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Multiphysics problems often involve components whose macroscopic dynamics is driven 
by microscopic random fluctuations. The fidelity of simulations of such systems depends 
on their ability to propagate these random fluctuations throughout a computational do-
main, including subdomains represented by deterministic solvers. When the constituent 
processes take place in nonoverlapping subdomains, system behavior can be modeled via a 
domain-decomposition approach that couples separate components at the interfaces be-
tween these subdomains. Its coupling algorithm has to maintain a stable and efficient 
numerical time integration even at high noise strength. We propose a conservative domain-
decomposition algorithm in which tight coupling is achieved by employing either Picard’s 
or Newton’s iterative method. Coupled diffusion equations, one of which has a Gaussian 
white-noise source term, provide a computational testbed for analysis of these two cou-
pling strategies. Fully-converged (“implicit”) coupling with Newton’s method typically out-
performs its Picard counterpart, especially at high noise levels. This is because the number 
of Newton iterations scales linearly with the amplitude of the Gaussian noise, while the 
number of Picard iterations can scale superlinearly. At large time intervals between two 
subsequent inter-solver communications, the solution error for single-iteration (“explicit”) 
Picard’s coupling can be several orders of magnitude higher than that for implicit coupling. 
Increasing the explicit coupling’s communication frequency reduces this difference, but the 
resulting increase in computational cost can make it less efficient than implicit coupling 
at similar levels of solution error, depending on the communication frequency of the latter 
and the noise strength. This trend carries over into higher dimensions, although at high 
noise strength explicit coupling may be the only computationally viable option.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many, if not most, problems of practical importance deal with complex systems that involve multiple physical (as well 
as chemical and biological) processes, which occur on a wide range of spatial and/or temporal scales. These processes can 
either spatially coexist or occur in adjacent regions of space. We focus on the latter class of multiphysics phenomena, in 
which different processes take place in separate spatial domains and affect each other at the interfaces between these 
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domains. Conjugate heat transfer across a fluid–solid interface [1] is an illustrative example of such phenomena. It is central 
to applications as diverse as satellite cold gas propulsion systems [2] and spacecraft re-entry into Earth’s atmosphere [3].

Following the terminology established in the field of fluid–structure interactions (FSI), one can subdivide solution 
strategies for interfacially coupled multiphysics systems into two modeling frameworks: “monolithic” [4] and “component 
partitioning” [5]. The former combines all the different physics components and their interactions into a single discrete 
operator, which is then advanced in time. This “tight coupling” ensures temporal synchronization of all the state variables 
and hence possesses excellent robustness, accuracy and stability properties. However, it is computationally demanding and 
“intrusive”, i.e., requires development of new codes. The second framework, which is also known as domain decomposition 
(DD), advances solutions of each physics component independently from the others, using additional solvers to exchange 
information at the interfaces through a coupling algorithm. It is “nonintrusive”, i.e., allows for a “black-box” implementation 
of the physics components which can be done with existing (“legacy”) codes. This operational expediency comes at a cost 
of reduced accuracy and stability when the physics components involved are “loosely coupled”, leading to desynchroniza-
tion of the state variables in the different components by one time step or a fraction of a time step [6]. Iterative coupling 
techniques can be used to achieve a tight coupling, which eliminates this time shift [7,8,6].

Despite the widespread use of DD approaches, there is a dearth of systematic studies of their numerical properties. 
Most studies deal with the coupling of deterministic components, which are typically represented by deterministic par-
tial differential equations (PDEs). Representative examples include an analysis of the stability of an interfacial coupling in 
one-dimensional fluid–structure thermal diffusion [9], an analysis of predictor–corrector staggered schemes for simulating 
FSI [6], an investigation of the stability of a coupling algorithm based on mixed interface conditions for conjugate heat 
transfer simulations [10], and a demonstration of the effects of a non-converged iterative coupling on the stability of a 
coupled linear diffusion problem [11]. These and other similar studies have led to nontrivial conclusions, which are likely to 
be problem-specific and demonstrate the algorithmic complexity of coupling nonlinear solvers. For example, an otherwise 
unstable loose coupling used in FSI simulations can be made stable by enforcing Neumann boundary conditions for the 
structural calculation and Dirichlet boundary conditions for the fluid solver [9]; and standard staggered schemes for FSI 
simulations need to be modified by several iteratively made corrector steps to ensure conservation of energy [7,8,6].

When random fluctuations are generated by one of the constituent solvers, conclusions drawn from numerical studies of 
fully-deterministic systems may need to be modified. Currently, a systematic analysis of how random noise or stochasticity 
of one of the constituent solvers affects the numerical performance of both the other (possibly deterministic) solvers and an 
algorithm used to couple them is largely missing. Such studies are needed to gain confidence in the ever-growing number of 
multiphysics and hybrid simulations that combine deterministic and stochastic solvers [12–15]. The analysis presented below 
contributes to this area of research by studying the effects of random noise on numerical properties (coupling convergence, 
stability and accuracy) of a domain-decomposition algorithm which tightly couples a deterministic and stochastic subdomain 
solver. A complementary challenge, the need for adding a random source term to a (deterministic) PDE solver coupled to a 
stochastic solver whose microscopic fluctuations drive the macroscopic system dynamics (e.g., in highly nonlinear problems 
involving phase transitions), has been addressed in [16–19].

In Section 2 we formulate a computational testbed problem, one-dimensional diffusion in a composite material one 
segment of which contains a Gaussian white-noise forcing. Section 3 contains a description of our DD approach to solving 
this problem, which tightly couples the deterministic (explicit Euler) and stochastic (Euler–Maruyama) diffusion solvers 
using Newton’s or Picard’s iteration. Section 4 presents a stability analysis of our algorithm using fully-converged Picard’s 
iteration. In Section 5 we conduct a series of numerical experiments to explore the performance of our algorithm. These 
findings are summarized in Section 6.

2. Problem formulation

Consider a one-dimensional linear diffusion equation,

∂ρ

∂t
= ∂

∂x

[
D

∂ρ

∂x

]
+ f , x ∈ � ≡ (−L/2, L/2), t > 0, (1a)

which describes the evolution of concentration ρ(x, t) in space, x, and time, t . The diffusion coefficient D(x) is piecewise 
constant,

D(x) =
{

D1 for x ∈ �1 ≡ (−L/2,0)

D2 � D1 for x ∈ �2 ≡ [0, L/2),
(1b)

and the source term f (x, t) is defined as

f (x, t) =
{

0 for x ∈ �1

ξ(x, t) for x ∈ �2,
(1c)

where ξ(x, t) is a zero-mean Gaussian space–time white noise with covariance

E[ξ(x, t)ξ(y, τ )] = σ 2
ξ δ(x − y)δ(t − τ ), x, y ∈ �2; t, τ > 0 (1d)
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Fig. 1. Computational domain � = (−L/2, L/2) decomposed into subdomains �1 = (−L/2, 0) and �2 = [0, L/2). Concentration ρ is computed at the nodes 
denoted by solid circles, and flux F is evaluated at the midpoint between two subsequent concentration nodes (open circles).

