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Predictions of the total energy deposited into a brain tumor through X-ray irradiation 
are notoriously error-prone. We investigate how this predictive uncertainty is affected by 
uncertainty in both the location of the region occupied by a dose-enhancing iodinated 
contrast agent and the agent’s concentration. This is done within the probabilistic 
framework in which these uncertain parameters are modeled as random variables. We 
employ the stochastic collocation (SC) method to estimate statistical moments of the 
deposited energy in terms of statistical moments of the random inputs, and the global 
sensitivity analysis (GSA) to quantify the relative importance of uncertainty in these 
parameters on the overall predictive uncertainty. A nonlinear radiation–diffusion equation 
dramatically magnifies the coefficient of variation of the uncertain parameters, yielding a 
large coefficient of variation for the predicted energy deposition. This demonstrates that 
accurate prediction of the energy deposition requires a proper treatment of even small 
parametric uncertainty. Our analysis also reveals that SC outperforms standard Monte Carlo, 
but its relative efficiency decreases as the number of uncertain parameters increases from 
one to three. A robust GSA ameliorates this problem by reducing this number.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In addition to surgery and chemotherapy, radiotherapy is one of the main treatment methods for brain tumors. Its goal 
is to either destroy a tumor or to prevent it from developing further, and it may serve as the only treatment (e.g., for 
inoperable tumors) or in combination with surgery (to kill any remaining microscopic tumor cells). X-rays are the primary 
type of radiation involved in radiotherapy; their interaction with the medium in which they propagate produces energetic 
electrons which, in turn, lose their energy as they are slowed down through collisions. To enhance the energy dose absorbed 
by the tumor, a contrast agent based on a substance with high atomic number Z , such as iodine, may be injected [1]. This 
increases the photo-electric absorption of X-rays (the photo-electric mass attenuation coefficient increases strongly with Z
[2]), one of the main radiation-matter interactions at photon energies in the keV range. The photo-electric effect may also 
result in the emission of Auger electrons that can equally contribute to the overall energy deposition. Within the keV energy 
range, X-rays are also likely to undergo Compton scattering and transfer their energy to existing free electrons; however, 
this process has a mass attenuation coefficient that is nearly independent of Z [2].

* Corresponding author.
E-mail address: tartakovsky@stanford.edu (D.M. Tartakovsky).
http://dx.doi.org/10.1016/j.jcp.2017.07.008
0021-9991/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2017.07.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:tartakovsky@stanford.edu
http://dx.doi.org/10.1016/j.jcp.2017.07.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2017.07.008&domain=pdf


140 S. Taverniers, D.M. Tartakovsky / Journal of Computational Physics 348 (2017) 139–150
Temporal and K -edge subtraction methods [3] are often used to infer the contrast agent’s concentration within the brain 
and tumor, which inevitably introduces measurement errors and uncertainty in the agent’s concentration estimates. As the 
agent preferentially accumulates in the tumor interstitium due to the increased permeability of the broken blood-brain 
barrier, it diffuses into the surrounding healthy brain tissue, introducing uncertainty in the agent’s spatial extent during 
the irradiation procedure. These and other sources of parametric and structural uncertainty render simulation-based predic-
tions of the amount and spatial distribution of the energy deposited in the tumor uncertain. Adverse effects of predictive 
uncertainty on the efficacy of radiotherapy and clinical outcomes have been well documented [e.g., [4–8]].

The effects of iodine concentration on dose enhancement [9] and the uniformity of the dose distribution within the 
tumor [10] have been analyzed using the Monte Carlo N-particle (MCNP) method [11,12]. The latter simulates trajectories 
of small photon packets whose energy and propagation direction are statistically selected. The method was used to model 
interactions of X-ray photons with the brain/tumor matter, and transport of electrons released as a result of these interac-
tions. MCNP simulations have high fidelity, but require a large number of runs due to the slow convergence of Monte Carlo 
simulations (MCS) and often become computationally prohibitive.

Alternative uncertainty quantification techniques aim to outperform MCS in terms of computational efficiency. They are 
often subdivided into intrusive (moment differential equations [e.g., [13]], stochastic Galerkin methods [e.g., [14]], etc.) and 
nonintrusive (stochastic collocation or SC [e.g., [15]], multilevel Monte Carlo [e.g., [16]], etc.) groups. The former strategies 
require one to modify an underlying (deterministic) solver but are often more robust and computationally efficient, while 
the latter rely on repeated runs of the existing solver and amount to “accelerated” (relative to standard MCS) sampling of the 
parameter space. We adopt the second strategy because it has the best chance of being adopted in design of a radiotherapy 
treatment.

