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Abstract
Two distinct but interconnected approaches can be used to model diffusion in fluids; the
first focuses on dynamics of an individual particle, while the second deals with collective
(effective) motion of (infinitely many) particles. We review both modeling strategies, starting
with Langevin’s approach to amechanistic description of the Brownianmotion in free fluid of
a point-size inert particle and establishing its relation to Fick’s diffusion equation. Next, we
discuss its generalizations which account for a finite number of finite-size particles, particle’s
electric charge, and chemical interactions between diffusing particles. That is followed by
introduction of models of molecular diffusion in the presence of geometric constraints (e.g.,
the Knudsen and Fick–Jacobs diffusion); when these constraints are imposed by the solid
matrix of a porous medium, the resulting equations provide a pore-scale representation of
diffusion.Next,we discuss phenomenologicalDarcy-scale descriptors of pore-scale diffusion
and provide a few examples of other processes whose Darcy-scale models take the form of
linear or nonlinear diffusion equations. Our review is concluded with a discussion of field-
scale models of non-Fickian diffusion.

Keywords Multiscale · Brownian motion · Langevin equation · Non-Fickian

Mathematics Subject Classification 60J60 · 60J70 · 76S05

1 Introduction

Diffusion is one of the most omnipresent natural phenomena. Its ubiquity is matched by that
of porous media; given a sufficient spatial resolution, virtually every solid or soft material
(condensedmatter) is porous. It therefore comes as no surprise that the earliest reported study
of diffusion dealt with diffusion in a porous medium: selective movement of liquids across an
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animal bladder observed by Jean Antoine Nollet in 1752 (Narasimhan 1999, Sect. 5.2). Much
of the early theoretical understanding of diffusive processes has been derived from studies
of solutes in both free (bulk) fluids and fluids in confining geometries, e.g., capillary tubes.

The theory of diffusion follows two distinct but interconnected paths, that of collective
(effective) motion of (infinitely many) particles and that of an individual particle. The former
is based on Fick’s law of diffusion, which was formulated in 1855 by Adolf Fick in direct
analogy with Fourier’s law of heat conduction in solids: “concentration is analogous to
temperature, heat flux is analogous to solute flux and thermal diffusivity is analogous to
chemical diffusivity” (Narasimhan 1999). In a companion paper published the same year,
Fick studied solute diffusion in a semipermeable membrane by conceptualizing the latter as
a collection of one-dimensional capillary tubes (Narasimhan 1999).

Irregular motion of minute charcoal particles was observed in 1784 by Jan Ingenhousz,
who reported his observations in a short note on the use of a microscope (van der Pas 1971).
Such an irregular motion of inanimate corpuscules was observed, 43 years later, by Robert
Brown for the motion of pollen grains (van der Pas 1971). Both authors pointed out that
inanimate corpuscules exhibit an irregular, continuous motion as if they were alive. This
motion was later termed Brownian motion (van der Pas 1971). The origins of this motion
were not understood until 1905–1906 when the studies of Albert Einstein (1905), Marian
von Smoluchowski (1906), and William Sutherland (1905) related this irregular motion to
the impact of molecular forces exerted by the liquid. A couple years later, Paul Langevin
(1908) formalized their work by expressing a particle’s motion in terms of Newton’s second
law and introducing a random force to represent the action of the fluid molecules surrounding
the suspended particle.

We provide a brief overview of these two approaches to modeling diffusion in fluids.
Section 2 contains a description of Langevin’s approach to a mechanistic description of
the Brownian motion in free fluid of individual point-size inert particles and its relation to
Fick’s diffusion equation (Sect. 2.1), as well as its generalizations that account for a finite
number of finite-size particles (Sect. 2.2), particle’s electric charge (Sect. 2.3), and chemical
interactions between diffusing particles (Sect. 2.4). Models of molecular diffusion in the
presence of geometric constraints (e.g., theKnudsen andFick–Jacobs diffusion) are discussed
in Sect. 3; when these constraints are imposed by the solid matrix of a porous medium, the
resulting equations provide a pore-scale representation of (advection–)diffusion transport.
Section 3 also includes a brief introduction to phenomenological Darcy-scale descriptors
of these processes; a comparative analysis of systematic upscaling techniques for deriving
Darcy-scale models from their pore-scale counterparts can be found elsewhere in this special
issue. Section 4 provides examples of other phenomena whose Darcy-scale models employ
diffusion-like equations, including single- andmultiphase flowand hydrodynamic dispersion.
We conclude our reviewby discussingDarcy-scalemodels of non-Fickian diffusion in Sect. 5.

2 Molecular Diffusion in Free Fluid

2.1 Fundamentals of Molecular Diffusion

We consider the motion of inert particles in a host medium, which may be, e.g., a fluid or the
surface between a liquid and a gas. We follow in the next section Langevin’s explanation of
Brownian motion and then show the equivalence to the Fick’s diffusion equation following
Einstein and Smoluchowski.
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Fig. 1 A representative trajectory of a Brownian particle obtained by random walk particle tracking

2.1.1 Brownian Motion

Irregular motion of a particle in a fluid can be described by Newton’s second law. The
ambient fluid affects this motion in two opposite ways: The drag due to fluid viscosity slows
the particle down, while the collisions with fluid molecules accelerate the particle (assuming
the latter is sufficiently small). The drag force F exerted by a fluid with dynamic viscosity
μ on a (spherical) particle of radius rp is quantified by Stokes’ law, F = − 6πμrp . Figure 1
illustrates a typical trajectory of a Brownian particle.

The equations ofmotion of a particlemoving along the one-dimensional (d = 1) trajectory
X(t) are

dX(t)

dt
= V (t),

dV (t)

dt
= − γ V (t) + √

2κξ(t), (1)

where γ = 6πμrp/m is the drag coefficient, withm denoting the particle’s mass. The second
term represents a random force that stands for the action of the surrounding liquid molecules.
In the absence of the random forces, the particle velocity tends to 0 on the relaxation timescale
τγ = γ −1. The random force ξ (t) has zero mean and unit variance and correlated on a
timescale much smaller than the relaxation time. Thus, the correlation function of ξ(t) can
be approximated as Gaussian white noise,

〈ξ(t)ξ(t ′)〉 = δ(t − t ′), (2)

where δ(t) is the Dirac delta. The angular brackets denote the average over all realizations
of the random process ξ(t).

