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Multiphysics simulations often involve nonlinear components that are driven by internally 
generated or externally imposed random fluctuations. When used with a domain-
decomposition (DD) algorithm, such components have to be coupled in a way that 
both accurately propagates the noise between the subdomains and lends itself to a 
stable and cost-effective temporal integration. We develop a conservative DD approach 
in which tight coupling is obtained by using a Jacobian-free Newton–Krylov (JfNK) method 
with a generalized minimum residual iterative linear solver. This strategy is tested on a 
coupled nonlinear diffusion system forced by a truncated Gaussian noise at the boundary. 
Enforcement of path-wise continuity of the state variable and its flux, as opposed to 
continuity in the mean, at interfaces between subdomains enables the DD algorithm to 
correctly propagate boundary fluctuations throughout the computational domain. Reliance 
on a single Newton iteration (explicit coupling), rather than on the fully converged JfNK 
(implicit) coupling, may increase the solution error by an order of magnitude. Increase 
in communication frequency between the DD components reduces the explicit coupling’s 
error, but makes it less efficient than the implicit coupling at comparable error levels for 
all noise strengths considered. Finally, the DD algorithm with the implicit JfNK coupling 
resolves temporally-correlated fluctuations of the boundary noise when the correlation 
time of the latter exceeds some multiple of an appropriately defined characteristic diffusion 
time.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and motivation

High-performance computing facilitates the simulation of ever more complex phenomena comprising multiple physical, 
chemical and/or biological processes that take place on a wide range of spatiotemporal scales. Many of these problems 
involve constituent processes that occur in separate spatial domains and influence each other through the interfaces be-
tween these domains. One example is conjugate heat transfer across a fluid–solid interface [1], which manifests itself in 
applications as diverse as gas turbine cooling [2] and vehicle entry and re-entry in planetary atmospheres [3].

Construction of a single discrete operator containing the different components and their interactions yields a “tight” 
coupling, which guarantees temporal synchronization of state variables across inter-component interfaces. Yet, this “mono-
lithic” [4] approach is intrusive (i.e., requires development of new software) and might become unfeasible for high-
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Fig. 1. A three-layer dense membrane configuration for hydrogen separation (not to scale).

dimensional systems. The alternative strategy of “component partitioning” or domain decomposition (DD) advances the 
components independently and employs a coupling method to exchange information at the interfaces. Deployment of DDs 
in high-performance computing facilitates an optimal distribution of the work load between the available processing cores 
(load balancing), while minimizing communication between cores acting on adjacent subdomains (communication schedul-
ing) [5]. The DD approach is nonintrusive, i.e., allows for a “black-box” implementation of existing (legacy) codes, but 
requires an iterative coupling to avoid desynchronization of the state variables computed with the individual components,1

which may significantly increase its computational cost.
Studies of the numerical properties of DD algorithms have led to nontrivial conclusions, which might be difficult to gen-

eralize. For instance, an otherwise unstable loose coupling used in one-dimensional simulations of fluid–solid-interactions 
can be made stable by enforcing Neumann boundary conditions for the structural calculation and Dirichlet boundary con-
ditions for the fluid solver [9]; and the use of a small number of iterations in a coupled linear diffusion problem leads to 
conditional or unconditional stability in a nonintuitive way when using a backward Euler solver in the subdomains [10]. 
Random fluctuations inside or on the boundary of a computational domain further affect the accuracy and performance of 
DD methods [11,12].

We focus on a highly nonlinear multiscale diffusion problem driven by a temporally correlated boundary noise. 
A nonlinear dependence of the diffusion coefficient on the state variable (concentration) poses a host of challenges not 
encountered in linear [11,12] and weakly nonlinear [12] problems. A computational testbed problem described in Sec-
tion 2—one-dimensional nonlinear diffusion in a composite solid forced by a truncated Gaussian noise at its left boundary—
represents production of ultra-pure hydrogen gas [13]. Section 3 contains a description of our DD algorithm, which uses a 
Jacobian-free Newton–Krylov (JfNK) method to tightly couple two explicit Euler diffusion solvers. In Section 4 we analyze 
the stability of the time advancement scheme in the presence of a temporally fluctuating boundary noise. In Section 5 we 
conduct a series of computational experiments to elucidate the numerical properties of our algorithm. A summary of our 
findings is reported in Section 6.

2. Problem formulation

Consider a state variable ρ(x, t) whose dynamics is governed by a one-dimensional nonlinear diffusion equation,

∂ρ

∂t
= ∂

∂x

[
D(ρ, x)

∂ρ

∂x

]
, x ∈ � ≡ (0, L), t > 0, (1a)

with the ρ-dependent diffusion coefficient D; this equation is defined on the simulation domain � ≡ (0, L) for times t > 0. 
While (1a) describes a large number of physical phenomena, we ground it in an application related to production of ultra-
pure hydrogen gas [13]. Thus, ρ(x, t) represents the concentration of atomic hydrogen (H) that diffuses through a dense 
composite metal membrane of thickness L. The latter is placed between streams of feed and sweep gases flowing in oppo-
site directions in order to extract H2 from the feed gas (for a typical configuration, see, e.g., [14] and Fig. 1). The membrane 
consists of a tantalum (Ta) layer �2 sandwiched between two palladium (Pd) layers �1 and �3 [15]. Palladium’s selec-
tive permeability to hydrogen [16] makes it suitable for use in hydrogen-separation membranes. To increase its structural 
stability, Pd has been alloyed with materials such as silver [17]. An alternative, and potentially superior approach, is the 
combination of Pd with refractory (group V) metals, such as Ta, into layered membranes [18]. Refractory metals have even 
higher bulk hydrogen permeabilities than Pd or its alloys [19], and are cheaper than Pd.

The diffusion coefficient of H in this composite is given by [20]

D(ρ, x) =
⎧⎨
⎩

DPd ≡ D int
Pd

[
f1(β) + f2(ρ)V Pdρ

1 − ρV Pd

kB T

]
for x ∈ �1 ∪ �3

DTa ≡ D int
Ta for x ∈ �2

(1b)

1 Examples of such a desynchronization due to the use of noniterative or “loosely” coupled algorithms, and methods to iteratively correct them, can be 
found in [6–8].
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Fig. 2. The original function DPd/D int
Pd and its continuous approximation.

with

f1 = 1 − 6
β − 1

β
, f2 = 1

V Pd

∂μe

∂ρ
− 3γ

2
coth

(
h̄ωα − γ ρV Pd

2kB T

)
. (1c)

Here V Pd is the Wigner–Seitz cell volume of the Pd lattice; kB is the Boltzmann constant; T is the operating temperature 
of the membrane (in K); the constants γ and ωα (energy of local vibrations of the H atoms for ρ close to 0) and variables 
β(ρ) and μe(ρ) (electronic contribution to the chemical potential of the hydrogen subsystem) are defined in [20]; and D int

Pd
and D int

Ta are the intrinsic (i.e., for ρ close to 0) diffusion coefficients2 of H in Pd and Ta. Since the function DPd(ρ) in (1b) is 
discontinuous at ρV Pd = 0.656, we replace it with a continuous approximation obtained by using quadratic splines (Fig. 2).

Equation (1) is subject to initial and Dirichlet boundary conditions

ρ(x,0) = ρL, ρ(0, t) = ρ0(t), ρ(L, t) = ρL, (2)

where ρL is a deterministic constant and ρ0(t) is the randomly fluctuating boundary function. The latter is expressed as 
ρ0(t) = 〈ρ0〉 + η(t) with 〈ρ0〉 the (constant) ensemble-averaged value and η(t) a zero-mean truncated Gaussian noise with 
variance σ 2

η , an exponential auto-covariance Cη(t1 − t2) = σ 2
η exp(−|t1 − t2|/λ) and the correlation time λ. The boundary 

concentrations ρ0(t) and ρL are related to the partial pressure of H2 in the feed and sweep gases, respectively. At the feed 
gas/membrane interface, H2 molecules are adsorbed onto the membrane surface, where they dissociate into H atoms which 
enter the Pd lattice; the reverse process occurs at the sweep gas/membrane interface.

