methods.

While our numerical tests are done with efficient MATLAB® codes, lower speedups may be observed when
performed with highly efficient commercial software that scales better with the number of grid cells in the

Figure 8. Estimated CDF of the breakthrough time Q (in days) in the two‐phase flow problem obtained via MLMC,
MLMCsm (KDE and polynomial), HLSS‐MLMC, and HLSS‐MLMCsm, for tolerance ϵ¼ 0.04. The MC estimator
computed on the finest level is shown for reference.

Figure 9. Computational cost (in hours) of the standard and HLSS‐enhanced multilevel estimators and their
fine‐resolution MC counterpart for the two‐phase flow test bed at tolerances ϵ¼ 0.06, 0.04, and 0.02 (from left to right).
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domain. Nevertheless, we still expect our smoothed standard MLMC and HLSS‐MLMC algorithms to
achieve order‐of‐magnitude computational savings at tolerances of 0.02 or lower on commercial platforms.

5. Conclusions

We proposed novel MLMC algorithms to efficiently estimate cumulative probability distributions (excee-
dance probabilities) of QoIs. The methods either employ kernel‐based smoothing of the indicator function
within a standard multilevel approach or replace standardMC at each level of discretization with a sampling
design that combines LHS with stratification known as HLSS. We assess the performance of the new estima-
tors, respectively, referred to as MLMCsm (KDE) and HLSS‐MLMC, on single‐ and two‐phase flow pro-
blems. In both cases, the source of parametric uncertainty is a spatially varying permeability that has a
lognormal distribution and an exponential autocovariance for its logarithm.

Our study yields the following major conclusions:

1. For 1‐D single‐phase flow, MLMCsm (KDE) and HLSS‐MLMC yield computational cost savings of,
respectively, about a half and a full order of magnitude compared toMC applied at the finest MLMC level
for error tolerances of Oð10−3Þ.

2. For 2‐D two‐phase flow, MLMCsm (KDE) and HLSS‐MLMC yield an even larger speedup compared to
MC applied at the finest MLMC level for error tolerances ofOð10−2Þ. Specifically, we find computational
time savings of up to nearly 2 orders of magnitude with our MATLAB® simulator.

Figure 10. Evolution of the variance (a) and the number of samples (b) with level for a single run of the two‐phase flow
problem and ϵ¼ 0.04.
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3. KDE‐based smoothing consistently outperforms the polynomial‐based techniques regardless of polyno-
mial degree for both 1‐D single‐phase and 2‐D two‐phase flows, with the biggest discrepancy occurring
for the latter problem where polynomial smoothing barely yields additional cost savings compared to
its non‐smoothed counterpart.

4. Latinized stratification produces a larger variance reduction at the coarser levels compared to KDE‐based
smoothing of the indicator function.

5. Combining KDE‐based indicator function smoothing with Latinized stratification at each level yields the
most efficient estimator.

For non‐smoothed MLMC, polynomial‐smoothed MLMC, KDE‐smoothed MLMC, and our HLSS‐MLMC

algorithm, the construction of an approximate CDF F̂ h;M via (8) can lead to a decreasing sequence of values

F̂ h;MðqnÞwith q0 <…< qS (Giles et al., 2017). Even when this sequence is non‐decreasing, the resulting pie-

cewise polynomial interpolant F̂ h;MðqÞ is not necessarily non‐decreasing. One could perform a two‐stage

post‐processing of the F̂ h;MðqnÞ to ensure the resulting point values are non‐decreasing, so that the piecewise
polynomial interpolation of these modified values yields a monotonic CDF (Giles et al., 2017). We applied
this post‐processing step only to produce the CDF figures in section 4 because it does not affect the perfor-
mance of the MLMC estimators or any subsequent uncertainty quantification analysis performed with the
resulting CDF approximations. In future work, we will embed such procedures in the algorithm itself rather
than applying them as a post‐processing step.

The current strategy to compare the performance of MLMCsm (KDE) and HLSS‐MLMC is rather ad hoc,
and we plan to replace it by a more automated approach to make this comparison both easier and more rig-
orous. This may involve additional tweaks to the HLSS algorithm, which was originally designed to run on a
single discretization level and could be optimized further within the multilevel context. Another direction
for future research concerns a more thorough characterization of the distribution's tails. The current L∞

norm‐based approach is not optimized for this task, and the L1 or L2 norm may be a more suitable choice.

