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Uncertainty plagues every effort to model subsurface processes and every decision made on the basis of
such models. Given this pervasive uncertainty, virtually all practical problems in hydrogeology can be
formulated in terms of (ecologic, monetary, health, regulatory, etc.) risk. This review deals with hydro-
geologic applications of recent advances in uncertainty quantification, probabilistic risk assessment
(PRA), and decision-making under uncertainty. The subjects discussed include probabilistic analyses of
exposure pathways, PRAs based on fault tree analyses and other systems-based approaches, PDF (prob-
ability density functions) methods for propagating parametric uncertainty through a modeling process,
computational tools (e.g., random domain decompositions and transition probability based approaches)
for quantification of geologic uncertainty, Bayesian algorithms for quantification of model (structural)
uncertainty, and computational methods for decision-making under uncertainty (stochastic optimization
and decision theory). The review is concluded with a brief discussion of ways to communicate results of
uncertainty quantification and risk assessment.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Uncertainty plagues every modeling effort in subsurface hydrol-
ogy (and other environmental fields) and every decision made on
the basis of such models. How much groundwater is stored in a gi-
ven aquifer? Is a depleted oil reservoir safe to host significant
amounts of sequestered carbon dioxide? Will natural attenuation
degrade a contaminant to an acceptable level? How much ground-
water can be extracted from a coastal aquifer before seawater
intrusion becomes a problem? Mathematical models of subsurface
flow and transport are routinely used to answer these and other
questions. Just as ubiquitous are the lack of sufficient data to
parameterize these models and disagreements over the degree to
which a given model represents reality. This uncertainty makes a
unique answer to such questions impossible.

Instead, multiple modeling predictions are plausible. Each
prediction must be accompanied by an assessment of predictive
uncertainty, i.e., by rigorous uncertainty quantification (UQ). A
systematic UQ effort aims to estimate the effects of structural
uncertainty (uncertainty about the validity of a particular mathe-
matical model) and parametric uncertainty (uncertainty about
parameters and driving forces in a particular model) on predictive
uncertainty. These two sources of uncertainty are sometimes re-
ferred to as epistemic uncertainty, since they arise from incomplete
knowledge and can be reduced by collecting more data. A substan-
ll rights reserved.
tial part of this review surveys approaches to quantification of epi-
stemic uncertainty in subsurface modeling. (Quantification of
aleatory or irreducible uncertainty, which refers to the limits of pre-
dictability of inherently random phenomena such as population
dynamics of microbial colonies in the subsurface, lies outside the
scope of this review.)

Uncertainty is intimately intertwined with the concepts of risk
or hazard. The Merriam-Webster dictionary defines hazard and
risk as ‘‘a source of danger’’ and ‘‘something that creates or sug-
gests a hazard’’, respectively. Given pervasive uncertainty about
the subsurface, these definitions suggest that most if not all prac-
tical problems in hydrogeology can be formulated in terms of
(ecologic, monetary, health, regulatory, etc.) risk. Yet there is a
surprising dearth of quantitative assessments of risk in subsurface
hydrology, unless one counts as such a few Monte Carlo realiza-
tions. A rigorous assessment of risk addresses the following three
questions: ‘‘What can happen? How likely is it to happen? Given
that it occurs, what are the consequences?’’ [17]. The vast major-
ity of applied geosciences (e.g., seismology [53], surface hydrology
[6], and ecology [45] and geotechnics [40,57]) have adopted risk
assessment as a standard practice. A typical example is the US
National Research Council’s report on seismic hazard analysis
(SHA) [165], which concludes that any SHA must be probabilistic
and that any probabilistic SHA must focus on uncertainty
quantification.

The field of probabilistic risk assessment (PRA) is relatively new,
owing its creation to the Three Mile Island nuclear power plant
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accident (1979) and the space shuttle Challenger disaster (1986)
[17]. (A much longer historic perspective can be found in [36].)
Many government agencies, e.g., US Environmental Protection
Agency (http://epa.gov/riskassessment), US Nuclear Regulatory
Commission (http://www.nrc.gov/about-nrc/regulatory/risk-infor-
med.html), US Army Corps of Engineers (Pub. Number EM200–1-
4, http://140.194.76.129/publications/eng-manuals), and European
Environment Agency (http://www.eea.europa.eu/publications/GH-
07-97-595-EN-C2), have incorporated PRAs into their regulations
and operation manuals. A large number of such documents and
guidelines are reviewed in [102].

PRA has developed its own jargon (e.g., basic and initiating
events) and methodology (e.g., fault trees and binary decision dia-
grams) that can be applied across many disciplines. This facilitates
a system’s approach to risk quantification and management in
complex multi-component, multi-physics problems. For example,
a PRA of the Yucca Mountain nuclear waste repository dealt with
a wide range of hazards, including geological/geotechnical hazards,
weather-related hazards, aircraft crash hazards, industrial and mil-
itary-related activity hazards, etc. [167, Chapter 3]. Assessment of
the risks posed by the waste’s subsurface migration (e.g., [89]) is
but a small component in the overall PRA. Reliance on the struc-
tured PRA approach discussed in Section 2 facilitates its incorpora-
tion into the overall risk assessment. This section also provides a
brief overview of several alternatives to the structured PRA
approach.

Being a quantitative tool, PRA is fundamentally distinct from
both qualitative and pseudo-quantitative approaches to uncer-
tainty and risk quantification. Examples of such approaches in-
clude the RISQUE method (e.g., [27]), which relies on a panel of
experts to assign probabilities to various adverse events; the sce-
nario approach [181] in which an expert assigns probabilities to
deterministic computer simulations of alternative scenarios; and
the screening and ranking framework [128] that relies on an expert
to provide educated guesses for values (and corresponding mea-
sure of uncertainty) of ‘‘proxies for site characterization data and
model analyses that may not be available’’. These and other similar
approaches are invaluable for cursory risk assessments (used, for
example, in site screening) and can be used to compute some of
the probabilities in a rigorous PRA when either the required data
are not available or numerical modeling is prohibitively expensive.
They can also be used as prior distributions in Bayesian risk assess-
ments [59].

Risk assessment is often accompanied by risk management.
The latter can be defined as [164, p. 28] ‘‘the process by which
risk assessment results are integrated with other information
(e.g., technical feasibility, cost and offsetting benefits) to make
decisions about the need for, method of, and extent of risk reduc-
tion’’. Risk management is the subject matter of optimization un-
der uncertainty and, more generally, decision theory. Closely
related to risk management is the challenge of communicating
results of uncertainty quantification and probabilistic risk
assessment to decision-makers, the general public, and other
stake-holders.

This review addresses, with various degrees of completeness, all
of these subjects. Section 2 provides a description of standard ap-
proaches to PRA and a survey of its applications in hydrogeology.
Quantitative approaches to UQ, the mathematical and statistical
foundation of PRA, are reviewed in Section 3. Section 4 provides
a cursory survey of the use of optimization under uncertainty (Sec-
tion 4.1) and decision theory (Section 4.2) in management of
groundwater resources and subsurface decontamination. It also
briefly discusses ways to communicate the outcomes of UQ and
PRA (Section 4.3).
2. Structured PRA procedure

The structured PRA methodology consists of [17]

(i) defining a system failure,
(ii) identifying all basic events contributing to the system

failure,
(iii) building a fault tree (or other modes of failure analysis some

of which are discussed in Section 2.2.1) to relate the basic
events to the system failure,

(iv) constructing minimal sets of the basic events whose joint
occurrence causes the system failure,

(v) relating (joint) probabilities of occurrence of these basic
events to the probability of the system failure, and

(vi) computing probabilities of the basic events.