and variance σ 2
ξ . Here δ(·) denotes the Dirac delta function. Equation (1) is subject to Dirichlet boundary conditions

ρ(x = −L/2, t) = ρL, ρ(x = L/2, t) = ρR, (2)

and an initial condition

ρ(x,0) = ρM

{
(ρL/ρM)−2x/L for x ∈ �1

(ρR/ρM)2x/L for x ∈ �2.
(3)

The simulation domain’s length, L; the concentration on the left, ρL, and right, ρR, boundaries; the initial concentration at 
x = 0, ρM; and the noise variance, σ 2

ξ , are given constants.
Numerical solution of this boundary-value problem (BVP) is nontrivial. First, the presence of stochastic noise ξ(x, t) in 

the right half of the simulation domain, �2, formally renders a solution ρ(x, t) random over the whole domain �. Second, 
the vastly different diffusion coefficients D1 and D2 imply the co-existence of two disparate time scales t1 and t2 (t1 � t2). 
Therefore, advancing the stochastic BVP (1)–(3) in time over the whole domain � requires the use of a time step whose 
size is determined by the smallest diffusion time-scale, t2.

Domain decomposition provides a natural alternative to solving the stochastic BVP (1)–(3) directly. It decomposes the 
computational domain � into subdomains �1 and �2. A different BVP is defined on each of these subdomains, such that

∂ρ1

∂t
= D1

∂2ρ1

∂x2
, ρ1(−L/2, t) = ρL, ρ1(x,0) = ρM

(
ρL

ρM

)−2x/L

, x ∈ �1 (4)

and

∂ρ2

∂t
= D2

∂2ρ2

∂x2
+ ξ, ρ2(L/2, t) = ρR, ρ2(x,0) = ρM

(
ρR

ρM

)2x/L

, x ∈ �2. (5)

These two BVPs are coupled by enforcing the continuity of the state variable, ρ , and its flux at the interface x = 0 separating 
the subdomains �1 and �2,

ρ1(0, t) = ρ2(0, t), D1
∂ρ1

∂x
(0, t) = D2

∂ρ2

∂x
(0, t). (6)

This relatively simple computational testbed contains a number of salient features of multiphysics simulations. First, 
it combines deterministic and stochastic solvers used to integrate BVPs (4) and (5), respectively. Second, its constitutive 
solvers operate at different temporal scales defined by the diffusion coefficients D1 and D2. (A more complicated example 
of two-dimensional diffusion is presented in Section 5.4.)

3. Numerical implementation of domain decomposition

Our quantity of interest is temporal snapshots of the ensemble-averaged concentration profile, 〈ρ(x, t)〉, in � =
(−L/2, L/2) over a time interval (0, T ], where T is defined by the diffusion time scale of the slowest diffusion process 
and is set to T = L2/(8D1). This choice of T allows 〈ρ(x, t)〉 to approach its steady-state limit for all x ∈ �.

3.1. Spatial discretization of the computational domain

To simplify the presentation, and without any loss of generality, we discretize the computational domain � using a 
uniform mesh of cell size 	x = L/N , where N is the total number of grid cells. The solvers used to integrate BVPs (4)
and (5) employ a staggered grid approach, in which diffusive fluxes, Fi(x, t) = −Di∂ρi/∂x, in the ith subdomain (i = 1, 2) 
are calculated at the midpoint between two subsequent concentration nodes (see Fig. 1). In particular, both ρ− = ρ1(0, t)
and ρ+ = ρ2(0, t) are defined at the interfacial node x = 0, while the corresponding interfacial fluxes F − = F1(0, t) and 
F + = F2(0, t) are defined at x = −	x/2 and x = 	x/2, respectively.
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3.2. Numerical solvers for BVPs (4) and (5)

Approximation of the Laplacian with a second-order central finite difference scheme transforms (4) and (5) into systems 
of ordinary differential equations (ODEs)

dρ1

dt
= f1(ρ1),

dρ2

dt
= f2(ρ2) + ξ . (7a)

Here ρ i = (ρi,1, . . . , ρi,N/2−1)
� are the one-dimensional arrays of size N/2 − 1 of the nodal values of the state variables 

ρi(x, t) for i = 1, 2; components f i,p of the one-dimensional arrays fi(ρ i) of size N/2 − 1 are defined by

f i,p = Di
ρi,p+1 + ρi,p−1 − 2ρi,p

	x2
, p = 1, . . . , N/2 − 1, i = 1,2; (7b)

where ρ1,0 = ρL, ρ1,N/2 = ρ− , ρ2,0 = ρ+ and ρ2,N/2 = ρR; and components ξp (p = 1, . . . , N/2 − 1) of the one-dimensional 
array ξ = (ξ1, . . . , ξN/2−1)

� are obtained by spatial discretization of the space–time white noise ξ(x, t), and satisfy

E[ξp(t)] = 0, E[ξp(t)ξq(τ )] = σ 2
ξ

δpq

	x
δ(t − τ ), (7c)

where δpq is the Kronecker delta function.
A deterministic solver used to advance ρ1 in time employs an explicit Euler (EE) method with time step 	t1. A stochastic 

solver used to advance ρ2 in time employs the Euler–Maruyama (EM) method [20,21] with time step 	t2. The latter 
advances the pth component of the random array ρ2 from tn = n	t2 to tn+1 = (n + 1)	t2 according to

ρn+1
2,p = ρn

2,p + D2	t2

	x2
(ρn

2,p+1 + ρn
2,p−1 − 2ρn

2,p) + σξ

√
	t2

	x
ηn

p, (8)

where ηn
p are identically distributed standard Gaussian variables such that ηn

p and ηm
q are mutually independent for all 

p 	= q and/or n 	= m.
Given a value of the interfacial (x = 0) concentration ρ−(t) = ρ+(t) at a certain time t , these two solvers can operate 

independently from each other, yielding a deterministic solution ρ1 and a stochastic solution ρ2. These solutions will not 
satisfy the continuity conditions (6) and, hence, do not yield a solution of the original BVP (1). Construction of such a 
solution requires occasional communications between the deterministic and stochastic solvers via a coupling algorithm.

3.3. Interfacial coupling algorithm

Exchange of information between the two solvers can, at most, occur on the scale of the largest time step. Let 	tcom
denote the time interval between any two successive communications between the deterministic and stochastic solvers. It 
is given in terms of the multiples of the inner-solver time steps 	t1 and 	t2, such that 	tcom = n1	t1 = n2	t2. In other 
words, the deterministic and stochastic solvers are advanced by n1 and n2 “micro” steps 	t1 and 	t2, respectively, before 
the inter-solver communication occurs and the system is advanced by the “macro” step 	tcom.