Multilevel methods belong to the wider class of “multifidelity” approaches which involve a combination of
models with varying degrees of fidelity (Müller et al., 2014; O'Malley et al., 2018; Peherstorfer et al., 2016).
The maximum variance reduction (and, hence, speedup) MLMC can achieve depends on the degree of cor-
relation between the levels (Gorodetsky et al., 2020). For complex physics, where refining the grid actually
resolves more features, this correlation will be lower, and so will be the variance reduction achieved by going
from coarser to finer grids. In the problems discussed here, the correlation between levels is sufficiently high
for MLMC to achieve a notable variance reduction.

Appendix A: Standard MLMC

A1. Standard MLMC Without Smoothing

The MC estimator for τn;M≡E½InðQMÞ� based on NMC independent samples of QM is defined by

ÎMC
n;M ¼ 1

NMC
∑
NMC

j¼1
InðQðjÞ

M Þ; (A1)

whereQðjÞ
M is the jth sample of QM and M is the number of grid cells in the spatial meshTM. Its variance is

V½ÎMC
n;M � ¼

1
NMC

V½InðQMÞ�: (A2)

Rather than considering a single resolution (i.e., value of M), we can look at a sequence of approximations
QMl

(l¼ 0,… ,Lmax) of Q associated with corresponding discrete meshes TMl (Heinrich, 1998, 2001). Here

Ml denotes the number of grid cells in meshTMl, such thatMl− 1¼ 2−dMl where d is the spatial dimension,
and MLmax≡ M. This last condition enables a performance comparison with the MC estimator in (A1). The
use of multiple spatial resolutions allows one to generate cheap‐to‐compute samples on a coarse mesh
and then gradually correct the resulting estimate of Fh,M by sampling on finer grids, where generating a rea-
lization is more computationally expensive. Then τn,M can be rewritten as a telescopic sum
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τn;M ¼ E½InðQM0
Þ�þ∑

Lmax

l¼1
E½InðQMl

Þ−InðQMl − 1
Þ�≡∑

Lmax

l¼0
E½InðYlÞ�; (A3a)

where InðYlÞ with l¼ 0,… ,Lmax has the form

InðYlÞ ¼
InðQMl

Þ−InðQMl − 1
Þ 1 ≤ l ≤ Lmax

InðQMl
Þ l ¼ 0:

(
(A3b)

This procedure yields the following MLMC estimator for τn,M

ÎML
n;M ¼ ∑

Lmax

l¼0
ÎMC

n ðYlÞ ¼ ∑
Lmax

l¼0

1
Nl

∑
Nl

j¼1
InðY ðjÞ

l Þ; (A4)

which has a variance

V½ÎML
n;M � ¼ ∑

Lmax

l¼0

1
Nl

V½InðYlÞ�: (A5)

(We employ the shorthand notation ML to refer to MLMC in estimator expressions.) MLMC achieves var-
iance reduction through the fact that V½InðYlÞ� decreases with l. That is in contrast to V½InðQMl

Þ�, which
remains approximately constant for different values of l. This means that MLMC can achieve the same sam-
pling error as MC performed at its finest level by computing fewer samples Nl at higher l, where sampling is
more costly. If V½InðYlÞ� decreases fast enough with l, this can make the overall computational cost of the

estimator ÎML
n;M lower than that of its MC counterpart, ÎMC

n;M .

It follows from (7) and (A5) that the MSE of the non‐smoothed MLMC estimator F̂ML
h;M for Fh satisfies the

inequality

E½jjFh − F̂
ML
h;MÞjj2∞�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðεML
est Þ2

≤ E½jjF̂ML
h;M − E½F̂ML

h;M
�jj2∞�þjjFh;M − Fhjj2∞

≤ max
0≤ n≤ S

∑
Lmax

l¼0
N−1

l V½InðYlÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðεML

samÞ2

þ max
0 ≤ n ≤ S jE½InðQMLmax

Þ−InðQÞ�j2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðεML

dis Þ2
:

(A6)

To achieve a root mean square error (RMSE) of at most ϵ, we introduce a tunable parameter α∈ (0,1) and

choose εML
sam ≤

ffiffiffi
α

p
ϵ and εML

dis ≤
ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
ϵ. The value of α determines the relative magnitudes of the allowable

sampling error and discretization error (bias), which, along with an optimal choice of the number of samples
at each level (see Appendix C1), aids in minimizing the total computational cost for a given tolerance ϵ. We
estimate the bias via the triangle inequality,

max
0 ≤ n ≤ S

jE½InðYLmax Þj ≈
max

0 ≤ n ≤ S
jE½InðQMLmax

Þ−InðQÞ�j: (A7)

Hence, the maximum level Lmax of an MLMC simulation, for a given tolerance ϵ, is determined by verifying

that the condition max0 ≤ n ≤ SjE½InðYLÞj ≤
ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
ϵ is satisfied for the current level L. If it is not, a new

level is added; otherwise, Lmax¼ L.