The velocity process in (1) is an Ornstein–Uhlenbeck process (Risken 1996; Gardiner
2010). The parameter κ is a priori unknown. However, it can be determined from the theorem
of the equipartitionof the kinetic energybetween thedegrees of freedomof a system in thermal
equilibrium. The equipartition theorem implies that the velocity fluctuations in equilibrium,
i.e., at times t � τγ , are given by limt→∞〈V (t)2〉 = kT /m, where k is the Boltzmann
constant and T is the absolute temperature. The angular brackets denote the average over all
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particles. At the same time, one obtains for the velocity fluctuations in equilibrium by solving
for V (t) in (1) the expression limt→∞〈V (t)2〉 = κ/γ . Thus, the strength of the random force
is directly related to the dissipation of kinetic energy due to viscosity as

κ = kT γ

m
. (3)

This relation is an expression of the fluctuation–dissipation theorem (Kubo 1966). At times
t � τγ , the velocity V (t) enters a dynamical steady state at which the fluctuations due to
the random force are balanced by drag such that v(t) = √

2kT /mγ ξ(t), where we used
the expression (3) for κ . Using the definition of the drag coefficient γ gives the velocity
V (t) = √

kT /3πμR, which is independent of the particle mass. The equation of motion of
a particle for times t � τγ thus simplifies to

dX(t)

dt
= √

2D0ξ(t), D0 = kT

mγ
, (4)

where the coefficient D0 is given by the Einstein–Smoluchowski relation. By using the above
expression for γ , one obtains the Stokes–Einstein relation D0 = kT /(6πμR), which again
is independent of the particle mass. The only particle property that enters into the diffusion
coefficient is its size in terms of the radius R. The stochastic differential equation (4) can be
seen as the starting point of the analyses of Einstein (1905) and von Smoluchowski (1906).

2.1.2 The Diffusion Equation

Let f (x; t) denote the probability density function (PDF) of finding a Brownian particle X at
point x at time t . Our derivation of the evolution equation for f (x, t) follows closely that in
Einstein (1905). The stochastic process (4) constitutes a Markov process because a particle’s
position at a time t + �t depends solely on its position at the previous time t ,

X(t + �t) = X(t) + w�, w� = √
2D0

t+�t∫

t

ξ(t ′)dt′. (5)

The variable w� has a Gaussian PDF fw(x, t) with mean 0 and variance 2D0�t . The PDFs
f (x, t + �) of X(t + �t) and f (x, t) of X(t) are related by

f (x, t + �) =
∞∫

−∞
f (x − x ′, t) fw(x ′, t)dx ′. (6)

For small �t 	 t , the variance of fw(x), 2D0�t , is small so that only small values of x ′
contribute to the integral. Hence, expanding f (x, t + �t) and f (x − x ′, t) into respective
Taylor series around the point (x, t), we obtain an equation for f (x, t):

f + ∂ f

∂t
�t = f +

∞∫

−∞
fw(x ′, t)dx ′ − ∂ f

∂x

∞∫

−∞
x ′ fw(x ′, t)dx ′

+ ∂2 f

∂x2

∞∫

−∞

x ′2

2
fw(x ′, t)dx ′ + · · · . (7)
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Since the Gaussian PDF fw(x, ·) is symmetric, the second, fourth, etc., terms on the right
side vanish, while the third, fifth, etc., are of order �t i with i = 2, 4, etc. From the basic
properties of a PDF, the first integral in (7) equals 1, while the third integral is half of the
variance, (2D0�t)/2. Therefore, (7) reduces to a diffusion equation

∂ f (x, t)

∂t
= D0

∂2 f (x, t)

∂x2
. (8)

Thus, the coefficient D0 defined in (4) is the diffusion coefficient.
As the particle motion is statistically isotropic and the motions along the coordinate axes

are statistically independent, the above derivations can be readily generalized to d spatial
dimensions. If particles are injected at point x = 0 of the d-dimensional infinite domain at
time t = 0, the initial PDF is f (x, t = 0) = δ(x) and the solution of the d-dimensional
version of (8) is a Gaussian PDF

f (x, t) = 1

(4π D0t)d/2 exp

(
− x2

4D0t

)
. (9)

Thus, the mean squared particle displacement along the x coordinate axis until time t is given
by

〈X(t)2〉 ≡
∞∫

−∞
x2 f (x, t)dx = 2D0t . (10)

Using the expression for D0 in (4) gives the following relation between the particle displace-
ment and the particle size,

rp = kT t

3πμ〈X(t)2〉 . (11)

Hence, the particle size canbeobtained from the observation of themean square displacement.
Another quantity of practical interest is the probability density of first particle arrival times

at a given distance x ′ (Redner 2001). For simplicity, we consider the case of one-dimensional
diffusion. For an initial position X(t = 0) = x ′, we consider the distribution of first arrival
times at the origin at x = 0. The arrival time T (x) is defined as

T (x ′) = min(t |X(t) ≤ 0). (12)

The first arrival time PDF g(t, x ′) = 〈δ[t − T (x ′)]〉 can be determined in different ways. We
choose here the following. The PDF f (x ′, t) of finding a particle at x = 0 at time t that has
started at x ′ at t = 0 is

f (x ′, t) =
t∫

0

g(t ′, x ′) f (0, t − t ′)dt′. (13)

It is equal to the probability g(t, x ′) that the particle arrives for the first time at the origin
multiplied by the probability f (0, t − t ′) that the particle returns to the origin after the time
t − t ′ has passed. In Laplace space, the solution of this equation is

ĝ(λ, x ′) = f̂ (x ′, λ)

f̂ (0, λ)
. (14)
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Fig. 2 Illustration of a the probability density function f (x, t) of particle positions X(t) at (black, green,
orange, blue) times t = 1, 2, 4, 8 · 107 s, and b g(t, x) of particle arrival times T (x) at (black, green, orange,
blue) x ′ = 10−4, 10−3, 10−2, 10−1 m for D = 10−9 m2/s

The Laplace transform of f in (9) is

f̂ (x, λ) = 1

2
√

Dλ
exp

(

−|x |
√

λ

D

)

, (15)

so that the Laplace transform of the first arrival time PDF becomes

ĝ(λ, x ′) = exp

(

−|x ′|
√

λ

D

)

, (16)

which is the Laplace transform of a Lévy–Smirnov density or inverse Gaussian density.
Computing the inverse Laplace transform, we arrive at

g(t, x ′) = x ′
√
4π Dt3

exp

(
− x ′2

4Dt

)
. (17)

The Gaussian particle distribution and the inverse Gaussian first arrival time distribution are
illustrated in Fig. 2.

2.2 Diffusion of Finite-Size Particles

Finite size of diffusing particles introduces two additional features: (i) such particles experi-
ence drag and hydrodynamic interactions while moving through a fluid, and (ii) the smallest
distance between any two particles is limited by their radii, giving rise to exclusion vol-
umes that the particles cannot enter. A macroscopic manifestation of these phenomena is the
dependence of an effective diffusion coefficient D on the particle concentration c(x, t) (e.g.,
Batchelor 1976; Bruna and Chapman 2012) and the references therein).