The presence of the boundary noise η(t) renders a solution ρ(x, t) of the boundary-value problem (BVP) (1)–(2) random 
over the entire simulation domain �. Its statistics, such as mean 〈ρ(x, t)〉 and variance σ 2

ρ (x, t), may be estimated with, 
e.g., Monte Carlo (MC) simulations. Regardless of the noise, the disparate diffusion time scales in the Pd and Ta layers 
require a single full-domain algorithm to use a time step determined by the smallest diffusion time-scale (corresponding 
to the maximal value of DPd) in order to accurately resolve the system’s dynamics. This can significantly increase the 
computational time of each MC realization, potentially rendering MC simulations prohibitively expensive.

A domain decomposition enables one to use different time steps in each subdomain �i (i = 1, 2, 3), which are in tune 
with the local diffusion time-scale. Let ρi(x, t) denote a solution of (1a) on the ith subdomain �i (i = 1, 2, 3). These solutions 
are subject to the initial condition ρi(x, 0) = ρL for i = 1, 2, 3; additionally the external boundary conditions give rise 
to ρ1(0, t) = ρ0(t) and ρ3(L, t) = ρL . The remaining boundary conditions for these three BVPs come from enforcing the 
continuity of ρ and its flux at the interfaces x = α1 and x = α2 separating the three subdomains (see Fig. 1):

ρ1(α1, t) = ρ2(α1, t), DPd
∂ρ1

∂x
(α1, t) = DTa

∂ρ2

∂x
(α1, t),

ρ2(α2, t) = ρ3(α2, t), DTa
∂ρ2

∂x
(α2, t) = DPd

∂ρ3

∂x
(α2, t). (3)

These interfacial conditions necessitate occasional communication between the diffusion solvers in adjacent subdomains.

2 Following [22], we use Arrhenius [21] expressions D int
Pd = DPd,0 exp[−Eact

Pd /(RT )] and D int
Ta = DTa,0 exp[−Eact

Ta /(kB T )] with R denoting the universal 
gas constant, DPd,0 = 2.9 · 10−7 m2/s and DTa,0 = 4.4 · 10−8 m2/s, and diffusion activation energies Eact

Pd = 22.2 kJ/mol and Eact
Ta = 0.14 eV/atom. We set 

T = 800 K, a temperature regime for which the expression DPd(ρ) in (1b) is valid.
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Fig. 3. Computational domain � = (0, L) decomposed into subdomains �1 = (0, α1), �2 = [α1, α2) and �3 = [α2, L). Concentration ρ is computed at the 
nodes denoted by solid circles, and flux F is evaluated at the midpoint between two subsequent concentration nodes (open circles).

3. Numerical implementation of domain decomposition

3.1. Spatial discretization of the computational domain

We discretize the computational domain � using a uniform mesh of cell size �x = L/N , where N is the total number 
of grid cells. For the sake of simplicity, and without loss of generality, we assume that the interfaces x = α1 and x = α2
coincide with the nodes of this uniform grid, so that each of the three subdomains �i is discretized with Ni grid cells. The 
solvers used to integrate the three BVPs employ a staggered grid approach, in which diffusive fluxes, Fi(x, t) = −Di∂ρi/∂x, 
in the ith subdomain �i (i = 1, 2, 3) are calculated at the midpoint between two subsequent concentration nodes (Fig. 3). 
In particular, both ρ−

l ≡ ρ1(α1, t) and ρ+
l ≡ ρ2(α1, t) are defined at the interfacial node x = α1, while the corresponding 

interfacial fluxes F −
l ≡ F1(α1, t) and F +

l ≡ F2(α1, t) are defined at x = α1 − �x/2 and x = α1 + �x/2, respectively. Likewise, 
ρ−

r ≡ ρ2(α2, t) and ρ+
r ≡ ρ3(α2, t) are defined at x = α2, while the corresponding interfacial fluxes F −

r ≡ F2(α2, t) and 
F +

r = F3(α2, t) are defined at x = α2 − �x/2 and x = α2 + �x/2, respectively.

3.2. Numerical solvers for individual BVPs

A finite-difference approximation of the spatial derivatives in (1a) yields a system of ordinary differential equations for 
each subdomain �i ,

dρ i

dt
= fi(ρ i), i = 1,2,3, (4a)

where ρ i = (ρi,1, . . . , ρi,Ni−1)
� are the one-dimensional arrays of size Ni − 1 of the nodal values of the state variables 

ρi(x, t); and components f i,p of the one-dimensional arrays fi(ρ i) of size Ni − 1 are defined by

f i,p = D+
i · (ρi,p+1 − ρi,p) − D−

i · (ρi,p − ρi,p−1)

�x2
, (4b)

for p = 1, . . . , Ni − 1 and i = 1, 2, 3. Here D+
i and D−

i are the values of Di ≡ DPd evaluated at (ρi,p+1 + ρi,p)/2 and 
(ρi,p + ρi,p−1)/2, respectively, for i = 1, 3, and D+

2 = D−
2 = D2 ≡ DTa; and ρ1,0 = ρ0, ρ1,N1 = ρ−

l , ρ2,0 = ρ+
l , ρ2,N2 = ρ−

r , 
ρ3,0 = ρ+

r and ρ3,N3 = ρL .
We use an explicit Euler method with time step �ti to advance ρ i (i = 1, 2, 3) in time. The noise enters the finite-

difference scheme through advancing the p = 1 component of ρ1 from tn = n�t1 to tn+1 = (n + 1)�t1,

ρn+1
1,1 = ρn

1,1 + �t1

�x2
[D+

1 · (ρn
1,2 − ρn

1,1) − D−
1 · (ρn

1,1 − ρn
0)]. (5)

The random boundary term is represented as ρn
1,0 ≡ ρn

0 = 〈ρ0〉 + ηn with ηn = η(tn).

Given values of the interfacial concentrations ρ−
l (t) = ρ+

l (t) at x = α1 and ρ−
r (t) = ρ+

r (t) at x = α2, this spatiotemporal 
discretization allows one to compute, independently from each other, the three (i = 1, 2, 3) solutions ρ i(τ ) at any time 
τ > t . However, these solutions will not satisfy the continuity conditions (3). To enforce the latter, the subdomain solvers 
must communicate with each other through a coupling algorithm. The continuity conditions may be enforced either for 
each MC realization of the random solution (path-wise coupling) or for its statistical moments (e.g., mean) computed using 
a finite number Nsam of MC realizations (moment-wise coupling). The path-wise communication ensures the continuity of 
all the moments of concentration ρ(x, t) and flux F (x, t) = −D∂xρ and, hence, accurately propagates the noise throughout 
the computational domain. The moment-wise coupling introduces an error since it does not account for higher-order mo-
ments. Yet, it reduces the computational cost due to inter-solver communication and therefore warrants an investigation. 
In Section 5.1 we use both the path-wise and moment-wise (exchanging only the mean) coupling strategies to compute 
the mean and variance of ρ(x, t). These results are compared with those obtained by solving (1)–(2) with a single solver 
defined on the entire domain.

3.3. Coupling algorithm with path-wise communication

We define the communication time between solvers, �tcom, as the multiples of the inner-solver time steps �ti , such that 
�tcom = ni�ti (i = 1, 2, 3). In other words, starting at t = tn the ith subdomain solver is advanced by ni “micro” steps �ti , 
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before communicating with adjacent solvers at tn + �tcom. Depending on whether an iterative or noniterative coupling is 
used, this process is repeated until convergence or carried out only once, respectively. In either case, this procedure advances 
the solution by one “macro” step �tcom. In the iterative coupling, the set of communications during the various iterations 
of a particular macro-step are referred to as one overall communication.