Steps (i) and (ii) deal with the questions ‘‘What can happen?’’
and ‘‘Given that it occurs, what are the consequences?’’, while
steps (iii)–(vi) address the question ‘‘How likely is it to happen?’’.

To the best of our knowledge, this methodology was introduced
into subsurface hydrology in [157]. It has since been used to esti-
mate the probability of failure of reactive barriers as a groundwater
remediation strategy [26], to quantify groundwater-related risks at
underground excavation sites [85], to determine the likelihood of
success of NAPL remediation [59], and to construct probabilistic
maps of well-head protection zones [144].

As an example, let us consider the EPA’s definition of the Excess
Lifetime Cancer Risk (ELCR) factor [163]

ELCR ¼ aC; a ¼ IR � EF
365 days� BW

ð1Þ

where C(x, t) is the concentration of a carcinogen in groundwater at
location x and time t; and a is the exposure factor defined in terms
of the human ingestion rate (IR), the exposure frequency (EF), and
the body weight (BW). Concentration of a carcinogen in groundwa-
ter is deemed acceptable if ELCF does not exceed a certain level.
Both the exposure factor a and the contaminant concentration C
are fundamentally uncertain and must be treated probabilistically.
Probabilistic descriptions of a are obtained via statistical analyses
of the population at risk, while those of C are a subject matter of
hydrogeology. Since a and C are in most cases statistically indepen-
dent, their probabilistic analyses can be carried out separately.

A brief overview of the approaches used to probabilistically
determine exposure factors is provided in Appendix A. We focus
instead on methods used to compute the probability of a contam-
inant’s concentration exceeding a safe level. It is worthwhile
emphasizing that the use of PRA is not limited to water quality
problems wherein contaminant concentration is the key state var-
iable. In other problems of interest, e.g., environmentally and/or
legally sound groundwater exploitation and underground con-
struction, hydraulic head is an uncertain state variable whose
probabilistic descriptions serve as an input into PRA.
2.1. Fault tree analyses of state variables

The following two problems, the first dealing with contaminant
transport [26] and the second with subsurface flow [85], demon-
strate the versatility of the standardized PRA framework in dealing
with dynamical distributed systems (i.e., in obtaining probabilistic
descriptions of state variables, such as contaminant concentrations
and hydraulic heads and fluxes). The second example also shows
how PRA provides for a seamless integration of groundwater mod-
els into an overall engineering design.

http://epa.gov/riskassessment
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Fig. 2. The fault tree used in [85] to assess the probability of flooding of an
excavation site.

D.M. Tartakovsky / Advances in Water Resources 51 (2013) 247–260 249
2.1.1. Contaminant transport
PRA was used in [26] to estimate the probability of failure of a

permeable reactive barrier to intercept and remediate a contami-
nant plume migrating from a point source towards a protected
zone (a well field, a body of surface water, etc.). The structured
PRA procedure outlined above proceeds as follows. We say that
the ‘‘system fails’’ if contaminant concentration C(x, t) within the
protected zone exceeds a certain level Cq before a prescribed time
T. Basic events that can contribute to system failure (SF) are a con-
taminant’s spill occurs (SO); the plume travels through the reactive
barrier (P3); the plume bypasses the reactive barrier, reaching the
protected zone (P2); natural attenuation fails to reduce the con-
taminant concentration below Cq (NA); the remediation effort fails
to do the same (RE).

Next, Boolean operators AND and OR are employed to relate the
basic events to the system failure, forming a fault tree shown in
Fig. 1. This fault tree reveals the existence of two minimal cut sets,
the smallest collections of basic events that must occur jointly in
order for the system to fail: {SO,P2,NA} and {SO,P3,NA,RE}. The
statement that either of these cut sets causes system failure, is
then written in terms of Boolean algebra as SF = (SO AND P2 AND

NA) OR (SO AND P3 AND NA AND RE). Replacing the Boolean operators
with their set counterparts (X \ Y � X AND Y and X [ Y � X OR Y) and
accounting for the statistical independence of SO from the rest of
the basic events, this Boolean expression allows one to express
probability of system failure P[SF] in terms of probabilities of the
(joint) occurrence of the relevant basic events as

P½SF�
P½SO� ¼ P½P2 \NA� þ P½P3 \ RE \NA�: ð2Þ
2.1.2. Subsurface flow
The analysis of groundwater-related hazards at subsurface

excavation sites [85] provides another example of the use of struc-
tured PRAs. System failure (SF) is now defined as the occurrence of
wet conditions during the construction of an underground station.
The authors identify the following basic events leading to system
failure: the failure of the excavation bottom (BEF) due to a combi-
nation of blow-in (BI), liquefaction (L), and bad drainage design
(BD); the occurrence of lateral inflow (LI) caused by poor construc-
tion of the diaphragm walls; and drainage system failure (DSF)
with the subsequent flooding of the excavation site due to a com-
bination of the pumping well’s clogging (C), heavy rainfall (R), and
the pump failure (PDW). The latter can be caused by the pump’s
Fig. 1. The fault tree used in [26] to assess the probability of failure of a permeable
reactive barrier to remediate a contaminant plume.
breakdown (PB), an accidental turn-off (ATO), or the power gener-
ator failure (GF).

The fault tree in Fig. 2 links these events to the system failure
and reveals that minimal cut sets consist of the single events {BI},
{L}, {BD}, {LI}, {C}, {R}, {PB}, {GF}, and {ATO}. Hence, the system
failure can be expressed by the following Boolean expressions:
SF ¼ BEF OR LI OR DSF ¼ ðBI OR L OR BD) OR LI OR (C OR PB OR GF OR

ATO OR R). Probability of the system failure is related to probabil-
ities of the union of compound (or mega-basic) events BEF, LI, and
BD by

P½SF� ¼ P½BEF [ LI [ DSF�: ð3Þ

Next, probabilities of each of these mega events (but not of their
joint occurrence) are expressed in terms of joint probabilities of
the underlying basic events. For example, probability of the excava-
tion-bottom failure is given by P[BEF] = P[BI [ L [ BD] or

P½BEF� ¼ P½BI� þ P½L� þ P½BD� � P½BI \ L� � P½L \ BD� � P½BD

\ BI� þ P½BI \ L \ BD�: ð4Þ
2.1.3. Computation of probabilities of basic events
The structured PRA described above replaces a formidable task

of computing probability of system failure with a more tractable
problem of computing probabilities of the occurrence of basic
events. The former typically involves multiple physical and/or
(bio-) geochemical processes, whose mathematical representations
are often uncertain, and a prohibitively large number of uncertain
parameters. The latter deals with subsets of these processes and
correspondingly smaller numbers of uncertain models and
parameters.

The ability to minimize the size of such subsets becomes para-
mount, if rigorous PRA and UQ in subsurface hydrology are to be-
come practical. By themselves, neither (2) nor (4) accomplish this
goal. Since they depend on the joint occurrence of basic events,
the knowledge of probabilities of each basic event is not sufficient
to compute the probability of system failure. Following [157], we
advocate the use of the following approximations, which are rou-
tinely used in PRAs of engineered systems (e.g., [17]) but not in
PRAs dealing with natural environments [26,85].

A rare-event approximation postulates that for basic events with
low probabilities of occurrence, the probability of their joint occur-
rence is negligibly small. This approximation allows one, for exam-
ple, to approximate (4) with

P½BEF� � P½BI� þ P½L� þ P½BD�: ð5Þ
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Since probability is a non-negative quantity, the rare event
approximation (5) provides a conservative estimate of probability
P[BEF].

