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We consider advective–reactive solute transport in porous media whose hydraulic and
transport properties are uncertain. These properties are treated as random fields, which
renders nonlinear advection–reaction transport equations stochastic. We derive a determin-
istic equation for the probability density function (PDF) of the concentration of a solute that
undergoes heterogeneous reactions, e.g., precipitation or dissolution. The derivation treats
exactly (without linearization) a reactive term in the transport equation which accounts for
uncertainty (randomness) in both flow velocity and kinetic rate constants but requires a
closure, such as a Large-Eddy-Diffusivity (LED) approximation used in the present analysis. No
closure is required when reaction rates are the only source of uncertainty. We use exact
concentration PDFs obtained for this setting to analyze the accuracy of our general, LED-based
PDF equations.
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1. Introduction

Proper modeling of physical and chemical processes
involved in subsurface transport of reactive solutes requires
quantification of uncertainty about hydraulic and transport
properties of porous media. This is because subsurface
environments are inherently heterogeneous on multiple
scales and typically under-characterized by data. Such
parametric uncertainty can be quantified by treating relevant
properties, e.g., hydraulic conductivity K xð Þ and kinetic rate
constant κ xð Þ, as random fields whose spatial (and, by
inference, ensemble) statistics are estimated from available
data (Dagan, 1989; Gelhar, 1993; Cushman, 1997; Dagan and
Neuman, 1997). This renders system states, e.g., hydraulic
head h, macroscopic flux q and solute concentration c,

random as well. Corresponding flow and transport equations
become stochastic.

Most stochastic analyses of flow and transport in
(randomly) heterogeneous porous media employ either
Monte Carlo simulations (MCS) or moment differential
equations (MDEs). The MCS approach consists of generating
a sufficiently large number of realizations of random system
parameters (e.g., conductivity and/or reaction rates), solving
the corresponding flow and transport equations for each
realization of parameters, and obtaining statistics for the
system states (e.g., mean and variance of hydraulic head and
solute concentration). While conceptually straightforward,
MCS have a number of potential drawbacks. For nonlinear
systems, especially those involving transient multi-compo-
nent reactive transport in three spatial dimensions, MCS often
prove to be computationally prohibitive and lack well-
established criteria for their convergence. Additionally, MCS
provide little or no physical insight into computed moments
of system states. (More recently, various flavors of stochastic
finite elements, e.g., polynomial chaos expansions and
stochastic collocation on sparse grids, have found their way
into subsurface hydrology (Xiu and Tartakovsky, 2004; Lin
and Tartakovsky, 2009; Foo and Karniadakis, 2010). Under
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certain conditions, such approaches can be computationally
more demanding than MCS (e.g., Foo and Karniadakis, 2010;
and Xiu and Tartakovsky, 2006, Sec. 3.3.3; and the references
therein).

MDEs can be used to alleviate some of these limitations by
deriving deterministic equations for ensemble moments –
typically, mean and (co)variance – of system states. Their
applications to transport of solutes undergoing linear (first-
order) chemical reactions include Bellin et al. (1993), Cush-
man et al. (1995), Cvetkovic et al. (1999), Severino et al.
(2006), amongmany others. For nonlinear reaction rates, this
approach entails linearization of the reactive terms, e.g.,
Simmons et al. (1995) and Ginn et al. (2001), which
introduces uncontrollable errors that might compromise the
robustness and accuracy of resulting solutions. Except under
very special circumstances (e.g., one-dimensional flow and/or
transport), MDEs require a closure approximation, such as
perturbation expansions (Neuman and Tartakovsky, 2009
and references therein) or the assumption of Gaussianity of
macroscopic flow velocity (Darcian flux) (Dentz and Tarta-
kovsky, 2008). These and other closures limit the range of
applicability of such analyses. For example, MDEs based on
perturbation expansions are formally limited to mildly
heterogeneous porous media. Moreover, since MDEs yield
only the first few statistical moments of system states, they
are suboptimal for predicting rare events, probabilistic risk
assessment, and decision-making under uncertainty (Tarta-
kovsky, 2007; Winter and Tartakovsky, 2008; Bolster et al.,
2009).