We show in Appendix A that exchanging the �tcom-averaged interfacial concentrations and fluxes (rather than their 
counterparts computed at the last micro-step of each solver) yields a mass-conservative coupling algorithm. The time-
averaged concentrations, ρ̄ i (i = 1, 2, 3), are computed as the arithmetic means of ρ i over their respective ni micro-steps. 
The interfacial values of these �tcom-averaged concentrations are ρ̄ −

l and ρ̄ +
l at x = α1, and ρ̄ −

r and ρ̄ +
r at x = α2; the 

corresponding �tcom-averaged interfacial fluxes are F̄ −
l and F̄ +

l at x = α1 and F̄ −
r and F̄ +

r at x = α2.
Enforcement of (3) provides a tight coupling of the solvers for the subdomains �i (i = 1, 2, 3). We accomplish this by 

using an iterative (implicit) coupling algorithm based on the JfNK method [23] with the generalized minimum residual 
(GMRES) iterative linear solver [24] (see Appendix B for details). This root-finding algorithm is deployed to solve a system 
of coupled nonlinear algebraic equations,

ρ̄−
l = ρ̄+

l , F̄ −
l = F̄ +

l , ρ̄−
r = ρ̄+

r , F̄ −
r = F̄ +

r , (6)

during inter-solver communication. Using notation

ρ̄ n
1,N1

= ρ̄−
l , ρ̄ n

2,0 = ρ̄+
l , ρ̄ n

2,N2
= ρ̄−

r , ρ̄ n
3,0 = ρ̄+

r ,

F̄ n
1,N1−1/2 = F̄ −

l , F̄ n
2,1/2 = F̄ +

l , F̄ n
2,N2−1/2 = F̄ −

r , F̄ n
3,1/2 = F̄ +

r , (7)

for the macro-step from tn to tn+1 = tn + �tcom, this system is written as

ρ̄ n
1,N1

= ρ̄ n
2,0, F̄ n

1,N1−1/2 = F̄ n
2,1/2, ρ̄ n

2,N2
= ρ̄ n

3,0, F̄ n
2,N2−1/2 = F̄ n

3,1/2. (8)

Newton’s method, in its pure form, recasts (8) into an iteration problem

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̄ n,k+1
1,N1

F̄ n,k+1
2,1/2

ρ̄ n,k+1
2,N2

F̄ n,k+1
3,1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̄ n,k
1,N1

F̄ n,k
2,1/2

ρ̄ n,k
2,N2

F̄ n,k
3,1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− J−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

g1

g2

g3

g4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(9a)

where J(ρ̄ n,k
1,N1

, F̄ n,k
2,1/2, ρ̄

n,k
2,N2

, F̄ n,k
3,1/2) is the Jacobian,

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ g1/∂ρ̄
n,k

1,N1
∂ g1/∂ F̄ n,k

2,1/2 ∂ g1/∂ρ̄
n,k

2,N2
∂ g1/∂ F̄ n,k

3,1/2

∂ g2/∂ρ̄
n,k

1,N1
∂ g2/∂ F̄ n,k

2,1/2 ∂ g2/∂ρ̄
n,k

2,N2
∂ g2/∂ F̄ n,k

3,1/2

∂ g3/∂ρ̄
n,k

1,N1
∂ g3/∂ F̄ n,k

2,1/2 ∂ g3/∂ρ̄
n,k

2,N2
∂ g3/∂ F̄ n,k

3,1/2

∂ g4/∂ρ̄
n,k

1,N1
∂ g4/∂ F̄ n,k

2,1/2 ∂ g4/∂ρ̄
n,k

2,N2
∂ g4/∂ F̄ n,k

3,1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9b)

and

g1 = ρ̄ n,k
1,N1

− ρ̄ n,k
2,1 − �x

D2
F̄ n,k

2,1/2, g2 = −D̄n,k
1

ρ̄ n,k
1,N1

− ρ̄ n,k
1,N1−1

�x
− F̄ n,k

2,1/2,

g3 = ρ̄ n,k
2,N2

− ρ̄ n,k
3,1 − �x

D̄n,k
3

F̄ n,k
3,1/2, g4 = −D2

ρ̄ n,k
2,N2

− ρ̄ n,k
2,N2−1

�x
− F̄ n,k

3,1/2. (9c)

Here D̄n,k
1 and D̄n,k

3 are the �tcom-averaged values of the diffusion coefficients at the spatial positions α1 − �x/2 and 
α2 + �x/2, respectively.

In our numerical experiments, we do not explicitly compute the components of the Jacobian J. Instead, we employ an 
inexact Newton’s method, JfNK with GMRES, using a second-order finite difference expression to approximate the Jacobian-
vector product. The Newton iterations continue until max{|g1| , . . . , |g4|} ≤ ε , where ε is the prescribed tolerance.
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3.4. Coupling algorithm with moment-wise communication

While the path-wise continuity of the �tcom-averaged interfacial concentrations and fluxes (Section 3.3) guarantees the 
continuity of all moments of ρ and F , it is computationally expensive. To lower the computational cost, we consider an 
approximation that enforces the continuity of only their first moments, i.e., the continuity of the �tcom-averages of the 
Nsam-averaged values of ρ and F at x = α1 and x = α2. For the boundary conditions formulated in Section 2, this approach 
results in deterministic boundary-value problems in �2 and �3, leading to zero concentration variance to the right of 
x = α1; hence, it cannot propagate the noise generated at x = 0 throughout the entire computational domain.3 We will 
investigate the effect this has on the resulting average concentration profile in Section 5.1.

3.5. Domain-decomposition algorithm with path-wise communication

Let ρn,l,k
1 ≡ ρ1(tn + l�t1), ρn,m,k

2 = ρ2(tn +m�t2) and ρn,q,k
3 = ρ3(tn +q�t3) denote arrays of the nodal concentrations at 

inner-solver times tn + l�t1, tn +m�t2 and tn +q�t3 during the kth iteration of the macro-step from tn to tn+1 = tn +�tcom. 
At all times, the arrays ρ1, ρ2 and ρ3 are of size N1 − 1, N2 − 1 and N3 − 1, respectively. As before, ρ̄ n,k

1,N1
and F̄ n,k

2,1/2 denote 
the �tcom-averaged interfacial concentration and flux at x = α1, and ρ̄ n,k

2,N2
and F̄ n,k

3,1/2 denote the �tcom-averaged interfacial 
concentration and flux at x = α2, during the kth iteration of that macro-step. The solution is advanced from tn to tn+1 as 
follows.

1. Initialization step. Set ρ̄ n,0
1,N1

= ρ1,N1 (tn), ρ̄ n,0
2,N2

= ρ2,N2(tn), F̄ n,0
2,1/2 = F2,1/2(tn) and F̄ n,0

3,1/2 = F3,1/2(tn).

2. Evolve ρn,0,k
1 to ρn,n1,k

1 over n1 micro-steps, using ρn,l
0 (l = 0, . . . , n1 − 1) and ρ̄ n,k

1,N1
as boundary conditions at x = 0 and 

x = α1, respectively.
3. Evolve ρn,0,k

2 to ρn,n2,k
2 over n2 micro-steps, using ρ̄ n,k

1,N1
and ρ̄ n,k

2,N2
as boundary conditions at x = α1 and x = α2, 

respectively.
4. Evolve ρn,0,k

3 to ρn,n3,k
3 over n3 micro-steps, using ρ̄ n,k

2,N2
and ρL as the boundary conditions at x = α2 and x = L, 

respectively.
5. Use JfNK to calculate new iterates of the interfacial concentrations, ρ̄ n,k+1

1,N1
and ρ̄ n,k+1

2,N2
, and fluxes, F̄ n,k+1

2,1/2 and F̄ n,k+1
3,1/2 .

6. Repeat steps 2 through 5 until the given tolerance ε is achieved.
7. Advance the solution by one macro-step by setting

ρ1,N1(tn+1) = ρ̄ n,K
1,N1

, ρ2,N2(tn+1) = ρ̄ n,K
2,N2

,

F2,1/2(tn+1) = F̄ n,K
2,1/2, F3,1/2(tn+1) = F̄ n,K

3,1/2,

where K = K (n) indicates the number of iterations at convergence. By construction,

ρ2,0(tn+1) = ρ1,N1(tn+1), ρ3,0(tn+1) = ρ2,N2(tn+1),

F1,N1−1/2(tn+1) = F2,1/2(tn+1), F2,N2−1/2(tn+1) = F3,1/2(tn+1).