Depending on the number of uncertain parameters and/or the degree of a problem’s nonlinearity, SC might or might not 
outperform MCS [17]. We investigate the relative performance of these two methods in the context of a two-dimensional, 
flux-limited radiation–diffusion equation [18,19], which provides a continuum-level description of energy deposition into 
an X-ray irradiated brain tumor. We assume that the X-rays are monochromatic and in the keV range [20], and represent 
the region over which the contrast agent spreads out as a square inset in a larger square domain representing the brain. 
The coordinates of the center of this inset and the effective atomic number in this area, which depends on the agent’s 
concentration, are uncertain and treated as uniformly distributed random variables.

A mathematical formulation of this problem is given in Section 2. Section 3 contains a description of the spatial 
discretization method and time advancement algorithm used to obtain a numerical solution to the equilibrium radiation–
diffusion equation, as well as the statistical moment estimators of the deposited energy computed with SC and MCS. In 
Section 4 we perform a number of numerical experiments, whose goal is to ascertain the relative performance of these two 
methods. Results of a global sensitivity analysis, whose aim is to reduce the number of uncertain parameters used in SC, 
are presented in Section 5. Major conclusions drawn from these experiments are summarized in Section 6.

2. Problem formulation

Let us assume that the collisional mean free path of the photons is small relative to the system (i.e., brain) size, and 
that the radiation field is isotropic and in thermal equilibrium with the medium. Then transport of monochromatic1 X-rays 
through a planar (two-dimensional) brain’s segment D is described by an equilibrium radiation–diffusion equation [19,21]

∂ E

∂t
= ∇ · [D(E,∇E,x)∇E], x ∈ D, t > 0. (1a)

Here E(x, t) is the radiation energy density at point x = (x1, x2)
� and time t , and D is the diffusion coefficient given by [21]

D(E,∇E,x) = cE

γ E/D Z + |∇E| , (1b)

where c is the speed of light, γ combines a number of physical constants and ensures dimensional correctness, D Z =
Z−3 E3/4 is proportional to the diffusion coefficient without flux-limiting, and Z(x) is the effective atomic number. The 
two-dimensional square domain D ≡ (0, L) × (0, L) contains a subregion T = [L/2 − w/2, L/2 + w/2] × [L/2 − w/2, L/2 +
w/2] with w = L/5, representing the tumor (Fig. 1). Upon injection, an iodinated contrast agent spreads over a subdomain 
D2 = D \ D1 = [c1 − w/2, c1 + w/2] × [c2 − w/2, c2 + w/2], which may fully or partially overlap with T depending on 
the values of c1 and c2 (Fig. 1). The medium in D2 has an uncertain effective2 atomic number Z2, which is smaller than 
the atomic number of the contrast agent Zca (for iodine, Zca = 53) and larger than the effective atomic number of either 
healthy brain tissue (for x ∈ D2 \ T ) or tumor matter (for x ∈ D2 ∩ T ). Since the effective atomic numbers of both healthy 
and tumorous brain matter are much smaller than Zca, we assume them both to equal that of healthy brain tissue. The latter 

1 The use of monochromatic radiation, in which all photons have an identical energy, obviates the need for frequency-averaging of the spectral radiation 
energy density, i.e., for a gray approximation.

2 A composite medium may be characterized by an effective atomic number, which depends on its composition and the energy of the X-ray photons.
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Fig. 1. Computational domain D for the radiation–diffusion problem. Subdomains D \ T , T and D2 represent healthy brain tissue, tumor and region 
occupied by the contrast agent, respectively.

is set to Zhb = 5, which is an average value for grey/white human brain matter over the keV range of photon energies [22]. 
Hence,

Z(x) =
{

Zhb for x ∈ D1

Zhb < Z2 < Zca for x ∈ D2.
(1c)

Equation (1) is subject to the initial condition

E(x,0) = E in(x), x ∈ D (2a)

and boundary conditions (see Fig. 1)[
E − 2D

∂ E

∂x1

]
x1=0

= 4F in,

[
E + 2D

∂ E

∂x1

]
x1=L

= 4Fout, (2b)

∂ E

∂x2
= 0, x2 = 0 and L, (2c)

where F in and Fout are the half-range fluxes along the domain’s inlet (x1 = 0) and outlet (x1 = L), respectively. Derivation 
of the radiation (Marshak) boundary conditions (2b) can be found in, e.g., [19].