Consider a system of Npar non-deformable spherical particles, whose radius R is signif-
icantly smaller than a characteristic length L of a simulation domain D. At any given time
t , the dynamics of the centroids of these particles, Xi (t) with i = 1, . . . , Npar, satisfies a
stochastic differential equation

dXi = √
2D0dBi + Udt, i = 1, . . . , Npar. (18)
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Here, D0 is the coefficient of molecular diffusion defined by the kinetic theory of gases
(Kennard 1938) in terms of amolecule’s mean free path λ andmean velocity v as D0 = λv/3,
Bi denotes the d-dimensional (d = 2 or 3) standard Brownian motion of the i th particle, and
U(Xi ) represents advection velocity or appropriately scaled external forces acting identically
on all particles. The presence of the exclusion volumes implies that the random processes
Xi (t) (i = 1, . . . , Npar ) are no longer independent. The PDF, fXi (x, t), of the randomcentroid
Xi occupying the point x at time t satisfies, up to first order in ε = R/L , a nonlinear partial
differential equation (Bruna and Chapman 2012)

∂ fXi

∂t
= D0∇2

x [ fXi + αd(Npar − 1)εd f 2Xi
] − ∇x · [U(x) fXi ], x ∈ D. (19)

Here, αd = π/2 or 2π/3 in d = 2 or 3 spatial dimensions, respectively.
If the number of particles is large, such that Npar−1 ≈ Npar, then it follows from (19) that

their volumetric concentration, c(x, t) ≡ ϕ fXi with ϕ = π Nparε
d/(2d) denoting the volume

fraction of particles relative to the volume of D, satisfies a nonlinear advection–diffusion
equation

∂c

∂t
= ∇x · [D(c)∇xc] − ∇x · [U(x)c], x ∈ D, (20)

with the concentration-dependent effective diffusion coefficient

D(c) = D0[1 + 4(d − 1)c]. (21)

The finite particle size gives rise to a somewhat nontrivial collective behavior. First, the
value of the effective diffusion coefficient D depends on the dimensionality d . Second, D
differs from the “self-diffusion” coefficient of an individual particle, D0; this is in contrast to
point particles undergoing Brownian motion, for which these two diffusion coefficients are
identical (Sect. 2.1). Third, (21) suggests that particles of the finite size diffuse faster (have
higher effective diffusion coefficient, D) than their zero-volume counterparts D0 (whose
effective diffusion coefficient is D0). That is because collisions of large particles introduce
a bias to their random (Brownian) motion, thus accelerating their net spreading (Bruna and
Chapman 2012).

2.3 Diffusion of Electrically Charged Particles

Consider Brownian motion (diffusion) of ions, which are treated as point charges. Diffusion
coefficients of individual cations (the positively charged ions, denoted by the subscript “+”)
and anions (the negatively charged ions, denoted by the subscript “−”) are denoted by D+
and D−, respectively. This Brownian motion of cations and anions in a solution results in
spatial variability of their respective volumetric concentrations c±(x, t). The latter are related
to the electrochemical potentials of cations and anions,

μ±(x, t) = RT ln c±(x, t) + z±Fϕ(x, t), (22)

where z± are the cation and anion charges (valencies); R and F are the gas and Faraday
constants, respectively; T is the temperature; and ϕ(x, t) is the electric potential. Spatial
variability of μ± induces ionic (Nernst–Planck) fluxes

JNP± = −M±c±∇μ±, (23)

where the ion mobility M± is related to the molecular diffusion coefficient of ions in the
fluid, D±, by the Einstein relation M± = D±/RT .
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In the absence of homogeneous chemical reactions, mass conservation of anions and
cations, ∂t c± = −∇ · JNP± , gives rise to the Nernst–Planck equations

∂c±
∂t

= ∇ · (D±∇c±) − ∇ · (U±c±), U± ≡ − z± D±F

RT
∇ϕ, x ∈ D. (24)

The total (net) ionic charge density q ≡ F(z+c+ + z−c−) is related to the electric potential
ϕ(x, t) through a Poisson equation,

−E∇2ϕ = F(z+c+ + z−c−), x ∈ P, (25)

where E is dielectric constant of the solvent.

2.4 Diffusion-Limited Chemical Reactions

Chemical reactions are contact processes. They depend on the availability of reacting species
and on the processes that bring them into contact, which here is diffusion. In this section, we
briefly report three examples that illustrate the impact of diffusion on chemical reactions.

2.4.1 Smoluchowski Theory

To illustrate themain ideas behind the Smoluchowski reaction rate theory (vonSmoluchowski
1917), we consider a fast irreversible bimolecular chemical reaction

A + B −→ C . (26)

The species A acts as a stationary sink, which is surrounded by B particles at constant
concentration cB . The A and B particles annihilate when they are brought into contact; this
means the intrinsic reaction kinetics are very fast. Diffusion is the rate-limiting process. The
relative motion of the A and B particles is governed by the Langevin model discussed above.
As A and B particles are idealized as point particles in the Langevin model for diffusion, we
need to define a reaction or capture radius r0. This means two particles are in contact and
annihilate if their distance is smaller than r0.

The relative distance r(t) = XA(t)−XB(t) between a particle A and a particle B satisfies
the Langevin equation

dr(t)
dt

= √
4D0ξ(t). (27)

Thus, the PDF f (r, t) of r(t) satisfies the diffusion equation (8) for the diffusion coefficient
2D0. Under radial symmetry in d = 3 dimensions, f (r, t) → f (r , t) and

∂ f

∂t
= 2D0

r2
∂

∂r

(
r2

∂ f

∂r

)
. (28)

In order to determine the reaction rate for a single A particle, we consider the following
boundary value problem. The concentration at r = ∞ is equal to f = cB , and at r = r0 we
have an absorbing boundary such that f (r0, t) = 0. The steady-state solution f∞(r) to (28)

f∞(r) = cB

(
1 − r

r0

)
. (29)

Thus, we obtain for the flux at r = r0

jB = 8π Dr20
∂ f∞
∂r

(r0) = 8π Dr0cB . (30)
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For the concentration cA of A particles, this means that the reaction rate is

R = 8π Dr0cAcB . (31)

From this, it follows that the reaction rate constant is

k = 8π Dr0. (32)

Thus, the reaction rate is determined by the diffusion rate.