In the coupling algorithm described below, we use 	tcom-averaged interfacial concentrations and fluxes. The time-
averaged concentrations, ρ̄1 and ρ̄2, are computed as arithmetic means of ρ1 and ρ2 over their respective n1 and n2
micro-steps. The interfacial values of these 	tcom-averaged concentrations are ρ̄− and ρ̄+ . Likewise, we denote by F̄ − and 
F̄ + the 	tcom-averaged values of the interfacial fluxes F − and F + , respectively. Reliance on the 	tcom-averaged interfa-
cial concentrations and fluxes, rather than on their counterparts computed at the last micro-step of each solver, facilitates 
construction of a mass-conservative coupling algorithm (see Appendix A).

To tightly couple BVPs (4) and (5), we enforce (6) at each inter-solver communication by means of an iterative (or “im-
plicit”) coupling algorithm based on either Picard’s or Newton’s method (Appendix B). In the context of the interfacial 
conditions (6), these root-finding algorithms are deployed to solve a system of coupled nonlinear algebraic equations, 
ρ̄− = ρ̄+ and F̄ − = F̄ + , at each inter-solver communication. Using notation

ρ̄ n
1,N/2 = ρ̄−, ρ̄ n

2,0 = ρ̄+, F̄ n
1,N/2−1/2 = F̄ −, F̄ n

2,1/2 = F̄ +, (9)

for the macro-step from tn to tn+1 = tn + 	tcom, this system is written as

ρ̄ n
1,N/2 = ρ̄ n

2,0, F̄ n
1,N/2−1/2 = F̄ n

2,1/2. (10)

Picard’s method recasts (10) into a fixed-point iteration problem

ρ̄ n,k+1
1,N/2 = [ρ̄ n

2,0( F̄ n
2,1/2)]k, F̄ n,k+1

2,1/2 = [ F̄ n
1,N/2−1/2(ρ̄

n
1,N/2)]k (11a)

where k is the iteration number, and
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[ρ̄ n
2,0( F̄ n

2,1/2)]k ≡ ρ̄ n,k
2,1 + 	x

D2
F̄ n,k

2,1/2, ρ̄ n,k
2,0 = [ρ̄ n

2,0]k, etc., (11b)

[ F̄ n
1,N/2−1/2(ρ̄

n
1,N/2)]k ≡ − D1

ρ̄ n,k
1,N/2 − ρ̄ n,k

1,N/2−1

	x
. (11c)

The iterations continue until

max
{∣∣∣ρ̄ n,k

1,N/2 − ρ̄ n,k
2,0

∣∣∣ , ∣∣∣ F̄ n,k
1,N/2−1/2 − F̄ n,k

2,1/2

∣∣∣} ≤ ε, (12)

where ε is the prescribed tolerance.
Newton’s method replaces (10) with an iterative system⎛

⎜⎝ ρ̄ n,k+1
1,N/2

F̄ n,k+1
2,1/2

⎞
⎟⎠ =

⎛
⎜⎝ ρ̄ n,k

1,N/2

F̄ n,k
2,1/2

⎞
⎟⎠ − J−1(ρ̄ n,k

1,N/2, F̄ n,k
2,1/2)

⎛
⎝ g1

g2

⎞
⎠ (13a)

where J is the Jacobian,

J =
⎛
⎜⎝∂ g1/∂ρ̄

n,k
1,N/2 ∂ g1/∂ F̄ n,k

2,1/2

∂ g2/∂ρ̄
n,k

1,N/2 ∂ g2/∂ F̄ n,k
2,1/2

⎞
⎟⎠ , (13b)

and

g1 = ρ̄ n,k
1,N/2 − ρ̄ n,k

2,1 − 	x

D2
F̄ n,k

2,1/2, g2 = −D1
ρ̄ n,k

1,N/2 − ρ̄ n,k
1,N/2−1

	x
− F̄ n,k

2,1/2. (13c)

Explicit expressions for the components of the Jacobian J are derived in Appendix C. The iterations continue until 
max{|g1|, |g2|} ≤ ε .

3.4. Domain-decomposition algorithm

Let ρn,l,k
1 ≡ ρ1(tn + l	t1) and ρn,m,k

2 = ρ2(tn + m	t2) denote arrays of the nodal concentrations at inner-solver times 
tn + l	t1 and tn +m	t2 during the kth iteration of the macro-step from tn to tn+1 = tn +	tcom. As before, ρ̄ n,k

1,N/2 and F̄ n,k
2,1/2

denote the 	tcom-averaged interfacial concentration and flux during the kth iteration of that macro-step. The solution is 
advanced from tn to tn+1 as follows.

1. Initialization step. Set ρ̄ n,0
1,N/2 = ρ1,N/2(tn) and F̄ n,0

2,1/2 = F2,1/2(tn).

2. Evolve the state vector ρn,0,k
1 of size N/2 − 1 to ρn,n1,k

1 over n1 micro-steps, using ρL and ρ̄ n,k
1,N/2 as the boundary 

conditions at x = −L/2 and x = 0, respectively.
3. Evolve the state vector ρn,0,k

2 of size N/2 − 1 to ρn,n2,k
2 over n2 micro-steps, using ρ̄ n,k

1,N/2 and ρR as the boundary 
conditions at x = 0 and x = L/2, respectively.

4. Use either Picard’s or Newton’s coupling to calculate new iterates of the interfacial concentration, ρ̄ n,k+1
1,N/2 , and flux, 

F̄ n,k+1
2,1/2 .

5. Repeat steps 2 through 4 until the given tolerance ε is achieved.
6. Advance the solution by one macro-step by setting

ρ1,N/2(tn+1) = ρ̄ n,K
1,N/2 and F2,1/2(tn+1) = F̄ n,K

2,1/2,

where K = K (n) indicates the number of iterations at convergence. By construction, ρ2,0(tn+1) = ρ1,N/2(tn+1) and 
F1,N/2−1/2(tn+1) = F2,1/2(tn+1).

It is worthwhile noting that the above iterative algorithms can be readily modified by using ρ̄ n,k
2,0 and F̄ n,k

1,N/2−1/2 as 
iterates.

4. Stability analysis of DD algorithm with Picard’s coupling

One micro-step of the deterministic (l = 0, . . . , n1 − 1) and stochastic (m = 0, . . . , n2 − 1) solvers, during the macro-step 
from tn to tn+1, is carried out, respectively, by the explicit Euler and Euler–Maruyama (8) methods,

ρn,l+1,k
1 = (I + A1)ρ

n,l,k
1 + T1ρ

n,k
1,b, ρn,k

1,b ≡ (ρL,0, . . . 0, ρ̄ n,k
1,N/2)

� (14a)
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and

ρn,m+1,k
2 =(I + A2)ρ

n,m,k
2 + T2ρ

n,k
2,b + γ ηn,m,k, ρn,k

2,b≡(ρ̄ n,k
1,N/2,0, . . . ,0,ρR)�. (14b)

Here ρn,k
1,b and ρn,k

2,b are the vectors of size N/2 −1 supplying the boundary conditions for the two solvers; I is the (N/2 −1) ×
(N/2 − 1) identity matrix; the square matrices Ai and Ti (i = 1, 2) of size N/2 − 1 are defined by