A quantity of interest (QoI) in this problem is the total energy deposition in T over a time horizon T ,

Etot =
T∫

0

∫
T

Ėabs(x, t)dxdt. (3a)

Here Ėabs(x, t) is the radiation energy absorbed per unit time and per unit surface area at position x and time t . Assuming 
that the radiation field is in thermal equilibrium with the medium through which it propagates [21],

Ėabs = 1

3
γ c Z 3 E1/4. (3b)

2.1. Dimensionless formulation

We define a reference energy density E0 by the relation γ w/E3/4
0 = 1.0, and introduce dimensionless variables and 

parameters

x̃ = x

w
, t̃ = tc

w
, ∇̃ = w∇, Z̃ = Z

Zhb
, Ẽ = E

Z 4
hb E0

. (4)

Then (1) takes the dimensionless form
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Fig. 2. Cell-centered finite volume discretization of the computational domain D.

∂ Ẽ

∂ t̃
= ∇̃ ·

(
Ẽ

Z̃ 3 Ẽ1/4 + |∇̃ Ẽ| ∇̃ Ẽ

)
, x̃ ∈ D̃. (5)

The initial and boundary conditions (2) are transformed in a similar manner. In what follows, we deal only with the dimen-
sionless quantities but omit the tildes ·̃ for notational convenience.

2.2. Statistical parametrization

Since the spatial extent and concentration of a contrast agent injected into the brain are always uncertain, we represent 
c = (c1, c2)

� , the center of the square D2 occupied by the agent, and Z2, the concentration-dependent effective atomic 
number, as random variables.3 The brain tumor’s location T , typically determined via X-ray-based Computed Tomography 
or Magnetic Resonance Imaging [23], is less uncertain and, hence, is treated deterministically.

To ensure D2 ⊂D, both c1 and c2 must belong to the interval [w/2, L − w/2] or its dimensionless counterpart [1/2, 9/2]; 
in a more realistic scenario, D2 overlaps with at least one quarter of the tumor region T . We therefore require c1 ∈
[5/2 − cH, 5/2 + cH] and c2 ∈ [5/2 − cV, 5/2 + cV] with 0 < cH ≤ 1/2 and 0 < cV ≤ 1/2. The minimum and maximum 
theoretical bounds on the dimensionless effective atomic number Z2 are 1.0 (no contrast agent) and 10.6 (only contrast 
agent), respectively. We allow for a more realistic composition of the medium in D2 by shrinking this interval to [Zmin, Zmax]
where Zmin = 2.0 and Zmax = 8.0. We assume that random variables c1, c2 and Z2 are mutually independent, uniformly 
distributed on their respective intervals, so that the random vector ξ = (ξ1 ≡ c1, ξ2 ≡ c2, ξ3 ≡ Z2)

� is characterized by a 
joint probability density function (PDF)

ρξ (s) =
3∏

i=1

ρξi (si), s ∈ �, (6)

with support � = [5/2 − cH, 5/2 + cH] × [5/2 − cV, 5/2 + cV] × [Zmin, Zmax], where ρξi is the marginal uniform PDF of the 
ith random variable ξi (i = 1, 2, 3). The size M of ξ (in our example, M = 3) is often referred to as a stochastic dimension, 
and a random solution of (5), E(x, t, ξ), is called a stochastic response surface.

3. Numerical algorithm

The response surface E(x, t, ξ) is defined on D × [0, T ] × �. Discretization in physical space (D), time ([0, T ]) and 
“probability space” (�) is discussed below.

3.1. Spatial discretization

The physical domain D is discretized with a nonuniform mesh, which consists of N grid cells in each spatial direction 
and is finest within D2 ∪T . We employ a cell-centered finite volume (CCFV) approach, in which the fluxes F are defined on 
the cell boundaries, and E represents the cell-averaged value (Fig. 2). This transforms (5) into a set of ordinary differential 
equations

3 Such a parameterization ignores spatiotemporal variability of Z2, which can arise, e.g., from time-varying injection of the contrast agent during irradi-
ation or spatial variations in the composition of the brain and tumorous tissues.
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dEi, j(t)

dt
= − Fi+1/2, j(t) − Fi−1/2, j(t)

�xi
− Fi, j+1/2(t) − Fi, j−1/2(t)

�x j
, (7a)

where the subscripts i = 1, . . . , N and j = 1, . . . , N indicate the position of a cell in the horizontal and vertical directions, 
respectively, and �xi and �x j are its dimensions in these respective directions. The flux Fi+1/2, j is computed as

Fi+1/2, j = −2Di+1/2, j
Ei+1, j − Ei, j

�xi+1 + �xi
, (7b)

where

Di+1/2, j = (Ei+1, j + Ei, j)

(
Ei+1, j + Ei, j

Dh
i+1/2, j

+ 4
|Ei+1, j − Ei, j|
�xi+1 + �xi

)−1

(7c)

and Dh
i+1/2, j is the harmonic mean of D Zi, j = Z−3

i, j E3/4
i, j over adjacent cells:

Dh
i+1/2, j = �xi�xi+1 D Zi, j D Zi+1, j

�xi+1 D Zi, j + �xi D Zi+1, j

. (7d)

The remaining fluxes Fi−1/2, j , Fi, j+1/2 and Fi, j−1/2 are defined in a similar manner.
Let the subscripts 0 and N + 1 denote ghost cells, in each of the spatial dimensions, lying along the boundary ∂D, just 

outside D. These cells are assigned the same dimensions (and the same effective atomic number) as the adjacent cells 
within D. Then, the boundary conditions (2b)–(2c) are approximated with

E0, j + E1, j

2
− 2D0, j

E1, j − E0, j

�x
− 4F in = 0, (8a)

E N+1, j + E N, j

2
+ 2D N+1, j

E N+1, j − E N, j

�x
− 4Fout = 0, (8b)

Ei,0 = Ei,1, Ei,N+1 = Ei,N , (8c)

for i, j = 1, . . . , N . Here D0, j and D N+1, j are given by

D0, j = E0, j

Z 3
1, j E1/4

0, j + |E1, j − E0, j|/�x1, j

, (8d)

D N+1, j = E N+1, j

Z 3
N, j E1/4

N+1, j + |E N+1, j − E N, j|/�xN, j

. (8e)

The Robin boundary conditions are nonlinear equations in E0, j or E N+1, j ( j = 1, . . . , N), which are solved iteratively during 
each time step.

3.2. Time discretization

A first-order implicit Euler method recasts (7) into

En+1
i, j − En

i, j

�t
= − F n+1

i+1/2, j − F n+1
i−1/2, j

�xi
− F n+1

i, j+1/2 − F n+1
i, j−1/2

�x j
, (9)

where the superscript n indicates discrete time tn = n�t , where �t is a time step. A Jacobian-free Newton–Krylov (JfNK) 
solver [24] is used as an iterative procedure for handling the nonlinear terms in the right-hand-side of (9). This avoids the 
explicit formation of the Jacobian while still benefiting from fast, Newton-like convergence. The time advancement of the 
solution from tn to tn+1 consists of the following steps:

1. Initialize the Newton iterate by setting En+1
i, j,k=0 = En

i, j for all i, j = 1, . . . , N , where k is the iteration number.

2. Inexactly solve the linear system J(En+1
k )δEk = −f(En+1

k ) for the Newton correction δEk using the Krylov solver GMRES 
with tolerance εK. The components of f are given by

f j·N+i = En+1
i, j,k − En

i, j

�t
+ F n+1

i+1/2, j,k − F n+1
i−1/2, j,k

�xi
+ F n+1

i, j+1/2,k − F n+1
i, j−1/2,k

�x j
(10)

for i, j = 1, . . . , N .
3. Perform the Newton step En+1

k+1 = En+1
k + δEk where δEk is the converged value of the kth Newton correction.

4. Perform steps 2 and 3 until a given tolerance εN is achieved.
5. Advance the solution to tn+1 by setting En+1 = En+1

K where K is the number of Newton iterations at convergence.

Details on our implementation of step 2 are provided in Appendix B.
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Finally, the dimensionless total energy deposition in the tumorous region T during (0, T ] is given by (see Appendix A)

Etot = �t

3

I∑
i=1

∑
j

∑
k

Z 3
j,k(Ei+1

j,k )1/4�x1, j�x2,k, (11)

where the sum is over the indices j and k corresponding to the grid cells located within T . Since the nonuniform grid 
resulting from the CCFV discretization does not necessarily align with the boundary ∂T of T , we define a uniform interpo-
lation grid with �xu

1 = �xu
2 = 5/N that exactly lines up with ∂T , and use the interpolated values of E and Z on this new 

grid to calculate Etot. A cubic spline interpolation for E and linear interpolation for Z was found to be optimal. The total 
energy deposition in T is then computed as

Etot = �t�xu
1�xu

2

3

I∑
i=1

Nu
1 +Nu

2∑
j=Nu

1 +1

Nu
1 +Nu

2∑
k=Nu

1 +1

Z 3
j,k(Ei+1

j,k )1/4, (12)

where Nu
1 = 2N/5 and Nu

2 = N/5.