2.4.2 Ovchinnikov–Zeldovich Segregation

Here, we briefly report on the impact of segregation due to heterogeneous initial reactant
distributions in the presence of diffusive mass transfer (Ovchinnikov and Zeldovich 1978).
For spatially uniform initial concentrations in a well-mixed reaction, the evolution of the
concentrations ci of the i = A, B, C species in the reaction (26) follows the kinetic rate law

dci (t)

dt
= −kcA(t)cB(t),

dcC (t)

dt
= kcA(t)cB(t) (33)

with i = A, B. For equal initial concentrations cA(t = 0) = cB(t = 0) = c0, the solution
for cA(t) = cB(t) = c(t) is

c(t) = c0
1 + kc0t

. (34)

Thus, for times larger than 1/kc0, the reactant concentrations decay as c(t) ∼ 1/t .
Next,we consider the situation of heterogeneous initial distributions of the reacting species

A and B such that the spatial averages cA0 = cB0. The chemical reaction leads to a local
depletion of theminority species and the formation of A and B islands, thismeans segregation
of the reactants as illustrated in Fig. 3. Reactions between A and B particles are limited by
diffusion to the island boundaries, where reactions can occur. For simplicity, we consider
an instantaneous reaction such that cAcB = 0. Furthermore, we assume that the fluctuations
of initial particle numbers δN0 ∝ √

N0. This implies that δcA0 = cA0 − cA0 and δcB0

satisfy V 2δcA0
2 = V 2δcB0

2 = cA0V , where V is the volume of an island. The difference
u = cA − cB is conservative and subject to diffusion only. The mean and variance of its

initial distribution u0 are u0 = 0 and V 2u2
0 = 2cA0V . The A islands, characterized by

u > 0, and the B islands, characterized by u < 0, grow diffusively. This means their typical
size grows as � ∼ √

Dt . Thus, in an island of volume V ∼ (Dt)d/2, the typical value
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(a) initial distribution (b) island formation

Fig. 3 Island formation in an instantaneous irreversible bimolecular reaction under heterogeneous initial
conditions in one spatial dimension

123



114 D. M. Tartakovsky, M. Dentz

of u is given in terms of the initial excess of the majority species per volume; this means
|u| ∼ |δN0|/V ∼ √

cA0V /V ∼ V −1/2. As locally |u| = cA or cB , we obtain

cA(t) ∼ 1

(Dt)d/4 . (35)

This behavior is valid for d < 3. The segregation of the reacting species due to the het-
erogeneous initial distribution significantly slows down the reaction kinetics relative to the
well-mixed case. The detailed analysis of Ovchinnikov–Zeldovich segregation using spectral
analysis and numerical simulations can be found in Toussaint andWilczek (1983), Kang and
Redner (1985), among many others.

2.4.3 Diffusion in the Presence of Randomly Distributed Traps

An illustrative example for the impact of chemical heterogeneity on reactivity is diffusion in a
mediumcharacterized by a randomdistribution of traps,which are characterized by a constant
number density n0. The trap positions are distributed uniformly, and the traps are allowed to
overlap (Kayser and Hubbard 1983). The random distribution of traps may be identified with
a distribution of specific reactive surface area in porous media. The concentration cA(x, t)
of a species A evolves according to the diffusion equation ∂t cA = D∇2cA. At the surface of
each trap, absorbing boundary conditions are specified, cA(x, t) = 0.

For d = 1 spatial dimension, the distance � between traps is distributed exponentially
as ∼ exp(−n0�). The average concentration of species A between two traps behaves at
asymptotically long times t � �2/D as (Havlin and Ben-Avraham 2002)

cA(t, �) = 1

�

�∫

0

cA(x, t)dx ∝ exp(−π2Dt/�2). (36)

The overall average concentration of species A is obtained by spatially averaging over all
trap-free intervals such that (Kayser and Hubbard 1983)

cA(t) =
∞∫

0

n2
0� exp(−n0�)cA(t, �)d� ∼ exp

[−γ (t/τD)1/3
]
, (37)

where γ is a dimensionless constant and τD = n2
0D is the characteristic diffusion time

between traps. For higher dimensions, a similar reasoning gives

cA(t) � exp
[
−γ (t/τD)d/(d+2)

]
. (38)

The overall reaction kinetics is slower than what would be predicted by a first-order decay,
cA(t) ∼ exp(−t/τD), based on a mean decay time equal to τD , the diffusion time between
traps, which would be a reasonable first guess for the reactivity of the system. This behavior
is due to the fact that there is a small but finite probability of finding intervals or holes
that are arbitrarily large with an associated very large diffusion time and thus survival time.
Figure 4 illustrates the evolution of the species concentrations according to the exponential
and stretched exponential laws.
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Fig. 4 Evolution of the species
concentration under randomly
distributed traps in d = 1 (blue),
d = 2 (orange), and d = 3
(green) spatial dimensions for
γ = 1. The black line denotes the
exponential decay law
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3 Molecular Diffusion in Crowded Environments

3.1 Geometrically Constrained Diffusion

The diffusion models described above assume that the individual and/or collective motion
of particles is unaffected by the geometry of a simulation domain (e.g., pore space) D. This
assumption can be violated when pores become small, in extreme cases reaching the size of
diffusing particles (e.g., red blood cells moving through capillaries). If particles move in a
d-dimensional (d = 2 or 3) space D whose characteristic size w in k (k < d) dimensions is
exceedingly small, it is common to introduce diffusion models in an “effective dimension”
deff = d − k. For example, the effective dimension of a transport model in a narrow long
capillary (d = 2) is deff = 1, while that in a narrow fracture is deff = 2.

Under such conditions, (19) is replaced with a PDF equation (Bruna and Chapman 2014),

∂ fXi

∂t
= D0∇2

x [ fXi + αh(Npar − 1)εdeff f 2Xi
] − ∇x · [Ū(x) fXi ], x ∈ Deff, (39)

which is defined in a domainDeff with the effective dimension deff. In special cases, the coef-
ficient αh can be related analytically to the “confinement parameter” h (Bruna and Chapman
2014); otherwise, it serves as a fitting parameter. Equation (39) governs the PDF of finding
the i th finite-size particle, fXi (x, t), at the space–time point (x, t).

Collective diffusion of a large number of finite-size particles, Npar−1 ≈ Npar, is described
by the nonlinear advection–diffusion equation (20) with the following caveats. First, the
volume fraction ϕh in the definition of the volumetric concentration c ≡ ϕh fXi can now be
explicitly derived only in a few special cases forwhichαh is computable (Bruna andChapman
2014). Second, (20) is defined in the domain Deff of the effective (reduced) dimension deff;
the drift velocity vector Ū has the corresponding number of components. Third, the effective
diffusion coefficient D(c) in (21) is replaced with

D(c) = D0[1 + ghc], (40)

wherein the coefficient gh > 0 is explicitly given for the same special cases.
For point particles, both (39) and the corresponding nonlinear equation for the particle

concentration reduce to a linear ADE

∂A
∂t

= D0∇2
xA − ∇x · [Ū(x)A], x ∈ Deff. (41)
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Here, A stands for both the PDF fXi (x, t) and the concentration c(x, t). Since the particles
have zero diameter, the “smallness” of D is expressed in terms of the Knudsen number
Kn = λ/w, where λ is the mean free path of a particle diffusing in the space with the
characteristic length w. Two special cases of the general, yet approximate, Eq. (41) are
described below.