A common cause approximation attributes the joint occurrence of
basic events to an underlying event that fully couples, but does not
necessarily cause, them. In the example considered in Section 2.1.1,
the existence of preferential flow paths might serve as a common
cause of the simultaneous failures of the permeable reactive bar-
rier to intercept the contaminant plume and of natural attenuation
to degrade the contaminant. Let PF denote a basic event ‘‘occur-
rence of preferential flow path’’, and PF0 its complement (the ab-
sence of preferential flow paths). Then the common cause
approximation replaces P[P2 \ NA] in (2) with

P½NA \ RE� � P½NAjPF�P½PF� þ P½NAjPF0�P½REjPF0�P½PF0�; ð6Þ

where P[PF0] = 1 � P[PF]. This approximation can be viewed as a
particular case of conditional independence in Bayesian systems,
whose detailed analysis can be found in [134]. Here it suffices to
say that the common cause approximation (6) provides a conserva-
tive estimate of probability P[P2 \ NA] in (2).

Quantification of geologic uncertainty allows one to estimate
probability of the occurrence of preferential flow paths, P[PF]. Ap-
proaches for dealing with this type of uncertainty are surveyed in
Section 3.1. Computation of the probabilities of the basic events in,
e.g., (5) and (6) requires one to quantify model and parametric
uncertainties. This can be accomplished by employing the methods
discussed in Sections 3.2 and 3.3.

2.2. Alternatives to structured PRA

Throughout this review we use the term ‘‘structured PRA’’ to
designate a procedure that follows the algorithm introduced in
the beginning of Section 2. Some of the alternative modes of failure
analysis, which do not use the fault tree analysis but otherwise
preserve the structured PRA algorithm, are discussed in Sec-
tion 2.2.1. Subsurface risk analyses that dispense with the struc-
tured PRA altogether are surveyed in Section 2.2.2.

2.2.1. Alternative modes of failure analysis
Fault trees, like those shown in Figs. 1 and 2, are but one exam-

ple of the visual representations of the relationship between basic
events and system failure. Such representations can be divided into
two categories, deductive and inductive. Deductive approaches,
such as fault tree analysis (FTA), use system failure as a starting
point and then establish a chain of basic events that can cause it.

Inductive approaches start with a basic event and then establish
a chain of events that can lead to system failure. Examples of
inductive techniques in PRAs are logic tree analysis, failure mode
and effect analysis (FMEA), influence diagrams, and event tree
analysis. In the words of Vesely and Roberts [171], ‘‘inductive
methods are applied to determine what system states (usually
failed states) are possible, deductive methods are applied to deter-
mine how a given system state (usually a failed state) can occur’’.

In many problems of interest in subsurface hydrology, the dis-
tinction between these two paradigms is largely a matter of
semantics, as long as the mode of system failure (as defined in
the examples above) is unambiguous and unique. First, the number
of basic events is small enough to avoid errors and omissions in the
construction of trees of any kind. Second, when properly con-
structed, the inductive and deductive trees convey the same infor-
mation [89]. Finally, the two paradigms (e.g., FTA and FMEA) can be
combined as is done, for example, in the cause–consequence dia-
gram method [3].

Bayesian belief nets (BBNs) [84] and state transition diagrams
[186] provide an alternative representation of the relationship be-
tween basic events and system failure. BBNs can be constructed in
deductive and inductive fashion. BBNs have been employed in sub-
surface hydrology as a tool of risk assessment [186] and risk man-
agement [58].

2.2.2. Unstructured PRAs
Monte Carlo simulations (MCS) are a tool that is routinely used

in lieu of structured PRAs. (MCS are also employed within the
structured PRA framework to compute both probabilistic exposure
factors, e.g., the references in Appendix A, and probabilities of
occurrence of basic events, e.g., [85]). Such approaches typically as-
sume that risk is associated with a small number of uncertain
hydraulic and/or transport parameters, which are treated as ran-
dom fields. MCS are then used ‘‘to solve’’ corresponding stochastic
flow and/or transport equations. In the context of risk assessment,
‘‘solving’’ means obtaining the full distribution of a state variable
(e.g., hydraulic head or contaminant concentration) rather than
its mean and variance, the two quantities typically computed in
stochastic hydrogeology.

In such PRAs, hydraulic conductivity (or transmissivity T) is the
main—in the references below the only—source of uncertainty in
flow and transport simulations. MCS of the groundwater flow
equation and (reaction-)advection–dispersion equations were used
to assess the risk of human exposure to toxins in groundwater
[20,44,90,97,111,113–115], to assess the risks to human health
from CO2 leakage into groundwater [152], and to delineate proba-
bilistically well-head protection zones [74,56]. MCS of the coupled
soil-mechanics/groundwater flow equations, with the shear modu-
lus acting as the sole uncertain parameter, were used in PRA of
seismically-induced soil liquefaction [121].

The computational burden associated with computation of full
distributions of system states, i.e., their probability density func-
tions (PDFs) or cumulative distribution functions (CDFs), explains
why these and other MCS-based PRAs are limited to a single uncer-
tain subsurface parameter. The importance of ensuring that MCS
converged to the system state’s PDF has been highlighted in [97].
The computational efficiency of MCS-based PRAs can be somewhat
increased by employing accelerated (quasi) MCS approaches, e.g.,
Latin hypercube sampling [98].

Unstructured PRAs dealing with large numbers of uncertain
subsurface parameters treat these parameters as random variables
(constants) rather than random fields (functions). This allows one
to reduce significantly the computational burden of MCS by relying
on analytical solutions of (often zero- or one-dimensional) flow
and transport equations. Examples of such PRAs include MCS on
analytical solutions of either mass-balance (zero-dimensional)
equations [78,161,196] or one-dimensional advection–dispersion-
reaction equations [101], MCS coupled with the Analytical Con-
taminant Transport Analysis System (ACTS) [7, Chapter 9], MCS
of combined numerical and analytical models [71], and FORM
(first-order reliability method) [194] and SORM (second-order reli-
ability method) [80] analyses. Apart from obvious limitations of
treating subsurface parameters as (random) constants, such ap-
proaches have other drawbacks. For example, FORM might be
poorly suited for computing concentration CDFs [154].

This review deals with probabilistic risk assessment, which em-
ploys probability theory to quantify various sources of uncertainty.
Alternative approaches to risk assessment and uncertainty quanti-
fication rely on fuzzy logic, its generalization known as plausibility
theory, and combined fuzzy-probabilistic approaches. The latter
were used to quantify risks of groundwater contamination [13]
and human exposure to toxins [88], as well as risks in petroleum
exploration prospects [146]. In addition to suffering from an unfor-
tunate association with the phrase ‘‘fuzzy math’’, fuzzy logic and its
generalizations lack the scientific heft of probability theory. While
probability theory is grounded in the seminal work of de Fermat,
Pascal and Kolmogorov, fuzzy set theory dates back to the 1960s
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[193]. The relationship between the two frameworks is subject to
heated debate in the contemporary literature, which lies outside
the scope of this review.

3. Probabilities of basic events

This section contains an overview of methods that enable one to
calculate probabilities of occurrence of the basic events similar to
those identified in Section 2.1.

3.1. Quantification of geologic uncertainty

Geologic uncertainty determines the probability of occurrence
of interconnected high-conductivity structures (e.g., paleochan-
nels) that may lead to preferential flow paths, the common cause
of several basic events (see Section 2.1.3). The type of geological
media and data availability determine which of the following ap-
proaches is appropriate to quantify this source of uncertainty,
i.e., to compute the probability P[PF] in (6).