3.3. Monte Carlo simulation and stochastic collocation

Statistical moments of E(x, t, ξ), or a QoI derived from E , are its weighted (with ρξ ) integrals over the support �

of ξ . For example, the ensemble mean and variance of Etot, the energy deposited in the tumor over time T , are defined, 
respectively, by

〈Etot〉 =
∫
�

Etot(s)ρ(s)ds and σ 2
Etot

=
∫
�

E2
tot(s)ρ(s)ds − 〈Etot〉2. (13)

Monte Carlo estimates of these quantities are

ÊMC
tot = 1

Nsam

Nsam∑
i=1

Etot(ηi) and σ̂ 2,MC
Etot

= 1

Nsam

Nsam∑
i=1

[Etot(ηi)]2 − [ÊMC
tot ]2. (14)

Here {ηi}Nsam
i=1 is a set of Nsam realizations of ξ sampled from (6). The MCS estimation error for the mean, EMC

est ≡ |〈Etot〉 −
ÊMC

tot |, is independent of the stochastic dimension M but has a slow decay rate of σEtot /
√

Nsam.
Stochastic collocation (SC) aims to achieve faster convergence through the use of better quadrature rules to approximate 

the weighted integrals in (13),

ÊSC
tot =

P∑
i=1

wi Etot(si) and σ̂ 2,SC
Etot

=
P∑

i=1

wi [Etot(si)]2 − [ÊSC
tot]2. (15)

Here si and wi are the nodes and weights of the quadrature formula, respectively; and P is the number of nodes. The goal 
of SC is to achieve the same estimation error as MCS by using P < Nsam collocation nodes. Since our uncertain parameters 
have uniform distributions, we employ the Clenshaw–Curtis quadrature rule [25,26], whose nodes and weights are rescaled 
from the standard interval [−1, 1] to the actual parameter ranges.

For stochastic dimension M > 1, product or tensor grid rules may be constructed through the tensor product of M uni-
variate rules [27]. The number of nodes in such grids increases exponentially with M , i.e., for k + 1 nodes in each dimension 
it behaves like (k + 1)M (the so-called “curse of dimensionality”). Instead, sparse grid rules may be built from univariate 
rules using the Smolyak algorithm [28], whose number of nodes increases approximately as (2M)k/k!, i.e., polynomially 
with M . We adopt the latter approach with univariate Clenshaw–Curtis quadrature rules [29], as implemented by Burkardt 
in Matlab.

4. Simulation results and discussion

We discretize the simulation domain (0, 5) × (0, 5) into N = 20 grid cells in each direction, and the time horizon (0, T =
1.0) with �t = 0.5 × 10−2 time steps.4 We set E in = 5.0, F in = 20.0 and Fout = 0; the latter condition corresponds to a 
vacuum boundary, and ignores any black-body radiation emitted by the medium surrounding the brain near the exit point 
of the radiation. The JfNK coupling has a convergence tolerance of εN = 10−3 for the Newton iteration and εK = 10−3 for 
the GMRES algorithm. The computations were performed on an Intel Core i7 machine running at 4 GHz.

4 Numerical experiments using longer time horizons yielded similar results for the comparison between SC and MCS, and for the influence of the 
statistical moments of the uncertain parameters on those of the total energy deposition in the tumor.
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Fig. 3. Monte Carlo estimation error EMC
est (〈Etot〉) as a function of the number of MC realizations Nsam. Ranges of variability of the M = 3 random parame-

ters ξ are defined by cH = cV = 0.5 and [Zmin, Zmax] = [2, 8].

We define the estimation errors

E p
est(〈Etot〉) = |Ê p

tot − Êref
tot| and E p

est(σ
2
Etot

) = |σ̂ 2,p
Etot

− σ̂ 2,ref
Etot

|, (16)

for the moments’ estimates computed with SC (p = SC) and MCS (p = MC). The reference values of these moments, Êref
tot

and σ̂ 2,ref
Etot

, are computed with Nref
sam = 30000 Monte Carlo realizations in all of our numerical experiments except for those 

with two uncertain parameters c1 and Z2, where 35000 samples were used. Fig. 3 demonstrates that EMCS
est (〈Etot〉) ∼ N−0.5

sam , 
as expected from theory [30].

We investigate the relative performance of SC and MCS in terms of its convergence rate for the mean, i.e., whether the 
numbers of deterministic solves, P and Nsam, necessary to achieve the relative estimation error E p

est(〈Etot〉)/Êref
tot ∼ O(10−3)

for p = SC and MC satisfy P < Nsam. Since the performance of SC is known to deteriorate with the stochastic dimension M , 
we conduct a series of numerical experiments for M = 1 (either c1 or Z2 is random), M = 2 (both c1 and Z2 are random), 
and M = 3 (c1, c2 and Z2 are random).