Ai = Di	ti

	x2
Trid(1,−2,1), Ti = Di	ti

	x2
I, i = 1,2 (14c)

with Trid(1, −2, 1) denoting a square tridiagonal matrix of size N/2 − 1, whose diagonal elements are −2 and sub- and 
super-diagonal elements are 1; γ ≡ σξ

√
	t2/	x; and ηn,m,k is the vector of size N/2 − 1, whose components are indepen-

dent identically distributed standard Gaussian variables. After n1 micro-steps, the deterministic solver (14a) yields

ρn,n1,k
1 = BLρ

n,0
1 + CLρ

n,k
1,b, (15a)

where ρn,0
1 ≡ ρ1(t = tn) and

BL = (I + A1)
n1 , CL =

n1−1∑
l=0

(I + A1)
l T1. (15b)

After n2 micro-steps, the stochastic solver (14b) gives

ρn,n2,k
2 = BRρ

n,0
2 + CRρ

n,k
2,b + γ

n2−1∑
m=0

(I + A2)
n2−1−m ηn,m,k, (16a)

where ρn,0
2 ≡ ρ2(t = tn) and

BR = (I + A2)
n2 , CR =

n2−1∑
m=0

(I + A2)
m T2. (16b)

Let us define vectors of size N

xn,k =(ρn,n1,k
1 , ρ̄ n,k

1,N/2, F̄ n,k
2,1/2,ρ

n,n2,k
2 )�, xn =(ρn,0

1 , ρ̄ n,0
1,N/2, F̄ n,0

2,1/2,ρ
n,0
2 )�. (17)

We show in Appendix C that xn,k satisfies a recursive relation

xn,k+1 = Mxn,k + Pxn + dn,k,k+1 + e, (18a)

where M and P are N × N matrices,

M =

⎛
⎜⎜⎝

0(N/2−1)×(N/2−1) r(N/2−1)×1 s(N/2−1)×1 0(N/2−1)×(N/2−1)

01×(N/2−1) u v 01×(N/2−1)

01×(N/2−1) w 0 01×(N/2−1)

0(N/2−1)×(N/2−1) y(N/2−1)×1 z(N/2−1)×1 0(N/2−1)×(N/2−1)

⎞
⎟⎟⎠ (18b)

and

P =

⎛
⎜⎜⎝

BL 0(N/2−1)×1 0(N/2−1)×1 S(N/2−1)×(N/2−1)

01×(N/2−1) 0 0 u1×(N/2−1)

v1×(N/2−1) 0 0 01×(N/2−1)

0(N/2−1)×(N/2−1) 0(N/2−1)×1 0(N/2−1)×1 W(N/2−1)×(N/2−1)

⎞
⎟⎟⎠, (18c)

dn,k,k+1 is a vector of size N that depends on the noise, and e is a constant vector of size N independent of n and k. The 
definitions of dn,k,k+1 and e are provided in Appendix C. The size of sub-matrices of M and P is denoted by their subscripts, 
and their respective components are defined in Appendix C. At convergence, (18) becomes

xn+1 = (I − M)−1Pxn + (I − M)−1dn,K + (I − M)−1e, (19)

where dn,K is the value of dn,k,k+1 obtained when the iterations for the macro-step from tn to tn+1 have converged. Taking 
the ensemble average of (19) yields

〈xn+1〉 = (I − M)−1P〈xn〉 + (I − M)−1e, (20)

where we have used the fact that dn,K is a zero-mean quantity (see Appendix C).
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Relation (18) reveals that the iterations for a given macro-step (i.e., from time tn to time tn+1 for any n) converge if the 
spectral radius of M, [M], is less than one. Relation (20) demonstrates that the overall time advancement is numerically 
stable in ensemble mean if [(I − M)−1P] < 1. Both results are identical to those obtained when simulating BVP (1)–(3)
with f (x, t) ≡ 0, and hence are independent of the presence of random noise in the stochastic solver. Therefore, if the 
fully-deterministic DD algorithm is stable for a certain combination of values for D1, D2, 	x, 	t1, 	t2, n1 and n2 (and 
hence 	tcom = n1	t1), then the corresponding deterministic–stochastic DD algorithm is also stable. This result is in line 
with the fact that stability of the Euler–Maruyama algorithm for a linear stochastic differential equation with additive noise 
follows from the stability of its deterministic counterpart, the explicit Euler method [22].

5. Simulation results

In the simulations reported below, the one-dimensional domain of length L = 20.0 is discretized into N = 20 intervals of 
length 	x = 1.0. Constant concentrations ρL = 15.0 and ρR = 5.0 are prescribed on the left (x = −L/2) and right (x = L/2) 
boundaries, respectively, and ρM = 10.0. The diffusion coefficients in the right and left halves of the computational domain 
are set to D2 = 10.0 and either D1 = 1.0 or D1 = 0.1, respectively. Unless noted otherwise, the convergence tolerance for 
Newton and Picard iterations is ε = 10−3. These and other values of all the physical quantities are reported in consistent 
units.

The presence of random noise in the stochastic solver renders a solution of BVP (1)–(3) random as well. Hence the 
solution is given in terms of a probability density function of the system state ρ(x, t) or its ensemble moments, such as 
ensemble mean 〈ρ(x, t)〉 and variance σ 2

ρ (x, t). These statistical moments are approximated by their sample counterparts 
computed from a finite number of independent samples. This number has to be sufficiently large for the difference between 
the ensemble and sample moments not to exceed a specified tolerance.

At each discrete time td , to compute (8) we generate independent zero-mean Gaussian variables ζp = σξ

√
	t2/	x ηp

(p = 1, . . . , N/2 − 1) with ensemble variance σ 2
ξ 	t2/	x. Hence, to obtain an estimate of the required number of samples 

(Nsam) for the sample mean and variance of ρ(xp, td) to approximate 〈ρ(xp, td)〉 and σ 2
ρ (xp, td), respectively, within an 

acceptable margin of error, we use the following heuristic procedure.

1. For each p, start generating samples of ζp and calculate a running sample mean and sample variance as the number of 
samples N increases.

2. When N is such that, for all p, the N-sample mean and variance of ζp do not deviate more than a tolerance ε = 10−2

from their respective ensemble counterparts 0 and σ 2
ξ 	t2/	x, stop and set Nsam = N .

In order to use the same value of Nsam for a given σξ across all of our numerical experiments, and given that in each of 
them 	t2/	x < 1.0 by construction, we apply the above procedure for 	t2/	x = 1.0. (Recall that the required number of 
samples increases with the noise’s variance.) We find that a sufficient number of samples for σξ = 0.1, 0.2, and 0.4 (the 
noise strength we consider) is Nsam = 500, 1500, and 4000, respectively.