3.1.1. Data-driven quantification of geologic uncertainty
This class of methods is broadly applicable to sedimentary sub-

surface environments, which exhibit large-scale dominant prefer-
ential flow paths that are observable from available data (point
measurements, outcrops, etc.). Fig. 3 provides a schematic repre-
sentation of such an environment. Its key characteristics are statis-
tical inhomogeneity (non-stationarity) and multi-modality of
subsurface parameters, both of which can be inferred from mea-
surements Ki = K(xi) of hydraulic parameters K(x) sampled at N
locations fxigN

i¼1 and/or from geophysical surveys.
Fig. 4. A probabilistic reconstruction of the high-conductivity (light shades) and low-con
(b) display reconstructions with probability 74% and 87%, respectively.

Fig. 3. A schematic representation of a subsurface environment X, whose property
is sampled at the locations indicated by dots. Random domain decompositions
(RDDs) [184,185] can be used to delineate probabilistically the boundaries c of
highly permeable sub-domains and to quantify predictive uncertainty associated
with such delineation.
A plethora of approaches that can be used to delineate bound-
aries of (highly permeable) hydrofacies from a dataset fKigN

i¼1 in-
clude structure- and process-imitating methods [94], sequential
Gaussian and transition-probability geostatistics [31], machine
learning theory [189], Bayesian technics coupled with Markov
chain Monte Carlo sampling [151], and deterministic classification
techniques [188]. Lithologic data collected at outcrops can be used
in lieu of, or in conjunction with, fKigN

i¼1 to delineate facies with
transition-probability geostatistics [41]. Integration of geophysics
and geostatistics (e.g., [55] and the references therein) and other
‘‘data fusion’’ techniques (e.g., [92] and the references therein) pro-
vide dramatic improvements in one’s ability to delineate lithofa-
cies and hydrofacies, including preferential flow paths.

These and other similar approaches to lithofacies and hydrofa-
cies delineation are designed to provide the best estimates of the
boundaries between geologic features, rather than their probabilis-
tic descriptions that are required by PRA. There is a need to develop
tools for probabilistic reconstruction of subsurface environments.
It can be accomplished, for example, by modifying the existing
techniques, such as indicator kriging [75]. This approach allows
for aggregation of various data types, e.g., stratigraphic data and
conductivity measurements, to probabilistically reconstruct a sub-
surface environment, as shown in Fig. 4.

Within the random domain decomposition (RDD) framework
[184,185], geologic uncertainty (Fig. 4), coupled with parametric
uncertainty about hydraulic conductivity and other hydraulic or
transport properties of each hydrofacies, can be propagated
through the modeling process by moment differential equations
and/or Monte Carlo simulations [187], generalized polynomial
chaos expansions (stochastic finite elements) [190], stochastic col-
location on sparse grids [103], and other techniques some of which
are described in Section 3.3.
3.1.2. Model-driven quantification of geologic uncertainty
If the amount of parameter data fKigN

i¼1 is not sufficient to prob-
abilistically reconstruct high-permeability zones, one can employ
concepts from percolation theory. According to this theory, a sub-
surface environment contains preferential flow paths (PFPs) or
connected fracture networks (i.e., ‘‘percolation of highly conduc-
tive cells of a numerical grid occurs’’) if the relative volume of
highly conductive material (e.g., sand) exceeds a certain level
(the so-called percolation threshold). Percolation theory was used
to determine the existence and probability of occurrence of PFPs in
[77,81].
ductivity (dark shades) heterogeneous lithofacies in an aquitard [75]. Figures (a) and
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Like all model-based identifications of PFPs, the percolation-
based results should be used with caution. By treating the ambient
geologic material as impervious, they neglect the possibility of flow
and transport between permeable inclusions that do not touch.
Moreover, transition probability-based indicator simulations of
Markov chain models showed that PFPs can occur even if the rela-
tive volume of highly conductive material does not exceed the per-
colation threshold [139]. Such contradictory outcomes emphasize
the need to determine not only the possibility but also the proba-
bility of encountering PFPs.

Various indicators of connectivity provide a conceptually attrac-
tive approach to identifying the presence of PFPs [23,49,93,160].
These approaches attempt to relate the presence of PFPs to such
observable macroscopic characteristics as the relative volume of
high-conductivity zones, the ratio between the effective and geo-
metric mean of hydraulic conductivity, and hydraulic response to
pumping. As of today, none of these indicators provides an unam-
biguous measure of the presence of PFPs, suffering from a large
number of false positives and false negatives.

Percolation-based approaches to identification of PFPs were
used in a number of risk assessments (not all of them probabilis-
tic). The assessment of risks posed by geological sequestration of
CO2 [195] used percolation theory to estimate the probability of
a fracture/fault network forming PFPs between a CO2 repository
and the ambient environmental receptors, and fuzzy logic to quan-
tify the likelihood of the CO2 plume reaching these PFPs. Percola-
tion theory was also used in the PRA [156] to compute the
probability of CO2 injection causing the formation of intercon-
nected fracture networks (PFPs) in the caprock.
3.2. Quantification of structural (model) uncertainty

To the extent that the probabilities of basic events in Section 2.1
are defined by solutions of mathematical models, they reflect
structural (also known as model or conceptual) uncertainty. Reli-
ance on wrong conceptual models introduces a systematic predic-
tive bias regardless of whether their parameters are perfectly
known or uncertain. While pore-scale models of subsurface flow
and transport rely on the ‘‘first principles’’ (e.g., the Navier–Stokes
equations of fluid flow and Fick’s law of diffusion), they are not
suitable for field-scale applications. The latter employ largely phe-
nomenological descriptions (e.g., Richards’ equation and advec-
tion–dispersion-reaction equations), whose validity is not
universal and subject to ongoing debates [11,124,129]. Addition-
Reality

Model 1 Model 2

Fig. 5. A Venn diagram of the fidelity with which Models 1 and 2 represent
‘‘reality’’.
ally, it is not uncommon in subsurface hydrology to treat geologic
[140] and parametric [126] uncertainties, and uncertainty about
driving forces (initial and boundary conditions, sources and sinks)
[192], as model uncertainty.

The importance of model uncertainty is problem-specific, as
demonstrated by the Venn diagram in Fig. 5. Two different models,
e.g., an advection–dispersion equation (ADE) and its nonlocal
counterparts [124], might provide similar predictions of some as-
pects of ‘‘reality’’ (e.g., the dynamics of a contaminant plume’s cen-
ter of mass) but not others (e.g., tails of breakthrough curves).
Moreover, even when competing models yield different predic-
tions, these differences might not be large enough to alter probabi-
listic assessments of risk and corresponding decision-making.

At the same time, model uncertainty can, and often does, have a
significant impact on predictability of system behavior and sci-
ence-based predictions [70]. Two conceptual frameworks for quan-
tification of structural uncertainty, Bayesian model averaging and
Bayesian model selection, are discussed briefly below.

Bayesian model averaging (BMA) [123] seeks to combine pre-
dictions of competing models, each of which might reflect comple-
mentary aspects of reality (Fig. 5) with different degrees of fidelity.
BMA starts with identification of competing models of reality and
assignment of prior model probabilities. As with any Bayesian ap-
proach, these steps are highly subjective. Then data are used to up-
date these probabilities, i.e., to compute posterior probabilities.
Various computational implementations and hydrologic applica-
tions of BMA can be found in [52,125,140,147,162]. Comparative
analyses of alternative model-averaging techniques, including
BMA, are reported in [50,68,96,153]. BMA results depend critically
on one’s ability (expertise) to identify an exhaustive set of relevant
models; otherwise a single model can outperform an average of
multiple models [183].