4.1. One stochastic dimension (M = 1)

We start by considering the impact of a single random parameter, either c1 ∈ [2.0, 3.0] with c2 = 2.5 and Z2 = 6.0 or 
Z2 ∈ [2.0, 8.0] with c1 = c2 = 2.5, on the relative performance of SC and MCS. Fig. 4 demonstrates that SC outperforms MCS 
by at least one order of magnitude when c1 is random (Fig. 4a) and by several orders of magnitude when Z2 is random 
(Fig. 4b). The convergence criterion ESC

est(〈Etot〉)/Êref
tot ∼O(10−3) is achieved with P = 65 and 9 in the former and latter cases, 

respectively.
Fig. 5 exhibits the impact of uncertainty in either c1 or Z2 (as quantified by their respective coefficients of variation CVc1

and CVZ2 ) on both predictions of energy deposition, ÊSC
tot, and predictive uncertainty expressed in terms of CVEtot = σ̂ SC

Etot
/ÊSC

tot. 
The energy deposition ÊSC

tot decreases with CVc1 (or, for a fixed 〈c1〉, with σc1 ); this is to be expected since increasing 
σc1 causes the region D2 to overlap less with the tumor region T , thereby diminishing the dose-enhancing effect of the 
contrast agent. A relatively small input uncertainty, CVc1 = 0.12, reduces the energy absorption by 27% relative to the ideal 
(deterministic) situation of full overlap between D2 and T and Z2 = 6.0 (Fig. 5a). On the contrary, increasing CVZ2 (or, for a 
fixed 〈Z2〉 = 5.0, increasing σZ2 ) causes the energy deposition ÊSC

tot to increase (Fig. 5b), as higher values of Z2 are sampled 
and the probability of photo-electric absorption of the X-rays increases with atomic number. The parametric uncertainty 
characterized by σZ2 = 0.35 enhances the energy absorption by 36% relative to the aforementioned ideal (deterministic) 
situation.

Fig. 5 also demonstrates the impact of parametric uncertainty, CVc1 in Fig. 5a and CVZ2 in Fig. 5b, on predictive uncer-
tainty, CVEtot . In both cases, even small uncertainty in a single parameter gives rise to appreciable predictive uncertainty 
and, hence, should not be ignored.
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Fig. 4. Error in estimation of the mean energy deposition in the tumor, E p
est(〈Etot〉), as a function of the number of collocation nodes (P ) in SC or MC 

samples (Nsam) in MCS, when only one parameter is uncertain (M = 1): either c1 (left) or Z2 (right).

Fig. 5. Dependence of the mean ( ÊSC
tot) and coefficient of variation (CVEtot ) of the total energy deposition on the coefficient of variation of a single (M = 1) 

uncertain parameter, either (a) CVc1 of c1 or (b) CVZ2 of Z2.

4.2. Multiple stochastic dimensions (M = 2 and 3)

To investigate the relative performance of SC and MCS further, we increase the number of random input parameters from 
M = 1 (Section 4.1) to M = 2 and 3. The former case involves two random parameters c1 ∈ [2.0, 3.0] and Z2 ∈ [2.0, 8.0] with 
fixed c2 = 5/2, and the latter three random parameters c1 ∈ [2.0, 3.0], Z2 ∈ [2.0, 8.0] and c2 ∈ [2.0, 3.0]. Fig. 6 reveals that 
SC outperforms MCS only marginally, with the difference between the two diminishing as M increases from two (Fig. 6a) 
to three (Fig. 6b), as the number of collocation points necessary to achieve the convergence criterion ESC

est(〈Etot〉)/Êref
tot ∼

O(10−3) grows from P = 321 to P = 1073. This performance is a reflection of the highly irregular stochastic response 
surface; it is likely to deteriorate further as the degree of parametric uncertainty, quantified by coefficients of variation of 
the input parameters, increases [17].

Fig. 7 illustrates the combined effect of the two uncertain parameters c1 and Z2 (the M = 2 case described above) on the 
mean and CV of the total energy deposition. The results are mostly a combination of those reported in Section 4.1, with a 
maximum decrease in energy absorption of 35% relative to the aforementioned ideal (deterministic) situation (Fig. 7a). This 
is higher than the maximum relative deviation due to uncertainty in c1 only, but slightly lower than that due to uncertainty 
solely in Z2. That is because of the counteracting effects of increasing σ 2

c1
and increasing σ 2

Z2
on the mean energy absorption. 

Although not shown here the maximum discrepancy between the model with the three uncertain parameters (M = 3) and 
the ideal (deterministic) case is 46%. Both two (Fig. 7b) and three (not shown) random parameters give rise to a maximum 
value of CVEtot that is close to 1, i.e., uncertainty in the prediction of energy deposition approximately equals the prediction 
(mean value) itself.
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Fig. 6. Error in estimation of the mean energy deposition in the tumor, E p
est(〈Etot〉), as a function of the number of collocation nodes (P ) in SC or MC 

samples (Nsam) in MCS, for (a) two and (b) three uncertain parameters, i.e., M = 2 and 3, respectively.