3.1.1 Knudsen Diffusion

If advection–diffusion transport in a pore (D) of diameter w takes place in the regime with
Kn 	 1, then the pore is sufficiently large for the confinement effects to be negligible and
the diffusion coefficient is D = D0 ≡ λv/3 where v is the mean molecular velocity. If
Kn � 1, then the (Knudsen) diffusion coefficient is D = DKn ≡ wv/3 (Jacobs 1967). In
the intermediate regime, the Bosanquet relation estimates the effective diffusion coefficient
D as the harmonic mean between D0 and DKn (e.g., Zalc et al. 2004),

D =
(

1

D0
+ 1

DKn

)−1

. (42)

This empirical treatment of diffusion replaces (41) with an ADE

∂c

∂t
= D∇2

xc − ∇x · [U(x)c], x ∈ D, (43)

i.e., allows one to obtain the concentration c(x, t) by solving the standard ADE, albeit with
the modified diffusion coefficient.

Knudsen diffusion plays an important role in a large number of natural and engineered
(nano)porous media. Examples include transport of various species in pharmaceutical tablets
(Klinzing and Zavaliangos 2016), in tubular sublimators utilized for purification of large
organic molecules (Qian et al. 2016), in graphites designed for high-temperature gas-cooled
nuclear reactors (Kane et al. 2018), in membranes used for distillation desalination (Desh-
mukh and Elimelech 2017), and in hierarchical metamaterials tailored for energy storage
devices (Zhang and Tartakovsky 2017).

3.1.2 Fick–Jacobs Diffusion

Consider advection–diffusion transport in a two-dimensional (d = 2) channel of a small
width w = H , with the transverse coordinate −H/2 < y < H/2. The corresponding
effective dimension is deff = 1; the resulting effective model is defined on the domain
Deff = {x : −L < x < L}, with the confinement parameter h = H/ε. This model takes the
form of a one-dimensional version of (41),

∂A
∂t

= D0
∂2A
∂x2

− U
∂A
∂x

, −L < x < L. (44)

Here,A(x, t) stands for both thePDF fXi (x, t) and the concentration c(x, t). Ageneralization
of (44), which accounts for spatial variability of the channel width, h = h(x), is referred to
as the Fick–Jacobs equation (Jacobs 1967; Bruna and Chapman 2014),

∂A
∂t

= D0
∂

∂x

[
h

∂

∂x

(A
h

)]
− U

∂A
∂x

, −L < x < L. (45)

This equation and its multiple variants (see, e.g., Dorfman and Yariv (2014) and Sect. 4 in
Burada et al. (2009)) have been used to describe pore-scale diffusion processes in biological
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(e.g., ion channels), geological (e.g., tight formations), and manufactured (e.g., nanotubes)
porous media.

3.2 Continuum (Darcy-Scale) Representations of Diffusion in Porous Media

The diffusion models described in the previous sections are valid for the fluid phase (pore
space) of a porous medium. Consequently, they can be deployed in pore-scale simulations
of transport processes. Their use at the continuum (Darcy) scale requires either systematic
upscaling (see, e.g., Battiato et al. (2019) in this issue for a comparative review of various
upscaling techniques) or empirical modifications.

For example, a commonly used (and often criticized) expression,

Deff = ωD

τ
, (46)

relies on geometric characteristics of a porous medium—its porosity ω and tortuosity τ—to
relate the Darcy-scale diffusion coefficient Deff to its pore-scale counterpart D. Combin-
ing (46) with the (empirical) Bruggeman relation τ = 1/

√
ω yields another popular model,

Deff = ω3/2D. The Darcy-scale transport models of this kind assume that the pore- and
Darcy-scale equations, such as those described above, are identical except for the values of
their diffusion coefficients.

Even for linear diffusion phenomena, empirical relations such as Deff = ω3/2D or (46)
fail to capture many salient features of the Darcy-scale diffusivity, including its tensorial
nature due to pore geometry (Battiato et al. 2019). For nonlinear phenomena, e.g., diffusion
of charged particles (Sect. 2.3), these relations do not account for the observed dependence of
Deff on solute/electrolyte properties and transport conditions (e.g., the electrical double layer
that forms on the solid surfaces, thus reducing the pore space available for diffusion) (Zhang
and Tartakovsky 2017). Even if the empirical models like (46) were sufficiently accurate,
they are of limited use in materials design that aims to identify an optimal pore geometry
(Zhang et al. 2015).

In a somewhat tautological way, (46) can be used as a definition of a porous medium’s
tortuosity τ . It allows one to estimate a value of the otherwise unobservable τ from measure-
ments of D and Deff. While the thermodynamic considerations yield a value of the pore-scale
(free fluid) diffusivity D for many of the diffusion phenomena described above, the value of
Deff has to be inferred by fitting a solution of, e.g., the ADE (43) to Darcy-scale concentra-
tion measurements. The latter step assumes both the validity of ADE-like representations of
Darcy-scale diffusion phenomena and the dependence of Deff solely on geometric properties
of the pore space. Since both assumptions are problematic (see the discussion above and
Sect. 5), this procedure for estimating the tortuosity can lead to unphysical results. For exam-
ple, “tortuosity factors are often much larger for Knudsen diffusion than for bulk diffusion,
in spite of their intended and purely geometric nature” (Zalc et al. 2004).

3.3 Trap and Symmetric Barrier Models

For diffusion in a fluid at rest, the density of particles which move according to the Langevin
equation (4) is described by the diffusion equation (8). The latter is a combination of Fick’s
law of diffusion, J = −D∂x f , and mass conservation, ∂t f = −∂x J . For diffusion in
heterogeneous media, one distinguishes between the symmetric barrier and trap models
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Fig. 5 Steady-state particle
distributions for the trap (green)
and symmetric (black) barrier
models. The blue line denotes the
diffusion coefficient D(x)
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(Bouchaud and Georges 1990). These alternative models and their implications are discussed
below.

3.3.1 Trap Model

The Langevin equation (4) with a spatially variable diffusion coefficient,

dX(t)

dt
= √

2D[X(t)]ξ(t), (47)

gives rise to a Fokker–Planck equation for the PDF f (x, t) (Risken 1996; Gardiner 2010),

∂ f

∂t
= ∂2D(x) f

∂x2
. (48)

Its steady-state solution, the PDF f eq(x) ∝ 1/D(x), implies that particles accumulate in
regions of small diffusion coefficient D(x), i.e., the particles get trapped. Figure 5 shows the
steady-state particle distribution for a linearly varying D(x) = x + 1 in a domain 0 < x < 1
with reflecting boundary conditions. Particles accumulate, i.e., are trappedwhere the diffusion
coefficient is small.