If computational demands of running multiple conceptual mod-
els are prohibitive, one is forced to select the ‘‘best’’ among them.
Within the Bayesian framework, it is common to define the best
model as a model with the highest posterior probability, even
though it is not always the case [9]. One can define the best model
by relying on various (Bayesian and frequentist) criteria, such as
the Bayesian information criterion (BIC), the Akaike information
criterion (AIC), the Kashyap information criterion (KIC), etc. [29].
These and other information-theoretical criteria come with their
limitations and caveats. For example, AIC cannot be used to rank
models with different data sets [29], while BIC and KIC ‘‘assume
that the true (or quasi-true) model exists in the set of candidate
models’’ [137,29]. The latter assumption is not applicable to situa-
tions in which different models outperform their competitors in
different regimes (Fig. 5). The relative performance of AIC and
BIC is discussed in [65].

3.3. Quantification of parametric uncertainty

Probabilities of all the basic events in Section 2.1 are defined as
solutions of subsurface flow and/or transport equations. Consider a
typical set of such equations, defined on a domain X bounded by a
surface C,

Ss
@h
@t
¼ �r � q� f ; q ¼ �Krh ð7aÞ

and (for n = 1, . . . ,N)

@cn

@t
¼ �r � Jn � Rnðc1; . . . ; cNÞ; Jn ¼ �Drcn þ

q
x

cn ð7bÞ

subject to initial and boundary conditions

hðx;0Þ ¼ h0; h ¼ H; x 2 CD; n � q ¼ Q ; x 2 CN ð7cÞ

and (for n = 1, . . . ,N)
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cnðx;0Þ ¼ cn0 ; cn ¼ Cn; x 2 CD; n � Jn ¼ Q n; x 2 CR: ð7dÞ

Here specific storage Ss(x), hydraulic conductivity (tensor) K(x), and
porosity x(x) are the (uncertain) hydraulic properties of a heteroge-
neous subsurface environment X. Groundwater flow, i.e., changes
in hydraulic head h(x, t) and Darcy velocity q(x, t), are induced by
(uncertain) sources/sinks f(x, t); initial hydraulic head distribution
h0(x); and hydraulic head H(x) and flux Q(x) prescribed along,
respectively, the Dirichlet (CD) and Neumann (CN) segments of
the boundary C = CD [ CN with the unit normal vector n(x). Migra-
tion and fate of the n-th reactive species (n = 1, . . . ,N) with concen-
tration cn(x, t) is driven by advection in the velocity field q/x,
hydrodynamic dispersion with dispersion coefficient tensor D,
chemical reactions Rn with (uncertain) reaction rates
j = {j1, . . . ,jN}, and (uncertain) driving terms: initial concentration
distribution cn0 ðxÞ, and concentration Cn(x) and flux Qn(x) pre-
scribed along, respectively, the Dirichlet (CD) and Robin (CR) seg-
ments of the boundary C = CD [ CR.

Within a probabilistic framework, uncertainty in any or all of
these parameters and driving terms is quantified by treating them
as random fields. The corresponding boundary-value problems (7)
become stochastic. Their solutions are given in terms of probability
density functions (PDFs) of the system states such as hydraulic
head h(x, t), Darcy velocity q(x, t), concentrations cn(x, t) and mass
fluxes Jn(x, t). By their very definition, these PDFs allow one to com-
pute the probability of a system state exceeding a certain value, i.e.,
to compute probabilities of basic events.

It is worthwhile recognizing that for specified functional rela-
tions D(q) and Rn(c1, . . . ,cN) Eqs. (7) form a single model with uncer-
Table 1
Computed (q) and assumed (�) probability density functions (PDFs) of state variables, who
Saturated flow: h is the hydraulic head, and K is the saturated hydraulic conductivity. Unsat
and a are the parameters in soil constitutive relations (relative conductivities and/or reten
hydraulic head gradient, v is the flow velocity, X is the solute particle trajectory, s is the par
dispersion equation (7b) (with Ri � 0 for conservative solutes), j is the reaction rate const
concentrations, respectively. For all random fields A, hAi and A0 represent their ensemble m
the variance and correlation length of A, respectively.

State variable Sources of
uncertainty

Modeling assumptions

Groundwater flow
h0(x), h0(x, t) Y = K(x) Stationary, normal Y; sm

jrh(x)j, jq(x)j Y(x) Stationary, normal Y; lY

Unsaturated flow
w0(x), w0(x, t) Y(x), Stationary Y

A = lna(x) small r2
Y and r2

A

i(x1,x2,t), zf(x1,x2,t) Y(x), A(x) zf 6min{lY,lA} Green–Am

Conservative transport
m(t) Y(x), J(t) Stationary Y and v0 , sma

c(x, t) v(x, t) Stationary, multivariate
X(t) Y(x), v(x) Stationary normal Y, sm

lognormal c(x, t)
s(X) Y(x), v(x) Stationary normal Y, sm

D � 0 in (7b),
c(x, t) v(x) Infinite X, other assump

stated

Reactive transport
Langmuir sorption: s(X) Y(x), v(x) Stationary normal Y, sm

D � 0 in (7b)
(7b) with N = 2 and Rn = jc1c2: cn(x, t) Y(x), v(x) Stationary normal Y, hvi
(7b) with N = 1 and

R ¼ j ca � ca
eq

� �
: cðx; tÞ

j(x), cin(x) Stationary j, steady v, D

(7b) with N = 1 and

R ¼ j ca � ca
eq

� �
: cðx; tÞ

j(x), v(x), cin(x) Stationary j and v, D �
tain parameters and driving terms, rather than a set of alternative
models. (This is in contrast to many recent analyses that treat as
competing models alternative spatial variability of hydraulic con-
ductivity K due to geologic uncertainty [65,140], statistical param-
eterizations of K [126], recharge f [153,192] or boundary fluxes Q
[70].) Consequently, these sources of uncertainty are amenable to
various techniques for quantification of parametric uncertainty.

Examples of the latter approach include probabilistic analyses
of uncertain (random) boundary fluxes, such as precipitation/infil-
tration and evapotranspiration [138,143,145,172]. Likewise, the
random domain decompositions [184,185] discussed above treat
geologic uncertainty as a subset of parametric (rather than struc-
tural) uncertainty by decomposing a flow domain X[M

m¼1Xm into
M non-overlapping subdomains (heterogeneous hydrofacies)
fXmgM

m¼1 and representing an uncertain (random) parameter, e.g.,
hydraulic conductivity K(x), as (see Fig. 3 wherein M = 2)

KðxÞ ¼

K1ðxÞ x 2 X1

..

. ..
.

KMðxÞ x 2 XM :

8>><
>>:

ð8Þ

A general RDD formulation [187] allows for uncertainty in the spa-
tial extent of subdomains Xm, their number M, and hydraulic/trans-
port properties Km(x) of each subdomain. This uncertainty is
propagated through the modeling process by solving (7) and (8)
supplemented with the continuity conditions for h and cn, and the
normal components of their respective fluxes q and Jn, along the
(uncertain) interfaces between the adjacent subdomains.
se predictions are uncertain due to uncertainty in one or more hydraulic parameters.
urated flow: w is the pressure head, i is the infiltration rate, zf is the infiltration depth,

tion curves). Solute transport: m is the center of mass of a solute plume, J is the mean
ticle travel time along X, and c is the solute concentration described by the advective-
ant, a is the stoichiometric coefficient, and ceq and cin are the equilibrium and initial
eans and zero-mean random fluctuations, such that A = hAi + A0; and r2

A and lA denote

PDF Reference

all r2
Y ; lY � jXj Multivariate normal� [122]

Joint (with Y) multivariate normal� [122]
� jXj; Lognormalq [169]

Multivariate normal� [2]
Joint (with Y and A) multivariate
normal�

[2]

pt/Parlange models Non-canonical (multivariate) PDFsq [177,178]

ll r2
Y and r2

v Normalq [47,46]
Normalq

normal v normal m(t) Non-canonical PDFq [48]
all r2

Y ; hvi ¼ const, Non-canonical PDFq [63]

all r2
Y ; hvi ¼ const; Non-canonical PDFq lognormalq for

large jXj
[39]

tions are not explicitly b-distribution� [19,63]

all r2
Y ; hvi ¼ const; Non-canonical PDFq, lognormalq for

large jXj
[39]

= const, infinite X Map of b-distribution� [18,33]
� 0 in (7b) Equation for PDFq [28,159]

0 in (7b) Equation for PDFq [158]
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Multivariate sensitivity analyses, such as analysis of variance (ANO-
VA), can be used to assess the uncertainty about a statistical param-
eterization of the parameters fKmðxÞgM

m¼1, e.g., the existence and
importance of cross-correlations between Kl(x) and Kn(x) for l – n
[182].