Fig. 7. Dependence of the mean ( ÊSC
tot) (a) and coefficient of variation (CVEtot ) (b) of the total energy deposition on the coefficients of variation of two 

uncertain parameters (M = 2), CVc1 and CVZ2 .

5. Global sensitivity analysis

The rapid degradation in the relative performance of SC puts a premium on reduction of the problem’s stochastic dimen-
sion. We accomplish this goal by employing the global sensitivity analysis of Sobol’ [31], which decomposes a model output 
variance into summands of variances of input parameters and, hence, quantifies the contribution of each input parameter 
and its interactions with other parameters to the overall model output variance. In particular, first-order sensitivity indices 
are defined as [31–33]

Sc1 = σ 2
Etot,c1

σ 2
Etot

, Sc2 = σ 2
Etot,c2

σ 2
Etot

, S Z2 = σ 2
Etot,Z2

σ 2
Etot

, (17)

where σ 2
Etot,c1

represents the contribution of c1 to the total variance of Etot, and likewise for c2 and Z2. Total-order sensi-
tivity indices are given by

Stot
c1

= 1

σ 2
Etot

∑
α∈Ic1

σ 2
α, Stot

c2
= 1

σ 2
Etot

∑
α∈Ic2

σ 2
α, Stot

Z2
= 1

σ 2
Etot

∑
α∈IZ2

σ 2
α, (18)

where Ic1 is the set of all subsets of {c1, c2, Z2} containing c1, and likewise for Ic2 and IZ2 . To compute (17) and (18), 
either MCS [32], polynomial chaos [33] or stochastic collocation [34] may be used; we employ MCS implemented via a 
combination of our numerical solver and the Matlab code in [35].
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Fig. 8. First-order (left) and total-order (right) Sobol’ indices for three random parameters (M = 3): c1 ∈ [2.0,3.0], c2 ∈ [2.0,3.0] and Z2 ∈ [2.0,8.0].

Fig. 8 shows that Sc1 ≈ Sc2 , in line with the fact that a similar change in c1 and c2 causes a similar deviation of the 
contrast-agent region D2 from the tumor region T ; the first-order index for Z2 is much larger, indicating that variations in 
the atomic number have a much larger effect on the predictive uncertainty of the total energy deposition in T than changes 
in c1 or c2. This may be understood from the nonlinear (cubic) dependence of the energy deposition on the effective atomic 
number, as illustrated by (11). Fig. 8 also reveals a clear difference between the total-order Sobol’ indices for c1, c2 and 
Z2 and their first-order counterparts, indicating that there is a measurable impact of the interactions between the different 
parameters on the total variance in Etot.

6. Summary and conclusions

We estimated the energy deposition into a brain tumor irradiated by X-rays in the presence of parametric uncertainty 
using the stochastic collocation (SC) approach. We represented the uncertain input parameters, namely the coordinates of 
the center of the region containing an iodinated, dose-enhancing contrast agent, and the effective value of the atomic num-
ber in this area, as mutually independent, uniformly distributed random variables. We investigated the effect of changes in 
their mean and/or variance on the statistical moments of the deposited energy, and compared the computational efficiency 
of SC to that of standard Monte Carlo simulation (MCS).

Our analysis leads to the following major conclusions:

1. SC is at least an order of magnitude faster than MCS when only one parameter is uncertain/random. In the presence of 
multiple uncertain parameters, SC outperforms MCS only marginally, with the difference between the two diminishing 
as the number of parameters increases from two to three.

2. In the majority of cases, the problem’s nonlinearity amplifies the coefficient of variation of the uncertain parameters, 
yielding a larger coefficient of variation for the energy deposition. Hence, even small parametric uncertainties may result 
in large predictive uncertainty in the quantity of interest.

3. As the stochastic dimension increases, the magnitude of the predictive uncertainty in the energy deposition, as mea-
sured by its standard deviation, approaches that of the prediction (mean energy deposition) itself.

4. In the presence of additional uncertain parameters, the effect of uncertainty in a specific parameter on the predictive 
uncertainty in the quantity of interest may differ from its effect when this parameter is the only uncertain input.

5. A global sensitivity analysis reveals that predictive uncertainty in the energy deposition is mainly influenced by varia-
tions in the effective atomic number, and is also affected by interactions between the different uncertain parameters.