Note that one could equally use ρ̄ n,k
2,0 , ρ̄ n,k

3,0 , F̄ n,k
1,N1−1/2 and F̄ n,k

2,N2−1/2 as iterates.

3.6. Domain-decomposition algorithm with moment-wise communication

When only the ensemble averages of ρ and F are exchanged at x = α1 and x = α2, the time advancement algorithm of 
Section 3.5 is modified as follows.

• Evolve all Nsam solutions in �1, simultaneously and independently, from tn to tn+1 = tn + �tcom. Simulate only one 
trajectory in �2 and �3;

• Compute, at each micro-step in �1, the Nsam-average of the quantities to be exchanged between �1 and �2;
• Compute the �tcom-averages of the results obtained in the previous step. The latter serve as inputs to the coupling 

algorithm, which produces new iterates for the interfacial concentration and flux (in the form of the �tcom-average of 
their Nsam-averages) at x = α1.

3 A stochastic boundary condition at x = L would require computation of Nsam trajectories in �3, while still having to solve the deterministic problem 
in �2.
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4. Stability of implicitly coupled DD algorithm with path-wise communication

To analyze the stability of the implicitly coupled DD algorithm with path-wise communication between the subdomain 
solvers, we approximate our temporal discretization of (4) by treating the diffusion coefficients D1 and D3 at respective 
positions p1�x and α2 + p3�x (pi = 1/2, . . . , Ni − 1/2 for i = 1 or 3) as constant over a macro-step. This effectively 
linearizes the algorithm around tn for the macro-step from tn to tn+1. The most stringent constraint on the size of the 
macro-step for this approximation to hold comes from the time variation of D1 at x = �x/2 for small correlation times λ
of the boundary noise η(t); it results in the condition �tcom 
 λ.

Having chosen �tcom such that the above linearization procedure yields a reasonable approximation during the macro-
step from tn to tn+1, one micro-step of the left (l = 0, . . . , n1 − 1), middle (m = 0, . . . , n2 − 1) and right (q = 0, . . . , n3 − 1) 
subdomain solvers is given by

ρn,l+1,k
1 = (IN1−1 + A1,n)ρ

n,l,k
1 + T1,n ρn,k

1,b + T1,n ηn,l, (10a)

ρn,m+1,k
2 = (IN2−1 + A2)ρ

n,m,k
2 + T2 ρn,k

2,b, (10b)

ρn,q+1,k
3 = (IN3−1 + A3,n)ρ

n,q,k
3 + T3,n ρn,k

3,b, (10c)

where ρn,k
1,b ≡ (〈ρ0〉, 0, . . . 0, ρ̄ n,k

1,N1
)� , ρn,k

2,b ≡ (ρ̄ n,k
1,N1

, 0, . . . , 0, ρ̄ n,k
2,N2

)� and ρn,k
3,b ≡ (ρ̄ n,k

2,N2
, 0, . . . 0, ρL)

� are vectors of size 
N1 − 1, N2 − 1 and N3 − 1, respectively, which supply the boundary conditions for the three solvers, and ηn,l ≡
(ηn,l, 0, . . . , 0)� .4 The identity matrices INi−1 (i = 1, 2, 3) are of size Ni − 1, and the square matrices Ai,n and Ti,n of 
size Ni − 1 (i = 1, 3) are defined in Appendix C. Finally, the square matrices A2 and T2 of size N2 − 1 are given by 
A2 = (D2�t2/�x2) Trid(1, −2, 1) and T2 = (D2�t2/�x2)IN2−1, where Trid(1, −2, 1) denotes the tridiagonal Toeplitz ma-
trix of size N2 − 1 whose elements on the main diagonal are −2 and those on the first sub- and super-diagonal are 1.

Lemma 4.1. Given vectors, of size N + 1,

xn = (ρn,0
1 , ρ̄ n,0

1,N1
, F̄ n,0

2,1/2,ρ
n,0
2 , ρ̄ n,0

2,N2
, F̄ n,0

3,1/2,ρ
n,0
3 )�,

xn,k = (ρn,n1,k
1 , ρ̄ n,k

1,N1
, F̄ n,k

2,1/2,ρ
n,n2,k
2 , ρ̄ n,k

2,N2
, F̄ n,k

3,1/2,ρ
n,n3,k
3 )�, (11)

representing the solution at tn and the kth iterate of the solution at tn+1, respectively, the ensemble-averaged solution at time tn+1, 
〈xn+1〉, is given by

〈xn+1〉 = 〈(IN+1 − Mn)
−1Pnxn〉 + 〈(IN+1 − Mn)

−1dn〉, (12)

where Mn(xn, ηn,0) and Pn(xn, ηn,0) are (N + 1) × (N + 1) square matrices, and the vector dn of size N + 1 depends on xn and all 
ηn,l with l ∈ {0, 1, . . . , n1 − 1}.

Taking the 1-norm of both sides of (12), and using the triangle inequality, yields

‖〈xn+1〉‖1 ≤ ‖〈(IN+1 − Mn)
−1Pnxn〉‖1 + ‖〈(IN+1 − Mn)

−1dn〉‖1. (13)

For ‖〈(IN+1 − Mn)−1Pnxn〉‖1, the following result holds.

Lemma 4.2. Consider yn = (ηn,0, xn�
)� and Qn = (IN+1 − Mn)−1Pn. Using Taylor’s theorem to expand Q n(yn) about 〈yn〉 yields

‖〈(Qn(yn) xn〉‖1 ≤ ‖Qn(〈yn〉)‖1 ‖〈xn〉‖1 + Vn (14)

with Vn ∈ R≥0 .

Equation (13) and Lemma 4.2 yield the following necessary conditions for stability, in ensemble mean, of the time advance-
ment.

Lemma 4.3. Stability, in the mean, of the time advancement of the implicitly coupled DD algorithm with path-wise communication 
requires ‖Qn(〈yn〉)‖1 and Vn in (14), and ‖〈(IN+1 − Mn)−1dn〉‖1 in (13), to be finite for every macro-step, and ‖Qn(〈yn〉)‖1 to be 
smaller than one for all but a finite number of macro-steps. The condition on Vn is satisfied if [Q n(yn)]i, j is of class C2 on a open 
convex set containing yn and 〈yn〉, |∂α[Q n(yn)]i, j | with |α| = 2 is finite, the map of the noise η onto yn is monotonic, ∇ynη is in L4 , and 
gi, j(yn) and ‖ỹn‖2

1xn
j are in L2 for all i, j = 1, . . . , N + 1. Here ỹ are zero-mean fluctuations in a Reynolds decomposition y = 〈y〉 + ỹ.

4 In equation (10a), ηn,l is separated from the left boundary concentration to render ρn,k
1,b independent of the micro-step, which simplifies the analysis.
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Lemmas 4.1–4.3, whose proofs are provided in Appendix C, have the following implication. The problem’s nonlinearity 
causes the ensemble mean solution 〈yn〉 to differ from its counterpart obtained by replacing the randomly fluctuating 
boundary function ρ0(t) with its ensemble mean 〈ρ0〉. Therefore, the dependence of (IN+1 − Mn)−1Pn on 〈yn〉 suggests that 
the stability of the DD algorithm with random boundary conditions is different from that of the corresponding DD algorithm 
with ensemble-averaged boundary conditions.5 This illustrates the potential pitfalls of applying DD algorithms verified for 
deterministic nonlinear problems to nonlinear problems whose dynamics is driven by random fluctuations.

5. Simulation results and discussion

In the simulations reported below, we set α1 = 2L/5 and α2 = 3L/5. This choice of relative thicknesses ensures that dif-
fusion is nonlinear throughout most of the membrane (within the Pd layers) and facilitates our computational experiments. 
The resulting subdomains �i (i = 1, 2, 3) are discretized with N1 = N3 ≡ 2N/5 and N2 ≡ N/5 nodes, respectively. All the 
quantities are reported in their dimensionless form,

x̂ = x

LTa
, t̂ = t D int

Pd

L2
Ta

, ρ̂ = ρV Pd, (15)

and the dimensionless parameters are set to L̂ = 5, 〈ρ̂0〉 = 0.55 and ρ̂L = 0.1. In the following, we omit the hats ·̂ to simplify 
the notation.