5.1. Temporal accuracy of the implicitly coupled DD algorithm

We first investigate the temporal order of accuracy of our DD algorithm by calculating the l2-norm error εl2 over the 
entire domain � between an Nsam-averaged, implicitly coupled EE–EM solution ρ̃ , obtained with our time advancement 
scheme, and the ensemble average of the exact solution, 〈ρ〉, to the set of linear ODEs (7), resulting from spatially dis-
cretizing (4)–(5), using 	x = 1.0. The latter is equivalent to the exact solution of (7) with ξ = 0, and is approximated by 
an implicitly (Newton’s method with ε = 10−3) coupled EE–EE solution ρ� , obtained with our numerical scheme, with grid 
cell size 	x = 1.0 and micro-step 	t�

1 = 	t�
2 ≡ 	t� = 10−6.

To calculate ρ̃ , we assume equal subdomain micro-steps, 	t1 = 	t2 ≡ 	t , and n1 = n2 = 1, and use Newton’s coupling 
with ε = 10−3. (Although not shown here, similar results were obtained for Picard’s coupling.) We consider the case of 
D1 = 0.1 and D2 = 10.0, with σξ = 0.4 (i.e., Nsam = 4000).

Fig. 2 shows that sequential reduction of 	t by a factor of two results in a near-quadratic decrease in εl2 . Repeating the 
experiment using the corresponding implicitly coupled EE–EE solution yields virtually identical results. These findings indi-
cate that the implicit coupling preserves the second-order local (i.e., first-order global) order of accuracy of the subdomain 
solvers (for additive noise, the Euler–Maruyama method converges with strong order 1), and this irrespective of the noise 
strength.

5.2. Relative performance of Newton’s and Picard’s coupling

To investigate the impact of the noise strength on the computational efficiency of the Picard and Newton coupling 
algorithms, we conduct a series of numerical experiments for the noise amplitude σξ = 0.1, 0.2 or 0.4. We fix 	tcom = 5.0, 
and consider two cases: D1 = 1.0 and D2 = 10.0 with 	t1 = 0.5 and 	t2 = 0.05 (which we will refer to as D2 = 10D1), 
and D1 = 0.1 and D2 = 10.0 with 	t1 = 5.0 and 	t2 = 0.05 (D2 = 100D1).

Table 1 exhibits the number of Newton and Picard iterations when approaching steady state, averaged over Nsam in-
dependent runs. Doubling σξ for D2 = 10D1 nearly doubles the number of Newton iterations necessary to enforce the 
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Fig. 2. The l2-norm error of the sample-averaged EE–EM solution and the EE–EE solution as a function of micro-step size for the Newton-coupled time 
advancement.

Table 1
Nsam-averaged number of iterations for Newton’s and Picard’s coupling with 	tcom = 5.0.

σξ Newton 
(D2 = 10D1)

Picard 
(D2 = 10D1)

Newton 
(D2 = 100D1)

Picard 
(D2 = 100D1)

0.1 13 31 12 9
0.2 25 114 24 20
0.4 49 438 48 68

Fig. 3. Sample-averaged number of Newton and Picard iterations as a function of time (in units of 	tcom = 5.0) for D1 = 0.1, D2 = 10.0 and several values 
of the noise strength σξ .

continuity conditions with tolerance ε . The same procedure applied to Picard’s coupling almost quadruples the number of 
iterations. Newton’s coupling outperforms its Picard counterpart, with the gain increasing with σξ . For D2 = 100D1, dou-
bling σξ doubles the number of Newton iterations at all noise strengths, and doubles the number of Picard iterations at 
lower strengths but increases them by a factor of about 3.5 at higher noise strengths. Consequently, Picard’s coupling slightly 
outperforms its Newton counterpart at lower noise amplitudes but is significantly outperformed by the latter at higher noise 
amplitudes. This is shown in Fig. 3, which illustrates the time evolution (in units of 	tcom) of the required number of iter-
ations from t = 0 to t = T /5 = 100.0 (recall that 0 ≤ t ≤ T with T = L2/(8D1), so that T = 500.0 for D1 = 0.1). The initial 
decrease in the number of Picard iterations is absent for Newton’s method and further increases the overall computation 
time for Picard’s coupling.

5.3. Relative performance of implicit and explicit coupling

In a typical multiphysics simulation, the computational cost of an inter-solver communication can equal or exceed 
that of constitutive subdomain solvers. Reducing the frequency of inter-solver communications (increasing 	tcom) or, for 



408 S. Taverniers et al. / Journal of Computational Physics 313 (2016) 400–414
Fig. 4. Spatial variability of the relative error ερ obtained with Newton’s and explicit coupling for Test 1 (left) and Test 2 (right). In both cases σξ = 0.1.

Table 2
Nsam-averaged computation times (in s) with implicit Newton’s and explicit coupling for Test 1 and Test 2.

σξ Newton Explicit (Test 1) Explicit (Test 2)

Test 1 Test 2 	tcom = 5.0 	t′
com = 0.25 	tcom = 50.0 	t′

com = 1.25

0.1 3.4 1.5 0.3 5.4 0.3 10.7
0.4 13.0 4.7 0.3 5.4 0.3 10.6

a given communication frequency, reducing the number of iterations by increasing the tolerance of the iterative coupling 
(increasing ε), can reduce the total computational cost, but, possibly, at the price of reduced accuracy. We investigate this 
efficiency/accuracy trade-off by comparing “implicit” coupling, in which the coupling iterations converge to within the pre-
scribed tolerance of ε = 10−3, with “explicit” coupling consisting of a single Picard iteration. This analysis is carried out for 
two numerical experiments, one with 	tcom = 5.0 (Test 1) and the other with 	tcom = 50.0 (Test 2). We focus on the case 
D1 = 0.1 and D2 = 10.0 with 	t1 = 1.0 and 	t2 = 0.01, and consider both σξ = 0.1 and σξ = 0.4.

The quantities of interest (QoIs) in these experiments are discretized ensemble-averaged concentration profiles 〈ρ(xi , t)〉, 
with xi = −L/2 + i	x (i = 0, . . . , N), at times t = 100.0 and t = 500.0. These time points represent the time evolution of the 
average solution from an early stage of the simulations to the end (steady-state equilibrium). To compute the discretization 
error of the numerical approximations to these QoIs obtained with our time advancement scheme, we compare them with 
their “exact” counterparts 〈ρ(xi, t)〉ex computed with implicitly (Newton’s iteration with ε = 10−3) coupled explicit Euler 
solvers on a fine space–time mesh of 	xex = 	x/26 = 0.015625 and 	tex

1 = 	tex
2 = 10−5 (the linearity of BVP (1)–(3)

suggests that the ensemble mean of its solution satisfies the deterministic version of BVP (1)–(3) in which f (x, t) ≡ 0). 
The difference between the exact and approximate solutions is reported in terms of a position-dependent relative error, 
ερ(xi, t) = |〈ρ(xi, t)〉 − 〈ρ(xi, t)〉 ex|/〈ρ(xi, t)〉 ex.