Since each basic event is affected by a relatively small number
of uncertain parameters, the structured PRA approach described
in Section 2.1 facilitates the numerical implementation of the
RDD. It also makes possible the use of the basic event PDFs as
building blocks to assess the overall probability of system failure.
Examples of such PDFs, which can be used in lieu of computation-
ally expensive Monte Carlo simulations, are provided in Table 1.

The use of the PDFs in Table 1 comes with the following caveats.
First, the list of assumptions and corresponding limitations under-
lying these PDFs is not exhaustive, reflecting a certain degree of
opacity in some analyses. Second, reduced complexity models
(e.g., the Green–Ampt model used instead of the Richards equation
or advection-reaction equations used instead of their advection–
dispersion-reaction counterparts) provide a trade-off between
modeling complexity and the comprehensive/rigorous treatment
of parametric uncertainty. Third, these and other PDFs can be used
as prior distributions that can be refined through Bayesian updat-
ing as relevant site-specific data become available. The PRAs con-
ducted in [26,135] provide examples of the use of such PDFs.

4. Risk management: decisions under uncertainty

Once risk has been assessed, it has to be managed. A decision on
how to mitigate this risk is inevitably made in the presence of
uncertainty. This can be accomplished within one of the two con-
ceptual frameworks, optimization under uncertainty (Section 4.1)
and decision analysis (Section 4.2). While these two frameworks
are sometimes viewed as opposite (e.g., [66,120]), they are closely
related (see, for example, the title of [10]) rendering this subdivi-
sion somewhat artificial.

4.1. Optimization under uncertainty

Optimization under uncertainty is a rapidly developing field
with applications in many fields of science and engineering. The
state-of-the-art and comprehensive reviews of various approaches
to optimization under uncertainty, including various flavors of sto-
chastic programming and fuzzy programming, can be found in
[148,82,170] and [51, Chapter 5]. We focus on applications of such
techniques in subsurface hydrology.

A typical setting for optimization analyses of this type is the
optimal design of pump-and-treat remediation strategies in heter-
ogeneous subsurface environments with uncertain hydraulic and
transport parameters. The problem can be formulated as follows.
Given a probabilistic description of subsurface parameters, find
the optimal number and locations of pumping wells and injec-
tion/extraction rates. Groundwater flow and contaminant trans-
port are described by (7) wherein the source function
f(x, t) = F(x, t) + W(x, t) is a combination of (typically spatially-dis-
tributed) sources and sinks unrelated to the remediation effort
(e.g., groundwater recharge), F(x, t), and point sources/sinks repre-
senting pumping wells, Wðx; tÞ ¼

PI
i¼1Qidðx� xiÞ. Here I is the

number of wells, xi (i = 1, . . . , I) are their locations, and Qi(t) are
injection (Qi 6 0) and extraction (Qi > 0) rates. The goal is to mini-
mize the number of wells and their overall pumping rates, while
reducing contaminant concentrations to acceptable levels. If all
the wells are extracting (Qi > 0 for all i = 1, . . . , I), this optimization
problem can be written as

min
I;fxi ;QigI

i¼1

XI

i¼1

Q idðx� xiÞ ð9aÞ
subject to possible hydraulic restrictions and (probabilistic)
constraints

cnðx; tÞ 6 cH

n ; x 2 X; n ¼ 1; . . . ;N ð9bÞ

where cH

n ðn ¼ 1; . . . ;NÞ are the contaminant concentrations consis-
tent with water quality standards. For given I and fxi;QigI

i¼1, the
constraints (9b) are to be satisfied probabilistically since cn(x, t)
are random fields whose PDFs satisfy the flow and transport Eqs.
(7) with uncertain (random) coefficients. Let p denote an acceptable
probability of the failure of a remediation effort. Then the proper
formulation of the ‘‘chance constraints’’ (9b) is Pr½cnðx; tÞ 6 cH

n �P p.
Solving the nonlinear optimization problem (9) is computation-

ally demanding even if all the parameters in the flow and transport
equations (7) are known with certainty (deterministic). If one or
more of these parameters are uncertain (random), this task might
become computationally prohibitive. All solutions of the stochastic
optimization problem (9) we were able to find are restricted to ver-
tically-averaged flow equation (7a) with uncertain transmissivity T
(the vertically averaged analog of hydraulic conductivity K), and
correspondingly averaged transport equation (7b) for a single (pas-
sive or reactive) species.

Monte Carlo simulations (MCS), which solve the deterministic
optimization problem (9) for each realization of a random param-
eter and then average the results of multiple realizations, are a case
in point. High computational costs of MCS limit their applicability
to numerical models with few degrees of freedom and few decision
variables. On a computer ca. 1987, such simulations of two-dimen-
sional steady-state flow on a computational domain discretized
into 336 finite elements and transport carried out over 80 time
steps took 20 h of CPU time [72,174]. These simulations treated
transmissivity T(x1,x2) as the only source of uncertainty and had
five decision variables. A decade later, a nearly identical MCS ap-
proach was able to handle 1440 elements [120]. The analysis dealt
with two decision variables (constant Q1 and Q2 in two wells
whose location is fixed), used a response matrix approach in lieu
of solving the flow equation (7a), and relied on 200 realizations
of the log-normal transmissivity field. A conceptual generalization
of this MCS approach to stochastic optimization, which includes
chance constraints on hydraulic head values, incorporates capital
costs associated with construction and operation of wells, and ac-
counts for structural (model) uncertainty, is described in [73].
Other uses of MCS to solve stochastic optimization problems sim-
ilar to (9) can be found in [119,175]. MCS were also used as part of
a genetic algorithm [104] and stochastic programming with re-
course [176].

The computational efficiency of sampling-based solutions of the
stochastic optimization problem (9) can be improved by employ-
ing accelerated or quasi-MCS, such as importance sampling and La-
tin hypercube sampling (LHS) of realizations of T(x1,x2), or other
approaches to identify ‘‘critical realizations’’ [14,15,95]. Additional
computational savings can be obtained, at the cost of reduced
accuracy, by replacing solutions of the flow and transport equa-
tions for each realization of an uncertain parameter with various
surrogate techniques such as kriging [12] and the response matrix
approach [120]. LHS and neural-network surrogates were used,
within a noisy genetic algorithm (nGA) optimization framework,
to solve (9) in which uncertain hydraulic conductivity values of 9
zones of a numerical mesh were treated as random variables
[191]. The reliance on the surrogates was shown to reduce the
computational cost by up to 90%. This study also contains an over-
view of applications of alternative nGA techniques to solving (9).