Realizations of the boundary noise η(t) with infinite correlation time (λ → ∞), i.e., of the random variable η, were 
drawn from a truncated Gaussian distribution with zero mean and variance σ 2

η using the Matlab code by Burkardt based 
on [25]. Two values of the coefficient of variation, C Vη ≡ ση/〈ρ0〉 = 0.46 and 0.23, were considered. For the exponential 
correlation function with finite λ (Section 5.4), realizations of η(t) were drawn from the multivariate truncated Gaussian 
distribution using the Matlab codes by Benham and Luong based on [26].

The convergence tolerance for the Newton solver was set to ε = 10−3, and that for the Krylov solver (GMRES) in the 
JfNK coupling to εK = 10−6. We do not precondition the GMRES algorithm as it usually converged after only a few iterations 
without preconditioning. The simulation time horizon, T (= 20 or 40, depending on the experiment), was chosen to allow 
the system to approach its steady state. The ensemble mean 〈ρ(x, t)〉 and variance σ 2

ρ (x, t) of concentration ρ(x, t) were 
approximated by their sample counterparts calculated from Nsam independent samples. This number was determined from 
the following conditions:

1. The difference between the prescribed ensemble average of ρ0(t) and its sample counterpart is less than 5 · 10−3 at 
representative times tk = kT /5 (k = 1, . . . , 5).

2. The difference between the sample averages computed with Nsam and Nsam − 10 realizations is less than 10−3 at times 
tk = kT /5 (k = 1, . . . , 5).

We found these conditions to be satisfied with Nsam = 1200 for C Vη = 0.23, and Nsam = 2500 for C Vη = 0.46. The compu-
tations were performed on an Intel Core i7 machine running at 4 GHz.

5.1. Comparison between path-wise and moment-wise coupling

We compare the relative performance of the DD algorithms with the path-wise and moment-wise communication strate-
gies. A single-solver (“global”) method provides reference solutions 〈ρ(xi , t)〉ref and [σ 2

ρ (xi, t)]ref with xi = i�x (i = 0, . . . , N) 
and t = jT /5 ( j = 1, 3, 5) for T = 20.0. These solutions are computed from Nsam = 1200 or 2500 (for C Vη = 0.23 or 0.46) 
independent runs of a single explicit Euler solver with grid cell size �xref and time step �tref . The latter is chosen to satisfy 
the stability condition �tref < (�xref)2/(2Dmax), where Dmax is the maximum value of the diffusion coefficient throughout 
the computational domain over the entire duration of the simulation.

A position-dependent relative error Eρ is defined, for i = 1, . . . , N − 1, as

Eρ(xi, t;�xref,�tref,�x,�tcom) = |〈ρ(xi, t)〉 − 〈ρ(xi, t)〉ref|
〈ρ(xi, t)〉ref

(16)

where 〈ρ(xi, t)〉 is computed with the DD algorithm on a grid of cell size �x ≥ �xref and with inter-solver communication 
time �tcom ≥ �tref. For a fully-converged (implicit) JfNK coupling, the total relative error E im

ρ is

E im
ρ (xi, t;�xref,�tref,�x,�tcom) = E im

c (xi, t) + E im
�x(xi, t) + E im

�tcom
(xi, t), (17)

where E im
c is the error solely due to the use of the implicit coupling, i.e., of DD solutions with �tcom = �tref and �x = �xref; 

E im
�x is the error due to the use of a coarser mesh with �x > �xref; and E im

�tcom
is the error due to the use of a �tcom > �tref. 

5 This is in contrast to the case of linear diffusion, where noise does not affect the stability of DD algorithms [11].
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Fig. 4. Temporal snapshots of the deterministic concentration, ρ(x, t), computed with the DD and global algorithms using �xref = 0.25 (left) and �xref =
0.0625 (right).

Fig. 5. Temporal snapshots of the mean concentration, 〈ρ(x, t)〉, computed (for C Vη = 0.23) with the path-wise DD and global algorithms using �xref = 0.25
(left) and �xref = 0.0625 (right).

To compare the path-wise and moment-wise implicit coupling, we focus on E im
c by using the fully-converged JfNK coupling 

with one micro-step per macro-step, �tcom = �ti = �tref (i.e., ni = 1 for i = 1, 2, 3) so that E im
�tcom

= 0, and a mesh with 
�x = �xref so that E im

�x = 0.
First, we consider the deterministic boundary condition ρ0 = 0.55, for which the DD algorithms with path-wise and 

moment-wise communication are equivalent, Eρ is defined in terms of ρ(xi, t) rather than 〈ρ(xi, t)〉, and T = 30.0 was 
required to approach steady state. Fig. 4 exhibits temporal snapshots of the concentration profiles, ρ(x, t), computed with 
the DD and global methods. The discrepancy between the two methods, i.e., E im

c , is maximal at intermediate times (t = 18) 
and is reduced, at all times, by refining the mesh from �xref = 0.25 to �xref = 0.0625. This mesh refinement necessitates the 
reduction of the time step, from �tref = 0.01 to �tref = 5 × 10−4, to satisfy the stability condition �tref < (�xref)2/(2Dmax).

Next, we consider the infinitely correlated boundary noise, i.e., the case ρ0 = 〈ρ0〉 + η0 with the zero-mean truncated 
Gaussian variable η0. Fig. 5 shows the mean concentration profiles, 〈ρ(x, t)〉, computed with the path-wise DD and global 
algorithms, for C Vη = 0.23. The impact of time t on the discrepancy between the two solutions with �xref = 0.25, i.e., on 
E im

c is less pronounced than in the deterministic case, indicating a “smoothing effect” of the noise. As before, the mesh 
refinement, i.e., smaller �xref, reduces E im

c . Fig. 6 demonstrates that the mesh refinement also reduces the discrepancy 
between the DD and global solutions for the concentration variance σ 2

ρ (x, t). Although not shown here, the case of C Vη =
0.46 yielded similar results for both the mean and variance.

Finally, we consider the performance of the DD algorithm with the moment-wise communication. Fig. 7 reveals that this 
approach yields an inaccurate mean solution 〈ρ(x, t)〉 even for a moderate noise strength (C Vη = 0.23), and this solution 
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Fig. 6. Temporal snapshots of the concentration variance, σρ(x, t)2, computed (for C Vη = 0.23) with the path-wise DD and global algorithms using �xref =
0.25 (left) and �xref = 0.0625 (right).

Fig. 7. Temporal snapshots of the mean concentration, 〈ρ(x, t)〉, for C Vη = 0.23 (left) and C Vη = 0.46 (right), computed with the moment-wise DD using 
�xref = 0.25.

becomes unphysical at later times (t = 20) as the noise strength increases (C Vη = 0.46). Although not shown here, reducing 
�xref from 0.25 to 0.0625 does not yield any improvement; the concentration variance is incorrectly represented in �1
and is identically zero in �2 and �3 (as explained in Section 3.4). These findings eliminate the possibility of using the 
moment-wise coupling for our DD algorithm. In the remainder of this paper, we therefore exclusively use the path-wise 
communication.

5.2. Relative performance of implicit and explicit coupling

Inter-solver communications can represent a large fraction of the overall computational cost of a multiphysics simula-
tion. This cost may be mitigated by using an incomplete (i.e., partially converged) iteration or reducing the inter-solver 
communication frequency, both of which may lead to a higher solution error and might introduce instabilities. To explore 
this efficiency/accuracy trade-off, we consider the fully-converged (implicit) coupling with two communication frequencies, 
�tcom = 4.0 and �tcom = 8.0, and in each case compare its efficiency with that of a single-iteration (explicit) coupling. In 
these simulations, we set �x = 0.25, �t1 = �t3 = 0.01, �t2 = 0.05, and T = 40.0 (to enable testing of bigger �tcom values, 
even though steady state is approached around t = 20). Similar to (16) and (17), we define relative errors of the implicit 
(E im

ρ ) and explicit (Eex
ρ ) path-wise coupling strategies,

E im
ρ = E im

c (xi, t) + E im
�x(xi, t) + E im

�tcom
(xi, t), (18a)

Eex
ρ = Eex

c (xi, t) + Eex
�x(xi, t) + Eex

�tcom
(xi, t), (18b)
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Fig. 8. Spatial variability of the relative errors E im
ρ and Eex

ρ for �tcom = 4.0 (implicit and explicit) and �tcom = 0.1 (explicit) with C Vη = 0.23.