Fig. 4 exhibits the relative errors ερ(xi, t) for Tests 1 and 2; these results were obtained with Newton’s coupling algorithm 
for σξ = 0.1. (Although not shown here, Picard’s coupling was found to yield relative errors of the same magnitude as 
Newton’s coupling.) Table 2 shows the Nsam-averaged computation times to complete a time trajectory for these and the 
corresponding σξ = 0.4 cases. The time it takes to evaluate the Jacobian J in Newton’s coupling is excluded from the total, 
since it is time-independent and therefore computed prior to the transient simulation. The computation times are reported 
for an Intel Core i7 machine running at 4 GHz.

The explicit coupling yields a relative error ερ that is several orders of magnitude higher than that obtained with the 
implicit Newton coupling, especially for higher 	tcom in Test 2 (Fig. 4). Decreasing 	tcom (by reducing the inner-solver time 
steps 	t1 and 	t2, while keeping n1 and n2 the same) to a smaller value 	t′

com reduces the explicit coupling’s error to the 
level achieved by the implicit Newton coupling. This dramatically increases the explicit coupling’s computation time (see 
Table 2). To gauge whether this makes the implicit coupling the more efficient choice, we compare the computation time 
of the explicit coupling with that of its implicit counterpart at the same solution error. For Test 1, the implicit coupling 
is more efficient at low noise strength (σξ = 0.1), but not at high noise strength (σξ = 0.4). These results are due to the 
fact that the number of iterations needed for the coupling to converge increases significantly with noise strength (see 
Section 5.2). Hence, at high noise strength, the cost of the (fully-converged) implicit coupling with a lower communication 
frequency can outweigh that of the (single-iteration) explicit coupling with a higher communication frequency. For Test 2 
however, the implicit coupling outperforms its explicit counterpart at all noise strengths. Hence, when the time between two 
subsequent inter-solver communications is sufficiently increased, the implicit coupling can be more efficient even at high 
noise strength.



S. Taverniers et al. / Journal of Computational Physics 313 (2016) 400–414 409
5.4. Relative performance of implicit and explicit coupling in two dimensions

To test the generality of the previous conclusions, we consider a two-dimensional (2D) diffusion equation,

∂ρ

∂t
= ∇ · (D∇ρ) + f , x = (x1, x2)

� ∈ �2D, t > 0, (21a)

where �2D = (−L/2, L/2) × (−L/2, L/2), the diffusion coefficient D(x) is piecewise constant,

D(x) =
{

D1 for x ∈ �2D,1 = (−L/2,0) × (−L/2, L/2)

D2 � D1 for x ∈ �2D,2 = [0, L/2) × (−L/2, L/2),
(21b)

and the source term f (x, t) is defined as

f (x, t) =
{

0 for x ∈ �2D,1

ξ(x, t) for x ∈ �2D,2.
(21c)

Here ξ(x, t) is a zero-mean space–time Gaussian white noise with variance σ 2
ξ and covariance

E[ξ(x, t)ξ(y, τ )] = σ 2
ξ δ(x − y)δ(t − τ ), x,y ∈ �2D,2, t, τ > 0 (21d)

Equation (21) is subject to boundary conditions

ρ(−L/2, x2, t) = g, ρ(L/2, x2, t) = ρR,
∂ρ

∂x2
(x1,±L/2, t) = 0, (22)

where g(x2) = ρL − 2|x2|(ρL − ρM)/L, and an initial condition

ρ(x,0) = ρM

{
(g/ρM)−2x1/L for x ∈ �2D,1

(ρR/ρM)2x1/L for x ∈ �2D,2.
(23)

We employ a domain decomposition to solve the stochastic BVP (21)–(23). Solutions ρ1(x, t) and ρ2(x, t) of the BVPs 
defined, respectively, on the subdomains �2D,1 and �2D,2 are coupled by enforcing the continuity of the state variable and 
its flux at the interface � = {x : x1 = 0, −L/2 < x2 < L/2} separating the two subdomains,

ρ1(0, x2, t) = ρ2(0, x2, t), D1
∂ρ1

∂x1
(0, x2, t) = D2

∂ρ2

∂x1
(0, x2, t). (24)

In the simulations reported below, we set L = 20.0, D1 = 0.1, D2 = 10.0, ρL = 15.0, ρM = 10.0, and ρR = 5.0. The 
simulation domain �2D is discretized in both spatial directions with a uniform mesh of cell size 	x1 = 	x2 ≡ 	x = 1.0
(i.e., L/	x ≡ N = 20). We use Picard’s coupling with a tolerance of ε = 10−2, take the micro time steps 	t1 = 1.0 and 
	t2 = 0.01, and use an inter-solver communication time 	tcom = 5.0. These and other values of all the physical quantities 
are reported in consistent units.

We compute the discretized ensemble-averaged concentration 〈ρ(x1,i, x2, j, t)〉 at points x1,i = −L/2 + i	x (i = 0, . . . , N) 
and x2, j = −L/2 + j	x ( j = 0, . . . , N), and times t = (1/5) · [20.02/(8 · 0.1)] = 100.0 and t = 20.02/(8 · 0.1) = 500.0. It is 
compared to its “exact” counterpart 〈ρ(x1,i, x2, j, t)〉ex obtained with the implicitly (Picard’s iteration with ε = 10−3) coupled 
explicit Euler solvers in each subdomain on a fine space–time mesh of 	xex

1 = 	xex
2 ≡ 	xex = 	x/23 = 0.125 and 	tex

1 =
	tex

2 = 10−4. The difference between the exact and approximate solutions is reported in terms of a position-dependent 
relative error, ερ(x1,i, x2, j, t) = |〈ρ(x1,i, x2, j, t)〉 − 〈ρ(x1,i, x2, j, t)〉ex|/〈ρ(x1,i, x2, j, t)〉ex, at times t = 100.0 and t = 500.0.

Fig. 5 exhibits the relative errors ερ(x1,i, x2, j, t) for the implicit Picard and explicit coupling methods using a noise 
strength σξ = 0.1 (which, according to a 2D analogue of the previously described noise discretization procedure, requires 
Nsam = 1000). At early times (t = 100.0), the error of the explicit coupling can be orders of magnitude higher than that 
of the implicit coupling. Decreasing 	tcom (by reducing the inner-solver time steps 	t1 and 	t2, while keeping n1 and n2
the same) to a smaller value 	t′

com reduces the explicit coupling’s error to the level achieved by its implicit counterpart; 
however, this makes it less efficient (see Table 3). A similar trend is observed for σξ = 0.2, but as the noise amplitude 
increases to σ = 0.4, the explicit coupling becomes significantly more efficient than the implicit coupling. Although more 
work is needed to determine how this comparison evolves as the inter-solver communication frequency for the implicit 
coupling is reduced, the result for σξ = 0.4 indicates that the explicit coupling may be the only computationally feasible 
option in 2D at high noise strength.
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Fig. 5. Spatial variability of the relative error ερ obtained with the implicit Picard (top) and explicit (bottom) coupling methods at t = 100.0 (left) and 
t = 500.0 (right). In all cases 	tcom = 5.0 and σξ = 0.1.