Stochastic differential dynamic programming (sDDP) is another
approach to optimization under uncertainty. By employing the
Bayesian framework or Kalman filter-based data assimilation
techniques, sDDP allows one to adjust the optimal remediation
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pump-and-treat strategy—primarily to select the optimal pumping
rates fQ igI

i¼1 in (9)—as more data (e.g., measurements of hydraulic
head and solute concentrations) become available, thus reducing
parametric uncertainty. Like all methods of stochastic optimiza-
tion, sDDP is computationally demanding. The first application of
sDDP to solve (9) dates back to 1990, when it was limited to
one-dimensional flow and transport models with uncertain trans-
missivity and dispersivity, and had only one decision variable
(pumping rate Q at a well whose location was fixed) [5]. Its exten-
sion to two spatial dimensions [99] proved to be more efficient, in
terms of both computational cost and accuracy, than a MCS-based
feedback-control method. The sDDP approach to addressing vari-
ous aspects of the pump-and-treat optimization (9) was further re-
fined and generalized in [4,37,109,179].

Many of the above analyses formulated the pump-and-treat
optimization problem (9) in terms of monetary costs associated
with well construction (the number of wells I and their locations
fxigI

i¼1) and operation (pumping rates fQ igI
i¼1). Such formulations

raise the question of data’s monetary worth for uncertainty reduc-
tion and its impact on decision-making (e.g., optimal operation of
wells). This question was addressed in several subsurface applica-
tions by means of either an extended Kalman filter built into sDDP
[100] or Bayesian approaches that share many basic features but
differ in names and implementation: a data-worth analysis
[60,83], comparative information yield curves [43,44], and a risk-
cost-benefit decision analysis [8,67].

In addition to pump-and-treat remediation, the stochastic opti-
mization techniques discussed above (and several others whose
descriptions can be found in [82]) were used to reduce fertilizer
use to a level that minimizes agricultural income losses while
ensuring that the maximum permissible concentration in ground-
water is not exceeded [133], to optimize the exploitation of
groundwater [4,86] and groundwater/surface water [136,141] re-
sources, and to select an optimal DNAPL remediation strategy that
minimizes remediation costs while not exceeding the probability
of failure arising from parametric uncertainty [30,130]. These
transport phenomena are described by (a system of) nonlinear dif-
ferential equations with a large number of (typically uncertain)
parameters. Yet the computational demands of stochastic optimi-
zation algorithms are such that they can handle at most two
sources of uncertainty. With the exception of the studies of con-
junctive groundwater/surface water supplies that treated inflow
from streams [136] or river diversion [141] as the sole source of
uncertainty, transmissivity (or hydraulic conductivity) is the com-
mon source of uncertainty in all of these studies. Recharge/leakage
was considered as an additional source of uncertainty in [4,86].

Several computationally efficient approaches to stochastic opti-
mization, e.g., the sDDP implementations in [4,5,99], achieve com-
putational speed-up by replacing MCS with moment differential
equations that propagate deterministically means and (co)vari-
ances of the system states. This necessitates the use of Taylor series
and perturbation-based closures, which compromises the accuracy
and range of applicability of such methods. Equally important,
most state variables, e.g., solute concentrations ci(x, t) in (7) and
(9), are highly non-Gaussian, so that their means and variances
provide only partial information about their PDFs. This information
is insufficient for risk analysis and risk management, both of which
require the knowledge of full PDFs to estimate probabilities of rare
events. It is also of limited use for data assimilation through either
Bayesian updating or ensemble Kalman filtering. To obviate these
limitations, we advocate the use of the PDF equations and
closed-form PDFs (see Section 3.3) in lieu of both MCS and the mo-
ment equations.

As mentioned earlier, the present review deals primarily with
the probabilistic treatment of risk assessment and management.
A review of groundwater-related optimization under uncertainty,
in which uncertain parameters are represented as fuzzy sets, can
be found in [76].

4.2. Decision theory and analysis

Decision theory is an active field of research that is the subject
matter of many textbooks and monographs [34,131,180], and sci-
entific publications including the journal Decision Theory. Decision
theory is commonly subdivided into two parts, prescriptive (or nor-
mative) and descriptive (or positive), with the former based on the
notion that a decision maker will always make a rational decision
and the latter disputing this notion. The normative approach to
decision theory [34], which seems to be well-suited for engineer-
ing and natural sciences including hydrology, is based on the con-
cepts of rational behavior as defined by the Savage axioms [150]
and their subsequent extensions and generalizations (e.g., [54]).

At the heart of the Savage theory of rational behavior lies a pos-
tulate that alternative actions (e.g., different remediation strate-
gies) can be arranged in order of preference. This is not always
straightforward. For example, the relative efficiency of alternative
remediation strategies must be reconciled with their costs, local
conditions, tolerance to the risk of failure, etc. Virtually every deci-
sion a hydrogeologist (and relevant stakeholders) must take is
made under uncertainty and leads to uncertain outcomes.

The normative approach to decision-making under uncertainty
is typically based on the von Neumann–Morgenstern utility func-
tion [173], which was originally proposed as an alternative to the
Bernoulli utility function [21] to represent preferences over lotter-
ies. The utility function u(�) assigns numerical values to each alter-
native strategy, so that strategy S1 (e.g., the pump-and-treat
remediation considered in Section 4.1) is preferable to strategy S2

(e.g., bioremediation) if and only if the utility of S1, u1 = u(S1), is lar-
ger than the utility of S2, u2 = u(S2).

Expected utility theory (EUT) posits that ‘‘the decision maker
chooses between risky or uncertain prospects by comparing their
expected utility values, i.e., the weighted sums obtained by adding
the utility values of outcomes multiplied by their respective prob-
abilities’’ [118]. Consider N remediation strategies S1, . . . , SN, whose
success is determined by their ability to meet safety standards for
drinking water, e.g., the ELCR factor (1). If the probability of failure
of the ith remediation strategy Si is P[Si], then the probability of its
success is pi = 1 � P[Si]. The expected utility of u(Si) can be found as
[118]

E½uðSiÞ� ¼ li1pi þ li2ð1� piÞ; i ¼ 1; . . . ;N; ð10Þ

where the coefficients lij are utilities of choosing decision Si and
obtaining positive (j = 1) or negative (j = 2) outcomes. According
to EUT, the optimal remediation strategy has the highest expected
utility, Sw = arg maxi E[u(Si)], where the maximum is computed over
alternative strategies i = 1, . . . , N.

Probabilistic risk analyses (Section 2) can provide the probabil-
ities of failure P[Si] or, equivalently, the probabilities of success pi.
The utilities lij must be supplied by the decision maker based on
financial and other preferences as well as his/her tolerance to risk.
In other words, EUT allows for a clear delineation of responsibili-
ties between the experts (who compute probabilities) and the deci-
sion makers (who provide utilities). If the decision maker is not
certain of which values to assign to each utility or several decision
makers (stakeholders) are not able to agree on these values, the ex-
perts can help by providing a sensitivity analysis of Sw with respect
to lij while leaving the probability estimates intact [17].

Cost-benefit analysis (CBA) [25] replaces expected utility with
expected monetary value. CBA has a number of appealing features,
including its relative simplicity and flexibility, the ability to deal
with multiple sources of uncertainty, and representation of risk
and uncertainty in familiar sounding monetary terms [170]. Many



Table 2
The likelihood ranges for expressing the probability of occurrence recommended by
the Intergovernmental Panel on Climate Change [22].

Description Probability of occurrence

Virtually certain >99%
Extremely likely >95%
Very likely >90%
Likely >66%
More likely than not >50%
Unlikely <33%
Very unlikely <10%
Extremely unlikely <5%
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of the stochastic optimization studies reviewed in Section 4.1 are
examples of CBA. Its other hydrogeologic applications include CBAs
of waste management facilities [111], pump-and-treat remediation
[66,112], and conjunctive water management [69].