A2. Standard MLMC With Polynomial‐Based Smoothing

The jump discontinuity in the indicator function may lead to a slow decay of V½InðYlÞ�, causing MLMC to
become slower thanMC for sufficiently large values of the error tolerance ϵ (D. Lu et al., 2016). To accelerate
the variance decay and thereby improve the computational efficiency of MLMC, a sigmoid‐type smoothing
function can be used to remove the singularity inInðYlÞ. For example, polynomial‐based smoothing (Giles
et al., 2015) has been used to accelerate MLMC simulations in reservoir engineering (D. Lu et al., 2016).
Polynomial smoothing requires the user to specify both an appropriate smoothing parameter or

10.1029/2019WR026984Water Resources Research

TAVERNIERS ET AL. 18 of 25



“bandwidth” δG,l at each level l, which defines the distance over which the discontinuity in InðQMl
Þ is

smeared out, and the polynomial degree p of, at most, r+ 1 with r the number of times the (unknown)
PDF f(q) is continuously differentiable. Then InðYlÞ is replaced by gn(Yl) defined by

gnðYlÞ ¼
gpG

QMl
− qn

δG; l

� �
− gpG

QMl − 1
− qn

δG; l

� �
1 ≤ l ≤ Lmax

gpG
QMl

− qn
δG; l

� �
l ¼ 0;

8>>><
>>>: (A8)

where gpG is a smoothing polynomial of degree p computed through the procedure described in Giles et al.
(2015).

The MSE of the polynomial‐smoothed MLMC estimator F̂MLsm
h; δG ;M for Fh is bounded by

E½jjFh − F̂
MLsm
h; δG ;MÞjj2∞�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðεMLsm
est Þ2

≤ E½jjF̂ smML
h; δG ;M − E½F̂ML

h; δG ;M �jj2∞�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðεML

samÞ2
þ jjFh;M − Fhjj2∞|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

ðεML
dis Þ2

þE½jjF̂ML
h; δG ;M �−Fh;M jj2∞|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðεML
sm Þ2

:

(A9)

Compared to (A6), (A9) contains an additional term ðεML
sm Þ2, which is the (mean square) smoothing error. To

achieve an RMSE of at most ϵ, we may choose εML
dis ≤

ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
ϵ, the same as for the non‐smoothed MLMC

estimator, such that F̂ML
h; δG ;M satisfies the discretization error tolerance for the same number of levels as its

non‐smoothed counterpart. Choosing εML
sam ≤

ffiffiffiffiffiffiffiffi
α=2

p
ϵ and εML

sm ≤
ffiffiffiffiffiffiffiffi
α=2

p
ϵ then enables us to satisfy the total

error tolerance.

Given the above constraint on εML
sm , the optimal value for the bandwidth δG,l at each level l is such that εML

sm is as

close as possible, but still smaller than,
ffiffiffiffiffiffiffiffi
α=2

p
ϵ. Choosing a larger value for δG,l yields a bigger value for εML

sm ,

which does not allow us to satisfy the smoothing error tolerance. Choosing a smaller value for δG,l yields a
lower reduction in V½gnðYlÞ� and therefore a less efficient algorithm. A possible strategy to find the optimal
δG,l consists of the following steps (D. Lu et al., 2016).

1. Start with level l¼ 0.
2. Estimate δG,l,n for each interpolation point qn in Sh¼ {qn,n¼ 0,… , S} by solving

1
N0

l

∑
N0

l

j¼1
gG

QðjÞ
Ml

− qn
δG; l; n

 !
−In QðjÞ

Ml


 �" #					
					 ¼

ffiffiffi
α
2

r
ϵ (A10)

based on a set of initial samples fQðjÞ
Ml
gN

0
l

j¼1
.