3.3.2 Symmetric Barrier Model

An alternative way to account for heterogeneity is to generalize Fick’s law, J = −D(x)∂x f .
Combined with mass conservation, this yields a diffusion equation for f (x, t),

∂ f

∂t
= ∂

∂x

[
D(x)

∂ f

∂x

]
. (49)

Its steady-state solution, the PDF f eq = constant, implies that particles are uniformly dis-
tributed, i.e., there is no accumulation of mass in regions of high or low diffusivity. The
Langevin equation corresponding to (49) is (Risken 1996; Gardiner 2010)

dX(t)

dt
= dD[X(t)]

dx
+ √

2D[X(t)]ξ(t). (50)

The drift term drives the particles away from regions of low diffusivity toward those of high
diffusivity. This drift counteracts the trapping effect of Sect. 3.3.1 and thus leads to a uniform
particle distribution.
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The term “symmetric barrier model” is illustrated by a finite-volume discretization of (49),

d fn(t)

dt
=

∑

m

wnm [ fm(t) − fn(t)] , fn(t) ≡ f (xn, t). (51)

Equation (51) is a master equation with the transition rates

wnm = D̂nm

�x2
, (52)

where D̂nm is the bond diffusivity between cells n and m, which is typically determined as
the harmonic mean between the diffusion coefficient in the neighboring cells. The symmetry
of the transition rates, wmn = wnm , gives rise to the term “symmetric barrier model.”

4 Diffusion-Like Phenomena in PorousMedia

Linear and nonlinear diffusion equations provide Darcy-scale representations of various flow
and transport phenomena in porous media that are related to the phenomenon of diffusion
in a wider sense. These phenomena are not necessarily related to the motion of Brownian
particles in a free fluid, but describe instead diffusion of pressure and diffusive propagation
of a phase field such as fluid saturation. We also discuss diffusion-like phenomena of solute
dispersion that are caused by hydrodynamic velocity fluctuations.

4.1 Flow in Porous Media

Linear diffusion: single-phase flows. Consider a porous medium that is completely saturated
with a fluid of density ρ and dynamic viscosity μ. Within the pore space, fluid flow can
be described by Stokes or Navier–Stokes equations, depending on the pore size and flow
velocity. When averaged over a sufficiently large volume of the medium, i.e., at the Darcy
scale, the same flow is described by Darcy’s law q = −K∇h which, in analogy with Fick’s
law of diffusion, postulates a linear relation between the fluid’s volumetric (Darcy) flux q
and the gradient of hydraulic head h = ψ − x3. Here,ψ = p/(ρg) is the pressure head, with
g denoting the gravitational acceleration constant; and the vertical coordinate x3 (positive
downward) represents the elevation head. The constant of proportionality K = kρg/μ in
Darcy’s law is called hydraulic conductivity; it is a property of both the porous medium (via
its dependence on k, the medium’s permeability) and the fluid (its density ρ and viscosity
μ). Darcy’s law is essentially phenomenological, even though it can be derived (after many
approximations) from the pore-scale Stokes equations bymeans of homogenization (Battiato
et al. 2019).

When combined with mass conservation for a fluid-saturated volume of the porous
medium, ∂t (ωρ) = −∇ · q, Darcy’s law yields a diffusion equation for the hydraulic head
h(x, t),

∂h

∂t
= D∇2h, (53)

where D ≡ K/Ss is the water diffusivity and the specific storage Ss accounts for slight
compressibility of both the fluid and the porous matrix. This equation is written for homo-
geneous and isotropic porous media and implies the absence of fluid sources and sinks. Its
generalizations, which account for these features, are straightforward.
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Nonlinear diffusion: multiphase flows. Consider next a porous medium whose pores are
filled with air and water. The fraction of the pores occupied by water, in a (representative
elementary) volume of the medium, is referred to as water saturation, Sw ≤ 1. A Darcy-scale
description of water flow through partially saturated porous media relies on a phenomeno-
logical generalization of the phenomenological Darcy’s law, q = −K (Sw)∇h, in which
the hydraulic conductivity is an increasing function of saturation. Its relationship to, and
derivation from, the pore-scale Stokes equations for multiple fluids separated by immiscible
interfaces is even more tenuous than that for single-phase flows (Battiato et al. 2019). That
is, in part, because the hydraulic conductivity K is affected not only by the saturation Sw but
also by the fluid topology (Picchi and Battiato 2018; Picchi et al. 2018).

Assuming the air pressure throughout the porous medium to equilibrate (nearly) instan-
taneously with the atmosphere, and combining the Darcy’s law with mass conservation,
ω∂t S = −∇ · q leads to the Richards equation written in terms of the water content
θ(x, t) ≡ ωS(x, t),

∂θ

∂t
= ∇ · [D(θ)∇θ ] − U (θ)

∂θ

∂x3
. (54)

The moisture diffusivity D(θ) ≡ K (θ)(dψ/dθ) and the “velocity” U (θ) ≡ dK/dθ are
calculated from the experimentally determined constitutive relations θ = θ(ψ) and K =
K (θ).

Unlike the ψ-based Richards equation, the nonlinear ADE (54) cannot be used in fully
saturated regions of a porousmedium and its solutions for composite porousmaterials exhibit
jump discontinuities. Generalizations of the Richards equation include systems of coupled
nonlinear parabolic equations of multiphase flow, which track spatiotemporal evolution of
the saturation (and pressure) of each fluid phase; and phase-field dynamic models of wetting
and drying of porous media (Mitkov et al. 1998), which capture the observed hysteresis in
the relative conductivity K = K (ψ).