Methods based on deriving deterministic differential
equations for probability density functions (PDFs) of system
states directly address the latter shortcoming. As an added
benefit, they do not require linearization of reactive terms in
transport equations. PDF methods have originally been
developed to study turbulence and combustion (e.g., Pope,
1981, 2000; and the references therein), where it is common
to assume that flow domains are infinite, random flow
velocities are statistically homogeneous (stationary) and
Gaussian, and reaction rates are deterministic constants.
Virtually none of these assumptions hold in applications to
reactive transport in porous media. In particular, reaction
rates are often the main source of uncertainty since they
depend heavily on pore geometry (Lichtner and Tartakovsky,
2003).

Quantification of uncertainty for such reactive flows is the
main goal of our analysis. In previous studies (Tartakovsky
et al., 2009; Broyda et al., 2010), PDFs for advective–reactive
transport were derived by assuming that a porous medium is
chemically heterogeneous but hydraulically homogeneous,
i.e., by treating macroscopic flow velocity as deterministic
(certain) and reaction rate constants as random (uncertain).
The analysis below accounts for uncertainty (randomness) in
both flow velocity reaction rates. We start by formulating in
Section 2 governing equations for advective–reactive trans-
port in porous media. Section 3 contains a derivation of PDF
equations, which relies on a Large-Eddy-Diffusivity (LED)
closure. Numerical solutions of these PDF equations are
presented in Section 4 for linear (Section 4.1) and nonlinear
(Section 4.2) heterogeneous reactions. These numerical
solutions deal with transport phenomena in which reaction
rates are the sole source of uncertainty. Such a setting enables

us to validate the LED closure by comparing a corresponding
equation for the PDF of concentration with its exact
counterpart developed in Tartakovsky et al. (2009)
(Section 4.3).

2. Problem formulation

Consider reactive transport in a porous medium Ω in-
volving a heterogeneous reaction between a dissolved species
C and a solid C(s),

αC⇌ C sð Þ; ð1Þ

in steady-state (divergence-free) groundwater flow with
macroscopic velocity v. For a given stoichiometric coefficient
α, the speed with which the concentration c of C reaches its
equilibrium level Ceq is determined by the kinetic rate
constant (Tartakovsky et al., 2009)

κ =
k0AC

−α
eq

ϕ
: ð2Þ

The latter represents the product of the laboratory
measured kinetic rate constant k0 [mol L-2T-1] for reaction
(1) and the specific surface area A [L-1] of a porous matrix. In
this definition, the kinetic rate constant κ [(mol L-3)1−αT-1]
includes the contribution from the specific surface area A and
porosity ϕ, both of which are assumed to be constant in time.
Following Neuman (1993), Shvidler and Karasaki (2003) and
many others, we neglect diffusion and hydrodynamic
dispersion on a local scale ω, i.e., assume that mixing in the
aqueous phase does not control reactions. Then the evolution
of the solute concentration c x; tð Þ can be described by an
advection–reaction equation (ARE)

∂c
∂t = −∇⋅ vcð Þ + fκ cð Þ; x∈Ω: ð3Þ

The source function

fκ cð Þ = −καðcα−Cα
eqÞ ð4Þ

provides a macroscopic (continuum-scale) representation of
the heterogeneous precipitation/dissolution reaction (1). It is
worthwhile emphasizing that the methodology described
below is applicable to other types of chemical reactions.

Equation (3) is subject to the initial condition

c x;0ð Þ = C0 xð Þ ð5Þ

where the initial distribution C0 can be either certain
(deterministic) or uncertain (random).