The flux-limited radiation–diffusion approximation employed to model the propagation of X-rays within the brain has 
also been applied to a wide range of other problems including core collapse supernovae [36] and inertial confinement 
fusion [37]. Hence, our findings are relevant to the quantification of predictive uncertainty across a number of research 
areas. Future extensions of the presented analysis include considering a three-dimensional model with a larger number of 
uncertain parameters which exhibit spatiotemporal variability, and representing the latter by random variables with more 
complex probability distributions.
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Appendix A. Derivation of the total energy deposition in the tumor

For a particular realization of the random parameter vector ξ , the dimensionless energy absorption per unit time and 
unit surface area at position x and time t is given by [21],
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˙̃Eabs = w

E0c Z 4
1

Ėabs = γ w

3E3/4
0

Z̃ 3 Ẽ1/4 = 1

3
Z̃ 3 Ẽ1/4, (A.1)

where E0, Z̃ and Ẽ are defined in Section 2. To obtain the energy absorption Eabs(i, j, k) in �x j,k ≡ [x1, j − �x1, j/2, x1, j +
�x1, j/2] × [x2,k − �x2,k/2, x2,k + �x2,k/2] during the time step �t from ti to ti + �t (i = 0, . . . , I − 1 with I = T /�t and 
t0 = 0), where �x1, j and �x2,k ( j, k = 1, . . . , N) are the dimensions in spatial directions 1 and 2, respectively, of the grid cell 
centered around (x1, j, x2,k)

� , we multiply Ėabs(i, j, k) with �t�x1, j�x2,k . In analogy with (A.1), we define a corresponding 
dimensionless quantity

Ẽabs(i, j,k) = 1

3
Z̃ 3

j,k(Ẽ i+1
j,k )1/4�t̃�x̃1, j�x̃2,k, (A.2)

with �t̃ = c�t/w , �x̃1, j = �x1, j/w and �x̃2,k = �x2,k/w . Here Z̃ j,k is the value of Z̃ in �x̃ j,k (we assume that Z̃ is 
constant over a finite volume cell) and Ẽ i+1

j,k approximates the average value of the dimensionless radiation energy density 
over �x̃ j,k during the dimensionless time step from t̃i to t̃i + �t̃ (we evaluate it at t̃i + �t̃). The dimensionless total energy 
absorption Ẽabs,tot by the medium in the entire region T̃ over time T̃ = I�t̃ is then given by

Ẽtot =
I∑

i=1

∑
j

∑
k

Ẽabs(i, j,k), (A.3)

where we sum over the indices j and k corresponding to the grid cells within T̃ . Together with (A.2), and omitting ·̃, this 
yields

Etot = �t

3

I∑
i=1

∑
j

∑
k

Z 3
j,k(Ei+1

j,k )1/4�x1, j�x2,k. (A.4)

Appendix B. Implementation of Krylov algorithm for Newton corrections

Despite its quadratic convergence rate, a standard Newton method requires computation of the full Jacobian J. For our 
radiation–diffusion problem, the derivatives in J cannot be obtained analytically and instead would need to be approxi-
mated numerically (e.g., using Fréchet derivatives). Rather than pursuing this approach, which is prone to errors and also 
time-consuming, we solve the linear system J(En+1

k )δEk+1 = −f(En+1
k ), where J i, j = ∂ f i/∂ E j , at the kth Newton iteration 

inexactly using the iterative Krylov algorithm Generalized Minimum RESidual (GMRES).5 To implement this method we only 
need to represent the Jacobian-vector product Jv, where v is the Krylov vector, rather than explicitly calculate the Jacobian 
matrix elements. Specifically, Jv is approximated by finite differences with either first-order accuracy [24]

J(En+1
k )v ≈ f(En+1

k + εv) − f(En+1
k )

ε
, (B.1)

or second-order accuracy [24]

J(En+1
k )v ≈ f(En+1

k + εv) − f(En+1
k − εv)

2ε
. (B.2)

Here ε is a small perturbation parameter, which cannot be too large (poor derivative approximation) or too small (large 
floating-point roundoff error). Omitting the subscript k and superscript n + 1 for notational convenience, we use

ε =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

n‖v‖2

n∑
i=1

√
ε(1 + |Ei |) if ‖v‖2 > ε

1

n

n∑
i=1

√
ε(1 + |Ei |) if ‖v‖2 ≤ ε,

(B.3)

where n is the size of E (n = N2 for N grid cells in each spatial direction) and ε = 2.2204 × 10−16 (machine epsilon for 
64-bit double precision). Our simulations employ (B.2).

5 Here we reshaped the two-dimensional matrix En+1
k into a one-dimensional array, and then reshaped the converged solution En+1

K back into a two-
dimensional matrix.
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