4.2 Dispersion

4.2.1 Hydrodynamic Dispersion

Upscaling of transport equations from the pore to the Darcy scale is the subject matter of
Battiato et al. (2019) in this issue. Under a number of assumptions, this procedure leads to
what is otherwise a phenomenological advection–dispersion equation for the Darcy-scale
solute concentration c(x, t),

ω
∂c

∂t
= ∇ · (D∇c) − ∇ · (qc). (55)

The hydrodynamic dispersion tensor D accounts for both pore-scale molecular diffusion D
and spatial variability of pore-scale fluid velocity. For pore geometry with a characteristic
length (e.g., average grain size) �g , one defines a Péclet number as Pe = u�g/D, where ū =
|q̄|/ω is the magnitude of the average pore velocity. For high Péclet numbers, the correlation
time in the mean flow direction is τu ≈ �g/u and the velocity variance σ 2

u ∼ u2. Thus,
the effect of velocity fluctuations on the longitudinal dispersion (the D11 component of the
dispersion tensor D when the x1 coordinate is aligned with the flow direction) is

DL ∼ u�g. (56)
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This implies that DL/D ∼ Pe,whichwas observed in experiments and numerical simulations
at high Péclet numbers (Pfannkuch 1963; Bear 1972; Bijeljic and Blunt 2006). For Pe < Pecr
with the critical Péclet number Pec = 400, the longitudinal dispersion coefficient scales as
DL/D ∼ Pe1.2, and for Pe 	 1 as DL/D ∼ 1 (Bijeljic and Blunt 2006). These behaviors
are captured by the relation (Bear 1972)

DL = Dγ + αL u
Pe

Pe + 2 + 4δ2
, (57)

where αL is the longitudinal dispersion length, which corresponds to the grain size �g; γ

represents the effect of the tortuous pore geometry on molecular diffusion in the bulk, e.g.,
γ = ω/τ in (46); and the parameter δ characterizes the shape of the pore channels. The
second term on the right side of (57) is mechanical dispersion.

4.2.2 Macrodispersion

Spatial variability of hydraulic conductivity K (x) at the field scale ismodeled by representing
its logarithm, Y = ln K , as a multivariate Gaussian random field, whose statistics (the mean
Ȳ , variance σ 2

Y , and correlation length �Y ) are inferred from measurements. Upscaling of
transport equations from theDarcy to thefield scale bymeans of stochastic perturbation theory
(Cushman1997;Dagan2012;Dagan andNeuman1997) gives, under several approximations,
an advection–dispersion equation (55) with the dispersion coefficient D and Darcy velocity
q replaced by their effective counterparts D∗ and q̄. The Péclet number is now defined as
Pe = u�Y /DL , where DL in this context represents the (constant) local scale dispersion and
ū = |q̄|/ω is the average macroscopic flow velocity magnitude. Again, at high Péclet numbers
the correlation time is estimated as τu = �Y /ū. The first-order (in σ 2

Y ) perturbation theory
estimates the velocity variance to be σ 2

u ∼ σ 2
Y u2 (e.g., Dagan 1984). Thus, the longitudinal

macrodispersion coefficient is (e.g., Dagan 1984)

D∗
L = σ 2

Y u�Y . (58)

This result relates the field-scale dispersion coefficient to the medium’s hydraulic properties
(σ 2

Y and �Y ) and the mean flow velocity (u).

5 Non-Fickian Diffusion in Porous Media

Fickian diffusion (and dispersion) models predict the first and second centered moments
of a solute plume (i.e., its center of mass and the spread) to increase linearly with time,
〈X(t)2〉 ∝ t ; the spatial distribution of a solute plume to have a Gaussian shape (9); and the
solute breakthrough curves to be inversely Gaussian. A number of factors, e.g., the finite size
of particles diffusing in confined environments (Sects. 2.2 and 3.1) or the electrical charge
carried by particles (Sect. 2.3), can cause a deviation from this behavior; in other words, one
could argue that the Fickian behavior is more rare (“anomalous”) than the non-Fickian one
(Cushman and O’Malley 2015).

Heterogeneity of porous media is another factor that gives rise to non-Fickian dynamics.
Breakthrough curves are characterized by strong tailing, plumes exhibit non-Gaussian shapes
with pronounced forward and/or backward tails, and both a plume (Bouchaud and Georges
1990; Cushman et al. 2009) and a particle’s trajectory (Regner et al. 2013) grow nonlinearly
in time,
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〈X(t)2〉 ∝ tα, 0 < α ≤ 2, (59)

with the values of the exponent 0 < α < 1 and 1 < α ≤ 2 indicating the sub- and super-
diffusive behavior, respectively. Inferring the exponent’s value from (typically) noisy data is
not straightforward (Cushman and Moroni 2001; Moroni and Cushman 2001; Regner et al.
2013, 2014); renormalization group classification methods (O’Malley and Cushman 2012;
O’Malley et al. 2014) proved to be robust even for data with high noise-to-signal ratios
(Regner et al. 2014).

While differing in their foundational assumptions and data requirements, models of non-
Fickian transport in heterogeneous media are interrelated in the sense that all are nonlocal
in space and/or time, i.e., the (advection–)diffusion equation are replaced with their integro-
differential counterparts (Neuman and Tartakovsky 2009). The latter reference provides a
plethora of comparative studies that focus on the commonalities, differences, and relative
strengths of the competing models of non-Fickian transport. A brief description of a few of
representative models is provided below.

5.1 Ensemble-Averaged Nonlocal Diffusion Equations

Solving a d-dimensional (d ≥ 1) version of the diffusion equation (49) with spatially varying
D(x) would yield f (x, t) that differs from the Gaussian distribution (9), which is obtained
for the constant D = D0. Hence, even though that equation follows from Fick’s law, q =
−D(x)∇ f , it is common to refer to such diffusion as non-Fickian. That is because, while
written in the differential (infinitesimal) form, every term in Fick’s law has a support scale
Ssup on which it is measured and the spatial variability of, for example, D(x), on scales
smaller than Ssup is unresolved.

Within the probabilistic framework (Cushman 1997; Dagan 2012; Dagan and Neuman
1997), this lack of information about the sub-scale variability of D is handled by treating it as a
random field so that the corresponding diffusion equation, e.g., d-dimensional version of (49)
defined on the computational domain D ∈ R

d , becomes stochastic. Ensemble-averaging of
this equation yields (under some approximations) a space–time nonlocal (integro-differential)
equation for the mean state variable, f̄ (x, t) (Neuman et al. 1996):

∂ f̄

∂t
= ∇ · [D̄∇ f̄ ] − ∇ ·

t∫

0

∫

D
κ(x, x′, t − t ′)∇ f̄ (x′, t ′)dx′dt′. (60)

The kernel κ(x, x′, t − t ′) ≈ CD(x, x′)∇x∇�
x′ G(x, x′, t − t ′) is a symmetric positive-

semidefinite second-rank tensor (dyadic) that is related to the two-point covariance function
of the random diffusion coefficient, CD(x, x′), and the mean-field Green’s function G. If
D ≡ R

d and D(x) is a second-order stationary field, i.e., if its mean (D̄ = D0) and vari-
ance (σ 2

D) are constant, then G = G(x − x′, t − t ′) is given by the Gaussian function (9).
An alternative to this approximation of the kernel κ(x, x′, t − t ′) is to treat it as a phe-
nomenological transfer function in the spirit of the approaches described in the subsequent
sections.