Table 1
Nsam-averaged simulation time tsim (in s) with implicit and explicit coupling for 
several communication frequencies �tcom.

Coupling �tcom Simulation time, tsim

C Vη = 0.23 C Vη = 0.46

Implicit 4.0 4.5 3.5
Explicit 0.1 11.2 10.7

Implicit 8.0 7.6 6.5
Explicit 0.25 8.6 8.8

wherein the reference solutions 〈ρ(xi, t)〉ref are the “exact” profiles obtained with a single explicit Euler solver on a fine 
space–time mesh of �xref = 0.0625 and �tref = 5 × 10−4.

Fig. 8 shows the errors E im
ρ and Eex

ρ when the implicit coupling has communication time �tcom = 4.0 and the noise 
strength C Vη = 0.23. Using an identical communication time as its implicit counterpart, the explicit coupling yields a 
relative error Eex

ρ that can be more than an order of magnitude higher than that of the implicit coupling, E im
ρ . This difference 

in solution error may be negated by reduction of �tcom, which, however, increases simulation time tsim (Table 1). This 
causes the explicit coupling to become slower than its implicit counterpart. As Table 1 shows, for the higher noise strength 
C Vη = 0.46 we find a similar behavior, but the simulation time when using implicit coupling is smaller than its counterpart 
for C Vη = 0.23. Although not shown here, the latter can be attributed to the fact that a higher noise strength decreases the 
Nsam-averaged number of iterations per communication throughout the entire simulation, indicating again the smoothing 
effect of the noise (see also Section 5.1). When the implicit coupling has a communication time �tcom = 8.0, it again 
outperforms the explicit coupling at both coefficients of variation considered.

5.3. Temporal order of accuracy of implicitly coupled DD algorithm

We express the temporal order of accuracy of our DD algorithm in terms of the l2-norm error El2 = ‖〈ρ〉 −〈ρ̃〉‖l2 over the 
entire simulation domain �. Here 〈ρ〉 is the Nsam-average of the DD solution ρ obtained using JfNK coupling with ε = 10−3, 
�x = 0.25, �ti ≡ �t and ni = 1 (i = 1, 2, 3); and 〈ρ̃〉 is the ensemble average of the exact solution to the set of nonlinear 
ODEs (4) with �x = 0.25, and is approximated by the Nsam-average of the implicitly (JfNK coupling with ε = 10−3) coupled 
DD solution ρ̃ with spatial mesh size �x̃ = 0.25, micro-steps �t̃i = 10−5 and ñi = 1 (i = 1, 2, 3). We only consider perfectly 
correlated noise.

Fig. 9 demonstrates, for C Vη = 0.46, that sequential reduction of �t by a factor of two results in a near-quadratic 
decrease in El2 . A similar result was obtained for C Vη = 0.23. It follows that the implicit coupling preserves the second-order 
local (i.e., first-order global) order of accuracy of the subdomain solvers for all the boundary noise strengths considered.

5.4. Effect of finite noise correlation time

To generate the temporally fluctuating truncated Gaussian boundary noise η(t) with (dimensionless) correlation time λ, 
we first consider a discrete version of the auto-covariance of the parent multivariate-Gaussian field p(t),
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Fig. 9. The l2-norm error of the Nsam-averaged solution, 〈ρ(x, t)〉, as a function of the micro-step size �t .

Fig. 10. Effect of a finite noise correlation time on the mean concentration, 〈ρ(x, t)〉, for C Vη = 0.23.

C p(|ti − t j|) = σ 2
p exp(−|i − j|�t1/λ), (19)

where ti − t j = (i − j)�t1 with 0 < ti, t j ≤ T . It is used to build an Nt × Nt covariance matrix �p , where Nt is the total 
number of discrete time steps in the subdomain �1 over the simulation horizon T . The latter is then transformed into �η , 
an Nt × Nt covariance matrix of the truncated multivariate-Gaussian field η(t). Finally, this matrix is used to generate Nsam
realization arrays {η1, . . . , ηNt } with ηi = η(ti) at discrete times ti for i = 1, . . . , Nt . Each of the corresponding realizations 
of ρ(x, t) was computed with discretization parameters �x = 0.25 and �tcom = �ti = 10−2 (i = 1, 2, 3); the simulation 
horizon was set to T = 40.0, and a value of 4000 was used for Nsam.

Fig. 10 shows the resulting mean concentration 〈ρ(x, t)〉 computed with the implicitly coupled DD algorithm for 
C Vη = 0.23 and several values of λ. For λ < 8.0 the mean concentration profile becomes unphysical, indicating that the 
DD algorithm is not able to resolve boundary fluctuations with a correlation time smaller than eight times the characteristic 
diffusion time-scale L2

Ta/D int
Pd .

6. Summary and conclusions

We developed a domain-decomposition (DD) algorithm with a tight coupling based on a Jacobian-free Newton–Krylov 
(JfNK) method with generalized minimum residual. The DD algorithm was applied to a multiscale nonlinear diffusion prob-
lem driven by a truncated Gaussian noise at the boundary. For this problem, the DD components are coupled by enforcing 
the continuity of state variables, concentration ρ and flux F = −D(ρ)∂xρ , at the interfaces between the DD subdomains. 
This may be done either path-wise (i.e., in each realization of the ensemble) or moment-wise (i.e., only for the ensemble av-
erage). The former strategy is exact but computationally intensive, while the latter is approximate but might be significantly 
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faster. We explored the efficiency/accuracy trade-off between the fully-converged (implicit) JfNK coupling and its single-
iteration (explicit) counterpart for different frequencies of communication between the DD components and for different 
strengths of the boundary noise, and analyzed the stability and order of accuracy of the implicit path-wise coupling.

Our analysis leads to the following major conclusions.

1. The DD approach with path-wise continuity provides accurate approximations of the mean and variance of ρ(x, t)
because it correctly propagates the boundary noise across the entire computational domain. As the spatial grid size and 
time step become smaller, the DD solutions for both moments converge to the reference solutions computed with a 
single-solver method.

2. The DD approach with moment-wise continuity fails to propagate the boundary noise into adjacent subdomains, result-
ing in erroneous solutions for both the mean and variance of ρ(x, t).

3. The implicit coupling with path-wise continuity preserves the order of accuracy of the constituent solvers, even for 
relatively high coefficients of variation of the boundary noise.

4. Despite a higher cost per communication, the fully-converged (implicit) JfNK coupling strategy outperforms its explicit 
counterpart at similar levels of solution error for all noise strengths considered. This is because the explicit coupling 
requires a higher inter-solver communication frequency to achieve the same error.

5. When the boundary fluctuations are correlated over a finite time, our path-wise DD approach correctly captures the 
time evolution of the mean concentration profile if the correlation time is larger than eight times the characteristic 
diffusion time-scale.

Future extensions of the presented analysis may include the application of our DD algorithm to higher-dimensional 
problems, and the development of moment-wise DD approaches in which continuity of not just the mean, but also higher 
moments, is enforced. As demonstrated in [12], enforcing continuity of mean and variance enables DD approaches for 
linear and weakly nonlinear systems to accurately propagate random fluctuations across interfaces between subdomains. 
Since highly nonlinear systems, such as the one considered here, are described by highly non-Gaussian state variables, their 
solutions likely require DD algorithms to enforce continuity of moments beyond the variance in order to adequately capture 
noise propagation throughout the entire computational domain.