Table 3
Nsam-averaged computation times (in s) with implicit Picard’s and explicit coupling. The times listed for σξ = 0.2
and 0.4 are indicative values based on averaging over only a few time trajectories.

σξ Picard Explicit (	tcom = 5.0) Explicit (	t′
com = 0.5)

0.1 44.1 23.1 237.9
0.2 86.7 23.6 242.3
0.4 7479.7 23.4 233.0

6. Summary and conclusions

We constructed a tightly-coupled domain-decomposition approach using Picard’s or Newton’s method and applied it 
to a multiscale, interfacially-coupled linear diffusion problem driven by a Gaussian space–time white noise in one of the 
subdomains. We conducted a series of numerical experiments to compare the efficiency of the fully-converged (“implicit”) 
Picard and Newton coupling methods, and to investigate the efficiency/accuracy trade-off between these implicit algorithms 
and a single-iteration (“explicit”) Picard’s coupling. These numerical properties were explored for various strengths of the 
Gaussian noise, and for different frequencies of communication between the constituent subdomain solvers.

Our analysis leads to the following major conclusions.

1. Implicit Newton’s coupling typically outperforms its Picard counterpart, especially at high noise strength. The number 
of Newton iterations scales linearly with the noise amplitude, while its Picard counterpart can scale super-linearly.

2. Despite its higher cost per communication, the implicit coupling can outperform its explicit counterpart because the 
latter requires a higher inter-solver communication frequency to achieve a given solution error. At low noise strength, 
this holds true even if the implicit coupling’s communication frequency is high. At high noise strength however, it 
requires increasing the time between two subsequent implicit coupling communications to offset the increased cost of 
the fully converged iterations.
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Table B.4
Algorithms for the Picard (left) and Newton (right) iterations (adapted from [26]). In the 
Newton method, J = ∂f/∂u is the Jacobian matrix.

Require: Initial guess u(0)

k = 0
while not converged do

u(k+1) = g(u(k))

k = k + 1
end while

Require: Initial guess u(0)

k = 0
while not converged do

u(k+1) = u(k) − J−1(u(k))f(u(k))

k = k + 1
end while

3. The implicit coupling preserves the order of accuracy of the constituent solvers, even for strong random fluctuations.
4. The presence of noise does not alter the stability properties of the domain-decomposition algorithm compared to its 

fully-deterministic counterpart, regardless of the strength of the fluctuations.
5. In two dimensions, we find a similar trend as in conclusion 2, although an explicit coupling may be the only computa-

tionally viable option at high noise strength.
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Appendix A. Conservative and non-conservative methods

To understand the need for a conservative coupling algorithm, we consider the total mass M inside the region [−	x/2,

	x/2] (see Fig. 1)

M(t) =
	x/2∫

−	x/2

ρ(x, t)dx. (A.1)

Its derivative yields

dM

dt
=

	x/2∫
−	x/2

∂ρ

∂t
dx =

	x/2∫
−	x/2

∂

∂x

[
D

∂ρ

∂x

]
dx = F1,N/2−1/2 − F2,1/2, (A.2)

where the flux F = −D∂ρ/∂x is given by Fick’s law. The interfacial fluxes F1,N/2−1/2 and F2,1/2 represent the amount 
of mass leaving the left subdomain per unit time and the amount of mass entering the right subdomain per unit time, 
respectively.

Integrating (A.2) between tn and tn+1 ≡ tn + 	tcom gives

	M

	tcom
= F̄ n

1,N/2−1/2 − F̄ n
2,1/2, (A.3)

where 	M denotes the change in total mass inside [−	x/2, 	x/2] between tn and tn+1, and F̄ n
1,N/2−1/2 and F̄ n

2,1/2 are 
the 	tcom-averaged values of F1,N/2−1/2 and F2,1/2, respectively. Looking at the system dynamics between two subse-
quent inter-solver communications, any mass leaving the left subdomain should enter the right subdomain and cannot be 
“trapped” inside the interface region [−	x/2, 	x/2]. Hence, the total mass inside [−	x/2, 	x/2] needs to remain constant, 
which requires equality of the 	tcom-averaged interface fluxes, i.e.

F̄ n
1,N/2−1/2 = F̄ n

2,1/2. (A.4)

Hence, merely ensuring F1,N/2−1/2(t = tn+1) = F2,1/2(t = tn+1) would not allow one to keep the global solution in a consis-
tent state despite the use of an iterative method.

Appendix B. Picard and Newton iterations

Consider a root-finding problem f(u) = 0, where u is a vector containing the unknowns. For Picard’s method, the latter is 
rewritten as a fixed-point problem u = g(u) where g(u) ≡ u − βf(u), with β > 0 a fixed-point damping parameter, typically 
less than 1. A fixed-point iteration proceeds according to the algorithm in Table B.4. When g(u) is a contraction, i.e., if there 
exists a λ ∈ (0, 1) such that

‖g(u) − g(v)‖ ≤ λ‖u − v‖ (B.1)
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for all u, v in a closed set containing the fixed-point solution u∗ , then the Picard iteration is guaranteed to converge based 
on Banach’s fixed-point theorem [23]. However, even with a good initial guess, Picard iterations converge slowly, namely 
q-linearly in the norm [24]

‖u(k+1) − uex‖ ≤ A‖u(k) − uex‖, (B.2)

where uex is the exact solution, the q-factor A lies in (0, 1), and the iteration number k is sufficiently large.
A faster alternative to Picard iterations is Newton’s method (see Table B.4), which converges q-quadratically in the 

norm [24]

‖u(k+1) − uex‖ ≤ A‖u(k) − uex‖2, (B.3)

for A > 0 and sufficiently large k. Drawbacks of Newton’s method include only local convergence (i.e., an initial guess for 
starting the iterations needs to be sufficiently good), and the cost of computing the full Jacobian J. Although not consid-
ered in this paper, the latter can be addressed by using a Jacobian-free Newton–Krylov method which requires only the 
calculation of Jacobian-vector products and avoids having to explicitly form the Jacobian itself [25].

In the problem considered here, during the macro-step from tn to tn+1 we have un = (ρ̄ n
1,N/2, F̄

n
2,1/2)

� and need to solve 
the root-finding problem f(un) = 0 with f(un) given by

f(un) =
⎛
⎜⎝ ρ̄ n,k

1,N/2 − ρ̄ n,k
2,0

F̄ n,k
1,N/2−1/2 − F̄ n,k

2,1/2

⎞
⎟⎠ . (B.4)

Appendix C. Stability matrices and Jacobian

It follows from (14a) and (14b) that the time-averaged solution over the n1 (n2) micro-steps in the left (right) subdomain 
for the macro-step going from tn to tn+1 is given by

ρ̄n,k
1 = B̄Lρ

n,0
1 + C̄Lρ

n,k
1,b (C.1a)

ρ̄n,k
2 = B̄Rρ

n,0
2 + C̄Rρ

n,k
2,b + γ

n2

n2∑
m=1

m−1∑
j=0

(I + A2)
m−1− jηn, j,k, (C.1b)

where

B̄L = 1

n1

n1∑
l=1

(I + A1)
l, C̄L = 1

n1

n1∑
l=1

l−1∑
j=0

(I + A1)
j T1, (C.1c)