Nonlocal analogues of (60) for non-Fickian advection–dispersion transport can be found
in Fiori et al. (2007), Koch and Brady (1988),Morales-Casique et al. (2006), Neuman (1993),
among others.
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5.2 Continuous Time RandomWalks

The continuous time random walk (CTRW) (Montroll andWeiss 1965; Scher and Lax 1973)
relaxes the condition that a particle’s motion is a Markovian process. Particle motion is
characterized by a stochastic recursion relation for both the particle position Xn and particle
time Tn after n random walk steps as Xn+1 = Xn + ξn and Tn+1 = Tn + τn . The space–time
random displacements (ξn, τn) at subsequent steps are independent and distributed according
to a joint PDF Ψ (x, t). This recursive relation is non-Markovian in time but describes a
Markov process in terms of its evolution in step number n. Thus, it is also called a semi-
Markov process.

For an uncoupled CTRW, Ψ (x, t) = Λ(x)Ψ (t), with a sharply peaked transition density
Λ(x), an expansion similar to that used to derive (8) leads to a time nonlocal equation for the
PDF, f (x, t), of finding a particle at the space–time point (x, t) or, equivalently, for c(x, t),
the concentration of particles (Kenkre et al. 1973; Metzler and Klafter 2000),

∂ f

∂t
=

t∫

0

κ(t − t ′) ∂
2 f

∂x2
(x, t ′)dt′. (61)

The diffusion kernel κ is defined in terms of the transition times PDF Ψ (t) by

κ(t) = 1

2
〈ξ2〉K(t), K̂(λ) = λΨ̂ (λ)

1 − Ψ̂ (λ)
, (62)

where, for any appropriate function g(t), ĝ(λ) indicates its Laplace transform; and 〈ξ2〉 is
the variance of ξn for all n ≥ 1. The transition time PDF Ψ (t) has to be specified by the
modeler fromeither prior knowledge ormeasurements of the state variable f . For a power-law
distribution, Ψ (t) ∼ t−1−β with 0 < β < 1, the displacement variance scales as

〈X(t)2〉 ∝ tβ, 0 < β < 1, (63)

which indicates sub-linear scaling or sub-diffusive behavior.
CTRW is related to both Levy walk models (Metzler and Klafter 2000; Cushman et al.

2009) and fractional advection–dispersion equations (Benson et al. 2000; Cushman and Ginn
2000) that are characterized by spatiotemporal kernel functions with an asymptotic power-
law scaling. Likewise, CTRW is connected to time-domain random walk models (Cvetkovic
et al. 1996; Delay and Bodin 2001; Painter and Cvetkovic 2005) and multirate mass transfer
models (Dentz and Berkowitz 2003).

5.3 Matrix Diffusion andMultirate Mass Transfer

The multirate mass transfer (MRMT) approach (Haggerty and Gorelick 1995; Carrera et al.
1998) separates the support scale into a mobile continuum and a suite of immobile continua,
which communicate through a linearmass transfer. At each point, the immobile continua PDF
fim(x, t) is related to its mobile continua PDF f (x, t) through a linear relation (Carrera et al.
1998) fim(x, t) = ∫ t

0 φ(t − t ′) f (x, t ′)dt′, where the kernel function φ(·) is user-supplied.
The evolution of the mobile continua PDF f (x, t) is given by an integro-differential equation
(Haggerty and Gorelick 1995)
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Fig. 6 Illustration of the memory
functions for the slab-shaped
(green) and spherical (blue)
inclusions. The dash-dotted lines
denote the preasymptotic
∼ t−1/2 behavior
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where ε is the ratio of the immobile and mobile volume fractions. The memory function φ(t)
reflects the mass transfer mechanisms between the mobile and immobile continua.

For diffusive mass transfer into slab-shaped immobile regions, relevant for fracture matrix
exchange, the memory function is given in terms of its Laplace transform as (Carrera et al.
1998)

φ̂(λ) = tanh(
√

λτD)√
λτD

, (65)

where τD is the characteristic diffusion time in the mobile domain. For diffusion in a medium
characterized by spherical inclusions, it is given by

φ̂(λ) = 3√
λτD

[
coth(

√
λτD) − 1√

λτD

]
. (66)

These memory functions behave as φ(t) ∝ t−1/2 for t 	 τD and decay exponentially fast for
t � τD . The displacement variance for times t 	 τD behaves sub-diffusively as (Bouchaud
and Georges 1990)

〈X(t)2〉 ∝ t1/2 (67)

and evolves diffusively for time t � τD , as shown in Fig. 6. For diffusive mass transfer
into heterogeneous immobile regions, the memory function can be determined by solving a
heterogeneous diffusion problem (Gouze et al. 2008). For a heterogeneousmediumcomposed
of immobile regions with different diffusion properties, the memory function may behave as
φ(t) ∝ tγ with 0 < γ < 1 before a certain cutoff time.

Both the CTRW and MRMT frameworks have similar phenomenology as both account
for memory effects due to a distribution of characteristic mass transfer timescales (Dentz
and Berkowitz 2003; Dentz et al. 2012). In fact, it can be shown that the exponents in the
power-law scalings of the memory function and transition time distribution are the same,
β = γ .
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6 Summary

This paper provides a brief review of diffusion phenomena in porous media. It starts with the
description of Brownian motion in a free fluid by the Langevin equation and its equivalence
to the diffusion equation. We discuss the fundamental mechanisms of diffusion and derive
the Einstein–Smoluchowski relations, which connect microscopic velocity fluctuations and
energy dissipation.

We review the generalization of the diffusion concept from point-size inert particles to
ensembles of finite number of particles of finite size, which leads to concentration-dependent
diffusion coefficients and in this sense to non-Fickian diffusion. The Brownian motion of
ions and in general charged particles is described by the Nernst–Planck equation.

The impact of diffusion on the rates of fast bimolecular chemical reactions can be quanti-
fied by the Smoluchowski theory, which relates the reaction rate directly to the diffusion rates
of the reacting particles. For heterogeneous initial reactant concentration, the Ovchinnikov–
Zeldovich mechanism explains the slowing down of bimolecular chemical reactions due to
segregation.

We then consider diffusion processes in porous media. Knudsen and Fick–Jacobs diffu-
sion describe molecular diffusion under confinement. For diffusion in heterogeneous porous
media, we distinguish between trap and barrier models, which have distinctly different trans-
port properties. Trap models are related to diffusion problems under heterogeneous linear
adsorption, while barrier models describe Fickian diffusion under spatial heterogeneity.

We furthermore discuss diffusion-like phenomena in porous media. These include Darcy-
scale flow models, which take the form of linear (single phase) and nonlinear (multiphase)
diffusion equations, and dispersive transport of solutes. The concept of dispersion shares
the same phenomenology as diffusion in that it models particle motion due to small-scale
velocity fluctuations as a random walk and in this sense as a large-scale Brownian motion.

We conclude this brief review with an overview of phenomena and models for anomalous
diffusion in porous media.
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