3. Define the smoothing parameter δG,l as

δG; l ¼ max
0 ≤ n ≤ S

δG; l; n: (A11)

4. Repeat Steps 2 and 3 for each new level l.

Appendix B: Stratified Sampling and Latin Hypercube Sampling

B1. Stratified Sampling

In stratified sampling (SS), the sample space Ω of the random inputs ξ ¼ (ξ1,… ,ξp)
⊤ is divided into r

mutually exclusive and exhaustive subsets or strataDk (k¼ 1,… ,r). All NSS samples, sj¼ [sj 1,… ,sjp] with
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j¼ 1,… ,NSS, are generated by randomly drawing Nk samples within the strata Dk , with ∑ r
k¼1Nk ¼ NSS,

according to

sðkÞji ¼ F−1
ξi
ðUj

ikÞ; i ¼ 1; … ; p: (B1)

Here Fξi is the CDF of ξi and Uj
ik are independent, uniformly distributed samples on ½ζ lowik ¼ Fξ iðξ lowik Þ;

ζuppik ¼ Fξiðξuppik Þ�, where ½ξ lowik ; ξuppik � are the one‐dimensional strata Dki with Dk≡Dk1 × … ×Dkp.

Let pk denote the probability of stratumDk, that is,pk ¼ Pðξ ∈ DkÞ. Then the SS estimator for τn,M based on
NSS independent samples of QM is defined by

ÎSS
n;M ¼ ∑

r

k¼1

pk
Nk

∑
Nk

m¼1
InðQðm; kÞ

M Þ; (B2)

where Qðm; kÞ
M is the mth sample of QM that has a corresponding input vector (ξ) in Dk . The variance of

ÎSS
n;M is

V½ÎSS
n;M � ¼ ∑

r

k¼1

σ2k; np
2
k

Nk
; (B3)

where

σ2k; n ¼ 1
pk

Z
Dk

ðInðQMðsÞÞ−μk; nÞ2dFξðsÞ (B4)

with

μk; n ¼ 1
pk

Z
Dk

InðQMðsÞÞ dFξðsÞ: (B5)

Here μk,n andσ2k; n represent, respectively, the mean and variance ofInðQMðξÞÞwith ξ ∈ Dk. We will refer to

these quantities as the “strata means” and “strata variances”, respectively, from now on, with the under-
standing that they apply to the output space (of Q) rather than the input space (of ξ).

A common choice forNk is proportional allocation (Fishman, 1996), according to whichNk¼ pkNSS and (B2)
becomes

ÎSS
n;M ¼ 1

NSS
∑
r

k¼1
∑
Nk

m¼1
InðQðm; kÞ

M Þ: (B6)

In the limit of Nk¼ 1 (i.e., one sample per stratum) for all k¼ 1,… , r, the variance is (McKay et al., 2000)

V½ÎSS
n;M � ¼ VðÎMC

n;MÞ−
1

N2
SS

∑
NSS

j¼1
ðμj; n − τn;MÞ2: (B7)

This result demonstrates the variance reduction achieved through stratification.

B2. Latin Hypercube Sampling

In Latin hypercube sampling (LHS), the range of the CDFsFξi (i¼ 1,… ,p) is subdivided intoNLHS strataDik

(k¼ 1,… ,NLHS) of equal probability 1/NLHS; that is, stratification occurs in probability space. Only one sam-
ple is drawn from each stratum. The Cartesian product of these strata across the stochastic input dimensions
yields Np

LHS cells mj¼ (mj 1,mj 2,… ,mjp) with equal probability N−p
LHS, where mji is the interval number of

component ξi represented in cell j (j ¼ 1; …; Np
LHS). A Latin hypercube sample of size NLHS is then obtained

by randomly selecting NLHS cellsm1; …; mNLHS , with the condition that for each i the set fmjigNLHS

j¼1 is a ran-
dom permutation of the integers 1,… ,NLHS. This yields samples sj¼ [sj 1,… , sjp] (j¼ 1,… ,NLHS) with
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sðkÞji ¼ F−1
ξ i
ðUðjÞ

ik Þ; i ¼ 1; …; p; (B8)

where theUðjÞ
ik are independent, uniformly distributed samples on ½ζ lowik ; ζuppik �with ζ lowik ¼ ðk − 1Þ=NLHS and

ζuppik ¼ k=NLHS.

The LHS estimator for τn,M based on NLHS independent samples of QM is written as

ÎLHS
n;M ¼ 1

NLHS
∑
Np

LHS

j¼1
wjInðQðjÞ

M Þ; (B9)

where wj is an indicator variable defined as

wj ¼
1 if cell j is in the sample

0 otherwise:

�
(B10)
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Appendix C: Computation of F̂MLsm
h; δK;M and F̂HLSS ‐ML

h;M

C1. Standard Kernel‐Smoothed MLMC
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C2. HLSS‐MLMC
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Data Availability Statement

There are no data sharing issues since all of the numerical information is provided in the figures produced by
solving the equations in the paper.
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