Acknowledgements

We thank A.Y. Pigarov for bringing the hydrogen separation problem to our attention and for helpful discussions. This 
work was supported in part by Defense Advanced Research Projects Agency under the EQUiPS program and by the National 
Science Foundation under grant DMS-1522799.

Appendix A. Conservative and non-conservative coupling methods

Consider the total mass M inside [α1 − �x/2, α1 + �x/2],

M(t) =
α1+�x/2∫

α1−�x/2

ρ(x, t) dx, (A.1)

with ρ the mass concentration. The temporal derivative of (A.1) yields

dM

dt
=

α1+�x/2∫
α1−�x/2

∂ρ

∂t
dx =

α1+�x/2∫
α1−�x/2

∂

∂x

[
D

∂ρ

∂x

]
dx = F1,N1−1/2 − F2,1/2. (A.2)

Here the flux F = −D(ρ)∂xρ obeys Fick’s law, and the interfacial fluxes F1,N1−1/2 and F2,1/2 constitute the amount of mass 
leaving the left subdomain per unit time and the amount of mass entering the middle subdomain per unit time, respectively.

Integrating (A.2) between tn and tn+1 = tn + �tcom yields

�M

�tcom
= F̄ n

1,N1−1/2 − F̄ n
2,1/2, (A.3)

where �M is the change in total mass inside [α1 − �x/2, α1 + �x/2] between tn and tn+1, and F̄ n
1,N1−1/2 and F̄ n

2,1/2
are the �tcom-averaged values of F1,N1−1/2 and F2,1/2, respectively. Since any mass leaving the left subdomain should be 
transported into the middle subdomain and cannot be trapped inside the interface region [α1 − �x/2, α1 + �x/2], the total 
mass inside this region must remain constant. This means that the �tcom-averaged interface fluxes are equal,

F̄ n
1,N1−1/2 = F̄ n

2,1/2. (A.4)
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Table B.2
Algorithm for pure Newton’s coupling (adapted from [27]).

Require: Initial guess u(0)

k = 0
while not converged do

u(k+1) = u(k) − J−1(u(k))f(u(k))

k = k + 1
end while

Identical reasoning applies to the interface x = α2. Therefore, only enforcing F1,N1−1/2(tn+1) = F2,1/2(tn+1) and
F2,N2−1/2(tn+1) = F3,1/2(tn+1) cannot yield a consistent solution over the entire domain, regardless of whether or not 
the coupling is iterative.

Appendix B. Newton’s iteration and Jacobian-free Newton–Krylov methods

The root-finding problem f(u) = 0, where u is an n-dimensional vector containing the unknowns, may be solved itera-
tively using Newton’s method (see Table B.2) which converges q-quadratically in the norm [24]

‖uk+1 − uex‖ ≤ A‖uk − uex‖2, (B.1)

where uex is the exact solution, the q-factor A > 0, and the iteration number k is sufficiently large. Newton’s method 
converges faster than, e.g., fixed-point iteration, but it is only locally convergent (i.e., requires a “good” initial guess) and 
requires computing the full Jacobian J.

The former issue can be addressed through globalization strategies, while the latter can be overcome by using inex-
act Newton algorithms such as JfNK methods [23]. A JfNK algorithm solves a linear system J(uk)δuk = −f(uk) at the kth 
Newton iteration inexactly using an iterative Krylov scheme such as the Generalized Minimal RESidual (GMRES) or BiCon-
jugate Gradient STABilized (BiCGSTAB) method. The Krylov solver only requires the action of the Jacobian in the form of a 
matrix–vector product J(uk)v, which may be approximated by a first-order accurate finite difference expression [23]

J(uk)v ≈ f(uk + εv) − f(uk)

ε
, (B.2)

or second-order accurate approximation [23]

J(uk)v ≈ f(uk + εv) − f(uk − εv)

2ε
. (B.3)

Here ε is a small perturbation parameter, which has to be neither too large (resulting in a poor approximation of the 
derivative) nor too small (leading to a big floating-point roundoff error). We define it as

ε =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

n‖v‖2

n∑
i=1

√
ε(1 + |uk,i |) if ‖v‖2 > ε

1

n

n∑
i=1

√
ε(1 + |uk,i |) if ‖v‖2 ≤ ε,

(B.4)

where n is the size of uk (n = 4 in our case) and ε = 2.2204 · 10−16 (machine roundoff for 64-bit double precision). In our 
simulations we use formula (B.3).

JfNK methods provide Newton-like convergence without the cost of forming or storing the true Jacobian. Yet, their error 
stems from both the inexact convergence of the iterative linear solves and, more importantly, from approximating the 
action of the Jacobian. The latter error is directly related to the selection of a value for ε. In addition, unless the condition 
number of J is small or its eigenvalues are clustered together, preconditioning is needed to converge the Krylov solver with 
reasonable effort. This causes the matrix-free appeal of (B.2) or (B.3) to yield, to some extent, to the construction and use 
of a preconditioning matrix Pk (hence, we use the term “Jacobian-free” and not “matrix-free”). Right preconditioning, which 
does not change the norm of the linear residual, is often used in a Newton–Krylov method. The Newton equation with right 
preconditioning is

(J(uk)P−1
k )(Pk δuk) = −f(uk), (B.5)

where Pk is the preconditioning matrix, which should be easy to evaluate, while retaining as much of the properties of the 
Jacobian as possible. In our simulations, the Krylov solver converged sufficiently fast without the use of a preconditioner, 
and hence we decided against using such a matrix.

In the problem under consideration, during the macro-step from tn to tn+1 we have u ≡ un = (ρ̄ n
1,N1

, F̄ n
2,1/2, ρ̄

n
2,N2

, F̄ n
3,1/2)

�, 
and employ JfNK to solve the root-finding problem f(un) = 0 with f(un) given by
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f(un) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̄ n
1,N1

− ρ̄ n
2,0

F̄ n
1,N1−1/2 − F̄ n

2,1/2

ρ̄ n
2,N2

− ρ̄ n
3,0

F̄ n
2,N2−1/2 − F̄ n

3,1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.6)

Appendix C. Proofs of the stability lemmas

C.1. Proof of Lemma 4.1

After n1 micro-steps, the left subdomain solver (10a) yields

ρn,n1,k
1 = BLρ

n,0
1 + CLρ

n,k
1,b +

n1−1∑
l=0

(IN1−1 + A1,n)
n1−1−l T1,nη

n,l, (C.1)

where ρn,0
1 ≡ ρ1(t = tn), BL = (IN1−1 + A1,n)n1 and CL = ∑n1−1

l=0 (IN1−1 + A1,n)l T1,n . After n2 micro-steps, the middle subdo-
main solver (10b) gives

ρn,n2,k
2 = BMρn,0

2 + CMρn,k
2,b, (C.2)

where ρn,0
2 ≡ ρ2(t = tn), BM = (IN2−1 + A2)

n2 and CM = ∑n2−1
m=0 (IN2−1 + A2)

m T2. After n3 micro-steps, the right subdomain 
solver (10c) gives

ρn,n3,k
3 = BRρ

n,0
3 + CRρ

n,k
3,b, (C.3)

where ρn,0
3 ≡ ρ3(t = tn), BR = (IN3−1 + A3,n)n3 and CR = ∑n3−1

q=0 (IN3−1 + A3,n)q T3,n . The time-averaged solutions over the n1, 
n2 and n3 micro-steps in the left, middle and right subdomains are given by

ρ̄n,k
1 = B̄Lρ

n,0
1 + C̄Lρ

n,k
1,b + 1

n1

n1∑
l=1

l−1∑
j=0

(IN1−1 + A1,n)
l−1− jT1,n ηn, j, (C.4a)

ρ̄n,k
2 = B̄Mρn,0

2 + C̄Mρn,k
2,b, ρ̄n,k

3 = B̄Rρ
n,0
3 + C̄Rρ

n,k
3,b, (C.4b)

where

B̄L = 1

n1

n1∑
l=1

(IN1−1 + A1,n)
l, C̄L = 1

n1

n1∑
l=1

l−1∑
j=0

(IN1−1 + A1,n)
j T1,n, (C.5)