Spatial heterogeneity and scarcity of data render both v xð Þ
and κ xð Þ uncertain. To quantify the impact of this uncertainty
of predictions of concentration c x; tð Þ, we treat v xð Þ and κ xð Þ
as random fields. The data discussed in Tartakovsky et al.
(2009) and Broyda et al. (2010) suggest that the reaction rate
constant κ xð Þ can be modeled as a statistically homogeneous
multi-variate lognormal filed with mean 〈κ〉 and two-point
covariance Cκ jx−y jð Þ. Statistics of macroscopic flow velocity
v xð Þ, including its spatially varying mean v xð Þh i and covari-
ance Cvij x; yð Þ (i, j=1,2,3), are determined by solving flow
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equations with uncertain hydraulic conductivity. The stoi-
chiometric coefficient α, the equilibrium concentration Ceq,
and porosity ϕ are assumed to be deterministic.

The advection–reaction problem (3)–(5) is defined on a
local scaleω that is larger than the pore scale but smaller than
field-scale variations in physical properties, including mac-
roscopic flow velocity. The latter allows one to disregard local
dispersion in (3). The mesoscale transport equation breaks
down when the reaction rate fκ(c) becomes large enough to
produce gradients on the scale of a single pore diameter
(Battiato et al., 2011-this issue; Kechagia et al., 2002). In such
cases it is necessary to explicitly account for diffusion-
controlled reaction at the surface of the solid by means of
either pore-scale (Tartakovsky et al., 2007a, 2008) or hybrid
(Tartakovsky et al., 2007b) simulations.

Direct stochastic averaging of (3), e.g., Simmons et al.
(1995) and Ginn et al. (2001), requires one to expand the
nonlinear source term fκ(c) into a Taylor series about mean
concentration c x; tð Þh i,

fκ cð Þ = fκ ch ið Þ + c′
dfκ
dc

ch ið Þ + c′2

2
d2fκ
ds2

ch ið Þ + … ð6Þ

where c′ x; tð Þ are the zero-mean random fluctuations of c
around its mean 〈c〉, such that c= 〈c〉+c′. Retaining the
leading term in (6) leads to linearized solutions, which are
clearly inexact. Retaining higher-order terms gives rise to
rigorous perturbation solutions. Either approach is insuffi-
cient for conditions far from equilibrium, c≫Ceq or c≪Ceq,
which compromise the convergence of the Taylor series (6).
The probability density function (PDF) approach presented in
Section 3 does not require the expansion (6).

2.1. Non-dimensional formulation

The subsequent analysis is facilitated by rewriting the
advection–reaction problem (3)–(5) in its dimensionless
form. Let ta denote an advection time scale defined as the
time it takes a solute to travel a characteristic length L of the
physical domain with a characteristic macroscopic velocity V,

ta =
L
V
: ð7Þ

Let tr denote a reaction time scale defined by

tr =
C1−α
eq

κh i
: ð8Þ

Then the relative importance of advection and reactions
can be quantified in terms of the dimensionless Damköhler
number Da= ta / tr as

Da =
L κh i
V

Cα−1
eq : ð9Þ

Introducing dimensionless quantities

x̂ ≡ x
L
; t̂ ≡ t

ta
; κ̂ ≡ κ

κh i
; v̂ ≡ v

V
; ĉ ≡ c

Ceq
; Ĉ0 ≡

C0
Ceq

; ð10Þ

we transform (3)–(5) into their dimensionless form

∂ĉ
∂ t̂

= −∇̂⋅ v̂ĉð Þ + Da f̂ κ ĉð Þ; f̂ κ ĉð Þ = −ακ̂ ĉα−1
! "

;

ĉ x̂;0ð Þ = Ĉ0 x̂ð Þ:
ð11Þ

It follows from (7)–(9) that the dimensionless advection time
scale is t̂a≡ta = ta = 1 and the dimensionless reaction time
scale is t̂r≡tr = ta = Da−1. We drop the hats ⋅̂ to simplify the
subsequent presentation.