Despite its widespread use, CBA has a number of drawbacks and
limitations. These include

	 its definitions of both risk and cost of risk, and ‘‘its poor ability
to communicate risk-related information’’ [90];
	 the inability to create ‘‘the basis for a consensus decision except

when all participants agree with prices used, and when those
benefiting agree to compensate those not benefiting’’ [17]; and
	 high sensitivity of CBA-based decisions to cost of failure, which

arises from the fact that ‘‘post-failure consequences, litigation
costs, regulatory penalties, loss of opportunity or investment,
and damage to public relations are hard to quantify or predict’’
[170, Section 8].

As alternatives to CBA, multi-attribute utility theory, analytical
hierarchy process, outranking methods, etc. can be employed to
determine the utilities lij in (10). A comparative review of these
approaches can be found in [24, p. 16]. Multiple criteria decision
analysis (MCDA) [61] has been used for water resource planning
[170] and management of subsurface contamination [90], and as
an integral component of several decision support systems [110].
A key advantage of MCDA over CBA lies in its ability ‘‘to deal with
noncommensurable aspects and to facilitate stakeholder’s involve-
ment for collaborative decision-making’’ [170].
4.3. Communication of risk and uncertainty

A recent report by the US Environmental Protection Agency
(EPA) Science Advisory Board [42] concluded that ecological risk
assessments ‘‘have been most effective when clear management
goals were included in the problem formulation; translated into
information needs; and developed in collaboration with decision
makers, assessors, scientists, and stakeholders.’’ This conclusion
reaffirms EPA’s ‘‘cardinal rules of risk communication’’ [35]:

Rule 1: Accept and involve the public as a legitimate partner.
Rule 2: Plan carefully and evaluate performance.
Rule 3: Listen to your audience.
Rule 4: Be honest, frank, and open.
Rule 5: Coordinate and collaborate with other credible sources.
Rule 6: Meet the needs of the media.
Rule 7: Speak clearly and with compassion.

A detailed survey of the research on risk and uncertainty com-
munication lies outside the scope of the present review. The inter-
ested reader is referred to the comprehensive and entertaining
assessments of the progress in this field [64,106,155]. The current
state-of-the-art, best practices, and challenges in risk communica-
tions are discussed [166].

Of immediate relevance to communication of uncertainty quan-
tification and risk assessment results in subsurface hydrology is
the language recommended by the Intergovernmental Panel on Cli-
mate Change [22]. It is reproduced in Table 2.
5. Summary

Uncertainty plagues every effort to model subsurface processes
and every decision made on the basis of such models. Given this
pervasive uncertainty, virtually all practical problems in hydroge-
ology can be formulated in terms of (ecologic, monetary, health,
regulatory, etc.) risk. This review deals with applications to subsur-
face hydrology of recent advances in uncertainty quantification,
probabilistic risk assessment, and decision-making under
uncertainty.

Special attention is paid to the computationally efficient tools
for uncertainty quantification and risk assessment that are still in
early stages of their development. These include

	 Systems-based approaches to probabilistic risk assessment
(PRA) that replace a formidable task of computing probability
of system failure with a more tractable problem of computing
probabilities of the occurrence of basic events. The former
involves multiple physical and/or (bio-) geochemical processes,
whose mathematical representations are often uncertain, and a
prohibitively large number of uncertain parameters. The latter
deals with subsets of these processes and correspondingly
smaller numbers of uncertain models and parameters.
	 PDF (probability density function) methods to propagate para-

metric uncertainty through the modeling process. Such meth-
ods aim to provide a computationally efficient alternative to
Monte Carlo simulations by deriving deterministic equations
for PDFs of state variables (e.g., hydraulic heads or solute con-
centrations). By their very definition, these PDFs allow one to
compute the probability of a system state exceeding a certain
value, i.e., to compute probabilities of basic events.
	 Random domain decompositions (RDDs) and other frameworks

for quantification of geologic uncertainty. While many currently
used approaches to lithofacies and hydrofacies delineation are
designed to provide the best estimates of the boundaries
between facies, PRAs require their probabilistic descriptions.
RDDs and transition probability-based approaches can be used
to probabilistically identify the existence and spatial extent of
preferential flow paths that often serve as a common cause of
system failure.
	 Computationally efficient methods for optimization under

uncertainty. These include (i) stochastic optimization via accel-
erated or quasi Monte Carlo simulations (e.g., importance sam-
pling and Latin hypercube sampling) coupled with surrogate
techniques (e.g., kriging, neural-network surrogates, and
response matrix approaches), and (ii) stochastic differential
dynamic programming enhanced with Kalman filter-based data
assimilation techniques.
	 Quantitative approaches for decision-making under uncertainty

that are grounded in expected utility theory. A distinction is
made between commonly used cost-benefit analysis (which
reduces utility to monetary value) and its alternatives, such as
multi-attribute utility theory, analytical hierarchy process, and
outranking methods.

These and other approaches discussed above provide furtive
areas of research in the rapidly growing fields of uncertainty quan-
tification (UQ) and risk assessment (RA) in subsurface modeling.



D.M. Tartakovsky / Advances in Water Resources 51 (2013) 247–260 257
Acknowledgment

The author thanks Peter Quinlan and the six anonymous
reviewers whose insightful comments helped to improve the origi-
nal version of this manuscript. This work was supported by Applied
Mathematics Program of the US DOE Office of Advanced Scientific
Computing Research.
Appendix A. Statistical characterization of exposure factor

In general, every parameter entering the expression for the
exposure factor a in (1) is uncertain and subject to spatio-temporal
variability. For example, a statistical analysis of the US Public
Health Service data from 1976–1980 [62] led its authors to con-
clude that bivariate (between the height and the natural logarithm
of weight) histograms of the body weight (BW) of men and women
follow a normal distribution and two superposed normal distribu-
tions, respectively. It is worthwhile recognizing that such models
of uncertainty are uncertain as well: while Finley et al. [62] postu-
late that ‘‘body weight will not vary significantly from setting to
setting’’ which confers a degree of universality to their probabilis-
tic models of BW, Riederer et al. [142] make a case for the impor-
tance of site-specific data.

The other two parameters defining a in (1), the human inges-
tion rate (IR) and exposure frequency (EF), are determined by the
environmental pathways between a contaminant and population.
These include dermal uptake (e.g., showering), inhalation of vola-
tile chemicals in soils and groundwater, tap-water ingestion, soil
ingestion, etc. Probabilistic distributions for these and other pro-
cesses can be found in [1,16,62,108,149]. Depending on the prob-
lem, some or all of these pathways are to be accounted for. They
can be either mutually independent or, as is the case with dermal
uptake and body weight, strongly correlated [62].

A typical example of exposure-centered studies are the investi-
gations of health risks posed by perchloroethylene (PCE) [116] and
tetrachloroethylene (TCE) [117] in water supplies derived from
groundwater. In both analyses, contaminant concentrations in
water supplies were inferred from the water quality data and a
set of assumptions (a so-called source-characterization step), and
the main focus was placed on determining exposure pathways
(tap-water ingestion, dermal uptake, etc.) and probabilities of their
occurrence. Additional examples of probabilistic exposure-cen-
tered investigations include assessments of risks associated with
(i) ingestion of drinking water containing infectious microorgan-
isms at regulatory levels [79], (ii) consumption of agricultural
products irrigated with reclaimed wastewater [168], and (iii) hu-
man arsenic exposure through a number of nodes in the food chain
[91]. In-depth reviews of health-related PRAs that focus primarily
on exposure can be found in [38,127,132].

Probabilistic analyses of exposure pathways are not limited to
human health. They have been used in ecological risk assessment
to estimate exposure of other end-point species, including mink
and great blue herons [107], game birds and raptors [87], and rac-
coons [32], among many others. Salient differences in modeling
wildlife and human exposure pathways are discussed in [105].
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