B̄M = 1

n2

n2∑
m=1

(IN2−1 + A2)
m, C̄M = 1

n2

n2∑
m=1

m−1∑
j=0

(IN2−1 + A2)
j T2, (C.6)

B̄R = 1

n3

n3∑
q=1

(IN3−1 + A3,n)
q, C̄R = 1

n3

n3∑
q=1

q−1∑
j=0

(IN3−1 + A3,n)
j T3,n. (C.7)

The definitions of Ai,n and Ti,n (i = 1, 3) are given by

Ai,n = �ti

�x2
Zi,n, Ti,n = �ti

�x2
W i,n, i = 1,3, (C.8a)

with

[Zi,n]r,s =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Di(ρ
n,0
i,r+1;ρn,0

i,r ) − Di(ρ
n,0
i,r ;ρn,0

i,r−1) for s = r = 1, . . . , Ni − 1

Di(ρ
n,0
i,r ;ρn,0

i,r−1) for s = r − 1 = 1, . . . , Ni − 2

Di(ρ
n,0
i,r+1;ρn,0

i,r ) for s = r + 1 = 2, . . . , Ni − 1

0 otherwise,

(C.8b)
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[W i,n]r,s =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 for s = r = 2, . . . , Ni − 2

Di(ρ
n,0
i,r ;ρn,0

i,r−1) s = r = 1

Di(ρ
n,0
i,r+1;ρn,0

i,r ) s = r = Ni − 1,

0 otherwise,

(C.8c)

where Di(a; b) stands for Di evaluated at (a + b)/2 (for i = 1 or 3), ρn,0
1,0 = ρn

0 , ρn,0
1,N1

= ρ(α1, tn), ρn,0
3,0 = ρ(α2, tn) and 

ρn,0
3,N3

= ρL . Combining (C.1)–(C.8), the expressions for A2 and T2 in Section 4, and Newton’s iteration6 (9), leads to a 
recurrence relation

xn,k+1 = Mn(η
n,0,xn) xn,k + Pn(η

n,0,xn) xn + dn(ηn,l,xn), (C.9)

where dn is a vector of size N + 1 and l ∈ {0, 1, . . . , n1 − 1}. Taking (C.9) to convergence, and ensemble-averaging the result, 
yields

〈xn+1〉 = 〈(IN+1 − Mn)
−1Pnxn〉 + 〈(IN+1 − Mn)

−1dn〉. � (C.10)

C.2. Proof of Lemma 4.2

We employ the Reynolds decomposition yn = 〈yn〉 + ỹn , where ỹn is the zero-mean fluctuation of yn about the mean 
〈yn〉, and use Taylor’s theorem to expand (IN+1 − Mn)−1Pn around 〈yn〉. Let Qn ≡ (IN+1 − Mn)−1Pn . The ith component of 
Qn(yn) xn is given by

[Qn(yn) xn]i =
N+1∑
j=1

[Q n(yn)]i, j xn
j , (C.11)

with i = 1, . . . , N + 1. Taking the ensemble average of (C.11) and expanding [Qn(yn)]i, j using Taylor’s theorem yields

〈[Qn(yn) xn]i〉 =
N+1∑
j=1

{
[Q n(〈yn〉)]i, j〈xn

j 〉 + 〈(ỹn)
�∇[Q n(〈yn〉)]i, j xn

j 〉 + 〈R1 xn
j 〉

}
(C.12)

where R1(ỹn) is the remainder in Taylor’s formula. Taking the modulus of (C.12) and using the triangle inequality leads to

∣∣〈[Qn(yn) xn]i〉
∣∣≤

∣∣∣∣∣
N+1∑
j=1

{[Q n(〈yn〉)]i, j 〈xn
j 〉

∣∣∣∣∣+Vn,i , i = 1, . . . , N + 1, (C.13)

where Vn,i is given by

Vn,i =
N+1∑
j=1

{
|〈(ỹn)

�∇[Q n(〈yn〉)]i, j xn
j 〉| + |〈R1(ỹn) xn

j 〉|
}
. (C.14)

Summing both sides of (C.13) over all values of i, we find that

‖〈(Qn(yn) xn〉‖1 ≤ ‖Qn(〈yn〉)〈xn〉‖1 + Vn (C.15)

with Vn ≡ ∑N+1
i=1 Vn,i and ‖ · ‖1 the l1-norm. Using the inequality ‖Av‖1 ≤ ‖A‖1‖v‖1, with A ≡ Qn(〈yn〉) and v ≡ 〈xn〉, 

yields (14). �
C.3. Proof of Lemma 4.3

A finite bound on ‖〈(Qn(yn) xn〉‖1 requires the existence of a finite Vn . To find the conditions under which this is 
guaranteed, we proceed as follows.

Fact 1. If f : S → R and g : S → R are two real-valued functions, then∣∣∣∣∣∣
∫
S

f gdμ

∣∣∣∣∣∣ ≤
∫
S

| f g|dμ = ‖ f g‖1 ≤ ‖ f ‖2‖g‖2, (C.16)

with respect to a measure μ.

6 Since the problem is linearized around tn for the macro-step from tn to tn+1, we consider the pure Newton method.
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The left inequality follows from the monotonicity of integral, while the second one constitutes a specific case of Hölder’s 
inequality.

Fact 2. For any random variable X with a probability density function (PDF) f X(x), if Y = g(X) with PDF fY (y) and g is monotonic 
then

fY (y) =
∣∣∣∣ dx

dy

∣∣∣∣ f X (x(y)). (C.17)

Let fyn denote the PDF of yn and gi, j(yn) ≡ (ỹn)
�∇[Q n(〈yn〉)]i, j xn

j . Then, for each i, j = 1, . . . , N + 1, |〈gi, j(yn)〉| is 
bounded if∫

S

f 2
yn (s)ds < ∞,

∫
S

|gi, j(s)|2ds < ∞, (C.18)

where S is the support of fyn . Let h1 denote a function, which maps the random boundary noise η onto yn . Then the 
monotonicity of h1 (which is expected to be the case) implies, according to Fact 2,

fyn (s) = ‖∇s v‖2 fη[v(s)]. (C.19)

Hence,∫
S

f 2
yn (s)ds =

∫
S

‖∇s v‖2
2 f 2

η [v(s)] ds. (C.20)

According to Fact 1, f (yn) is in L2 if∫
S

‖∇s v‖4
2ds < ∞,

∫
S

f 4
η [v(s)] ds < ∞. (C.21)

Since fη is in L4, then provided that ∇ynη is in L4, the PDF fyn is in L2 and the first inequality in (C.18) holds. The second 
inequality in (C.18) is satisfied if gi, j(yn) is in L2.

Lemma. If f : Rn → R is of class Ck+1 on an open convex set S and |∂α f (x)| ≤ W for x ∈ S with |α| = k + 1, then a bound for the 
remainder Ra,k of Taylor’s theorem for f about a ≡ x − h ∈ S is given by

|Ra,k(h)| ≤ W

(k + 1)! ‖h‖k+1
1 , (C.22)

where α is the multi-index (α1, . . . , αn) with |α| = α1 + · · · + αn, and ∂α f (x) ≡ ∂ |α| f /(∂xα1
1 . . . ∂xαn

n ).

Proof. It follows from either the Lagrange or integral form of Ra,k(h) that

|Ra,k(h)| ≤ W
∑

|α|=k+1

|hα|
α! , (C.23)

where hα ≡ hα1
1 . . .hαn

n . According to the multinomial theorem, 
∑

|α|=k+1 |hα |/α! = ‖h‖k+1
1 /(k + 1)!. �

If [Q n(yn)]i, j is of class C2 on a open convex set containing yn and 〈yn〉, and |∂α[Q n(yn)]i, j | ≤ W with |α| = 2, then the 
above Lemma yields

|R1(ỹn)| ≤ W

2
‖ỹn‖2

1, (C.24)

and |〈R1(ỹn) xn
j 〉| in (C.14) is bounded if ‖ỹn‖2

1xn
j is in L2 and ∇ynη is in L4. �
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