3. PDF approach

Following Pope (1981), we consider a function

Π c;C; x; tð Þ≡ δ c x; tð Þ−C½ $ ð12Þ

where δ(⋅) is the Dirac delta function and C is a deterministic
value the random concentration c can take on at a space–time
point x; tð Þ. The ensemble average (over random c) ofΠ is the
one-point PDF for concentration c x; tð Þ,

p C; x; tð Þ = Π c;C; x; tð Þh i: ð13Þ

An equation for p C; x; tð Þ is derived by noting that

∂Π
∂t =

∂Π
∂c

∂c
∂t = −∂Π

∂C
∂c
∂t ; ð14aÞ

∇⋅ vΠð Þ = ∂vΠ
∂c ⋅∇c = −∂Π

∂C v⋅∇c; ð14bÞ

and

fκ cð Þ ∂Π∂C =
∂
∂C fκ cð ÞΠ½ $≡ ∂

∂C fκ cð Þδ c−Cð Þ½ $ = ∂
∂C fκ Cð ÞΠ½ $:

ð14cÞ

Substituting (14) into (3) yields

∂Π
∂t + ∇⋅ vΠð Þ = −Da

∂fκ Cð ÞΠ
∂C : ð15Þ

Let us introduce a four-dimensional space x̃ = x1; x2;ð
x3; x4 ≡ CÞT , in which the gradient and “velocity” are defined
as

∇̃≡ ∂
∂x1

;
∂
∂x2

;
∂
∂x3

;
∂
∂x4

≡ ∂
∂C

# $T

; ṽ = v1; v2; v3; v4 ≡Dafκð ÞT :

ð16Þ

Then (15) can be written in the form of an advection
equation,

∂Π
∂t = −∇̃⋅ ṽΠð Þ; x̃∈ Ω̃≡Ω × C0;1ð Þ; ð17Þ

which describes the spreading of Π in the random velocity
field ṽ. (It is worthwhile recognizing that the velocity field ṽ is
no-longer divergence-free. Instead, ∇̃⋅ṽ = Dadfκ = dx4.)

Stochastic averaging of advective transport equations
with random velocity has been the subject of numerous
studies, e.g., Neuman (1993), Shvidler and Karasaki (2003)
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and references therein. Most approaches start by employing
the Reynolds decomposition, A = Ah i + A′, to represent the
random quantities in (17) as the sum of their ensemble
means Ah i and zero-mean fluctuations about the mean A′.
Then, taking the ensemble average of (17) yields an equation
for the concentration PDF,

∂p
∂t = −∇̃⋅ ṽh ipð Þ−∇̃⋅ ṽ′Π′h i: ð18Þ

This equation contains the unknown cross-correlation term
ṽ′Π′h i and, hence, requires a closure approximation. Over the
years, a plethora of closures for ṽ′Π′h i have been proposed.
These include closures based either on physical arguments, e.g.,
the “direct interaction approximation” (Kraichnan, 1965), the
“weak approximation” (Neuman, 1993), and a four-point
closure (Dentz and Tartakovsky, 2008) or on approximations
based on perturbation expansions in the (small) variance of
velocity fluctuations (Winter et al., 1984; Dagan, 1989). For
time-dependent problems similar to (18), perturbation expan-
sions often prove to be divergent (Frisch, 1968; Jarman and
Tartakovsky, 2008; Tartakovsky et al., 2009). We therefore
adopt a phenomenological closure, which gives rise to a
diffusive term called macro-dispersion.

3.1. Large-Eddy-Diffusivity (LED) approximation

Let us introduce a random Green's function G x̃; ỹ; t−τð Þ
associated with (17). It is defined as a solution of

∂G
∂τ + ṽ⋅∇̃ỹG = −δ x̃−ỹð Þδ t−τð Þ ð19Þ

subject to the homogeneous boundary and initial conditions.
Then (18) can be approximated by (Appendix A)

∂p
∂t = −∂ũip

∂x̃i
+

∂
∂x̃j

D̃ij
∂p
∂x̃i

% &
; ð20Þ

where the Einstein notation is used to indicate the summa-
tion over the repeated indices. Components of the eddy-
diffusivity (macro-dispersion) tensor D̃ij x̃; tð Þ are given by