B̄R = 1

n2

n2∑
m=1

(I + A2)
m, C̄R = 1

n2

n2∑
m=1

m−1∑
j=0

(I + A2)
j T2. (C.1d)

Defining Ñ = N/2 for notational convenience, for Picard’s method,

ρ̄ n,k+1
1,Ñ

= ρ̄ n,k
2,1 + 	x

D2
F̄ n,k

2,1/2, F̄ n,k+1
2,1/2 = − D1

	x
(ρ̄ n,k

1,Ñ
− ρ̄ n,k

1,Ñ−1
), (C.2)

this gives

ρ̄n,k+1
1,Ñ

=
⎡
⎣B̄Rρ

n,0
2 + C̄Rρ

n,k
2,b + γ

n2

n2∑
m=1

m−1∑
j=0

(I + A2)
m−1− jηn, j,k

⎤
⎦

1

+ 	x

D2
F̄ n,k

2,1/2

F̄ n,k+1
2,1/2 = − D1

	x

(
ρ̄ n,k

1,Ñ
−

[
B̄Lρ

n,0
1 + C̄Lρ

n,k
1,b

]
Ñ−1

)
. (C.3)

Rewriting (15a) and (16a) as

ρn,n1,k
1 = b1

n + CLρ
n,k
1,b, ρn,n2,k

2 = b2
n + CRρ

n,k
2,b + γ

n2−1∑
m=0

(I + A2)
n2−1−mηn,m,k (C.4)

we have, in component form,
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ρ
n,n1,k
1,p = b1

n,p + [CL]p,Ñ−1

Ñ−1∑
q=1

[B̄R]1,q ρn,0
2,q

+ [CL]p,Ñ−1[C̄R]1,1ρ̄
n,k−1
1,Ñ

+ [CL]p,Ñ−1
	x

D2
F̄ n,k−1

2,1/2

+ [CL]p,1ρL + [CL]p,Ñ−1[C̄R]1,Ñ−1ρR

+ [CL]p,Ñ−1
γ

n2

n2∑
m=1

m−1∑
j=0

Ñ−1∑
q=1

[Z jm]1,qη
n, j,k−1
q (C.5a)

ρ
n,n2,k
2,p = b2

n,p + [CR]p,1

Ñ−1∑
q=1

[B̄R]1,q ρn,0
2,q

+ [CR]p,1[C̄R]1,1ρ̄
n,k−1
1,Ñ

+ [CR]p,1
	x

D2
F̄ n,k−1

2,1/2

+
(
[CR]p,Ñ−1 + [CR]p,1[C̄R]1,Ñ−1

)
ρR

+ [CR]p,1
γ

n2

n2∑
m=1

m−1∑
j=0

Ñ−1∑
q=1

[Z jm]1,qη
n, j,k−1
q + γ

n2−1∑
j=0

Ñ−1∑
q=1

[Z jn2 ]p,qη
n, j,k
q (C.5b)

where Z jm ≡ (I + A2)
m−1− j and p = 1, . . . , Ñ − 1. The terms in these two expressions define the matrix M in (18b) and a 

vector Pxn = (c1, c2, c3, c4)
� with

c1,p =
Ñ−1∑
q=1

[BL]p,qρ
n,0
1,q + [CL]p,Ñ−1

Ñ−1∑
q=1

[B̄R]1,qρ
n,0
2,q , c2 =

Ñ−1∑
q=1

[B̄R]1,qρ
n,0
2,q

c3 = D1

	x

Ñ−1∑
q=1

[B̄L]Ñ−1,qρ
n,0
1,q , c4,p =

Ñ−1∑
q=1

[BR]p,qρ
n,0
2,q + [CR]p,1

Ñ−1∑
q=1

[B̄R]1,qρ
n,0
2,q . (C.6)

Relations (C.6) define the matrix P in (18c).
The nonzero sub-matrices of M and P in (18b) and (18c) are defined by

rp =[CL]p,Ñ−1[C̄R]1,1, sp = 	x

D2
[CL]p,Ñ−1, u = [C̄R]1,1, v = 	x

D2
,

w = − D1

	x
(1 − [C̄L]Ñ−1,Ñ−1), yp = [CR]p,1[C̄R]1,1, zp = 	x

D2
[CR]p,1 (C.7a)

and

S p,q =[CL]p,Ñ−1[B̄R]1,q, uq = [B̄R]1,q, vq = D1

	x
[B̄L]Ñ−1,q,

W p,q = [BR]p,q + [CR]p,1[B̄R]1,q, (C.7b)

respectively. Equations (18) and (C.5) also define a vector dn,k,k+1 with components

dn,k,k+1
p = γ

n2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[CL]p,Ñ−1

n2∑
m=1

m−1∑
j=0

Ñ−1∑
q=1

[Z jm]1,qη
n, j,k
q p = 1, . . . , Ñ − 1

n2∑
m=1

m−1∑
j=0

Ñ−1∑
q=1

[Z jm]1,qη
n, j,k
q p = Ñ

0 p = Ñ + 1

[CR]p,1

n2∑
m=1

m−1∑
j=0

Ñ−1∑
q=1

[Z jm]1,qη
n, j,k
q

+ n2

n2−1∑
j=0

Ñ−1∑
q=1

[Z jn2 ]p,qη
n, j,k+1

q p = Ñ + 2, . . . , N,

(C.8)
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and a vector e with components

ep =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[CL]p,1ρL + [CL]p,Ñ−1[C̄R]1,Ñ−1ρR p = 1, . . . , Ñ − 1

[C̄R]1,Ñ−1ρR p = Ñ
D1

	x
[C̄L]Ñ−1,1ρL p = Ñ + 1(

[CR]p,Ñ−1 + [CR]p,1[C̄R]1,Ñ−1

)
ρR p = Ñ + 2, . . . , N.

(C.9)

Finally, we derive explicit expressions for elements of the Jacobian J for Newton’s coupling. It follows from (13c), (C.1a), 
and (C.1b) that

g1 = ρ̄ n,k
1,Ñ

−
⎡
⎣B̄Rρ

n,0
2 + C̄Rρ

n,k
2,b + γ

n2

n2∑
m=1

m−1∑
j=0

(I + A2)
m−1− jη n, j,k

⎤
⎦

1

− 	x

D2
F̄ n,k

2,1/2

g2 = − D1

	x

(
ρ̄n,k

1,Ñ
−

[
B̄Lρ

n,0
1 + C̄Lρ

n,k
1,b

]
Ñ−1

)
− F̄ n,k

2,1/2. (C.10)

Combining this with (13b) leads to

J =

⎛
⎜⎜⎜⎝

1 − [C̄R]1,1 −	x

D2

− D1

	x

(
1 − [C̄L]Ñ−1,Ñ−1

)
−1

⎞
⎟⎟⎟⎠ . (C.11)
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