D̃ij x̃; tð Þ = ∫
t

0
∫
Ω̃
〈ṽ ′i x̃ð Þṽ′j ỹð ÞG x̃; ỹ; t−τð Þ〉 dỹdτ; i; j = 1;…;4:

ð21Þ

This result is asymptotically exact if p varies slowly in time
and hyperspace Ω̃ relative to ṽ (Kraichnan, 1987). The
effective velocity ũ is given by

ũ = ṽh i−Da∫
t

0
∫
Ω̃
〈ṽ′ x̃ð Þdf ′κ ỹð Þ

dy4
G〉dỹdτ: ð22Þ

Following Neuman (1993) and many others, we approx-
imate (21) and (22) by

D̃ij x̃; tð Þ≈∫
t

0

∫
Ω̃
〈ṽ′i x̃ð Þṽ′j ỹð Þ〉 G x̃; ỹ; t−τð Þdỹdτ ð23Þ

and

ũ≈ ṽh i−Da∫
t

0

∫
Ω̃
〈ṽ′ x̃ð Þκ′ yð Þ〉

dfα
dy4

G x̃; ỹ; t−τð Þdỹdτ; ð24Þ

respectively. Here fα(x4)≡−α(x4α−1), and G x̃; ỹ; t−τð Þ is the
deterministic Green's function defined as a solution of

∂G
∂τ + ṽh i⋅∇̃ỹG = −δ x̃−ỹð Þδ t−τð Þ ð25Þ

subject to the corresponding homogeneous boundary and
initial conditions.

Deterministic advection–dispersion Eq. (20) with effec-
tive “velocity” ũ in (24) and “macro-dispersion" coefficient D̃
in (23) describes the evolution of the concentration PDF
p C; x; tð Þ. These results are valid for an arbitrary degree of
correlation between macroscopic velocity v xð Þ and reaction
rate constant κ xð Þ.

If v xð Þ and κ xð Þ are mutually uncorrelated, then the
components of the covariance tensors in (23) and (24) reduce
to

〈ṽ′i x̃ð Þṽ′j ỹð Þ〉 = 〈v′i xð Þv′j yð Þ〉≡ Cvij x; yð Þ; i; j = 1;2;3; ð26aÞ

ṽ′4 x̃ð Þṽ′4 ỹð Þh i = Da2Cκ x; yð Þfα x4ð Þfα y4ð Þ; ð26bÞ

and

u = vh i; u4 ≈Dafα−Da2fα∫
t

0
∫
Ω̃

Cκ x; yð Þ dfα
dy4

G x̃; ỹ; t−τð Þdỹdτ;

ð27Þ

respectively. Here Cκ x; yð Þ is a two-point covariance of the
reaction rate constant κ xð Þ:

3.2. Auxiliary conditions for the PDF Eq. (20)

An initial condition for p x̃; tð Þ≡p C; x; tð Þ in (20),

p C; x;0ð Þ = pin C; xð Þ; ð28Þ

is determined by the degree of uncertainty in the initial
concentration C0 xð Þ in (5), i.e., by its PDF pin C;xð Þ. If the
knowledge of C0 xð Þ is perfect, i.e., if C0 xð Þ is deterministic,
then

p C; x;0ð Þ = pin C; xð Þ = δ C−C0 xð Þ½ $: ð29Þ

The boundary conditions p C;x∈∂Ω; tð Þ along the bound-
aries ∂Ω of the flow domain Ω are determined by the
probabilistic distributions of the boundary conditions for the
concentration c x; tð Þ on x∈∂Ω.

Derivation of unique boundary conditions for p C;x; tð Þ at
C=C0 and C=1 remains an open question. In Section 4, we
derive such conditions for reactive transport in heteroge-
neous porous media in which reaction rate constant κ xð Þ is
the only source of uncertainty (macroscopic flow velocity
field is certain and, hence, deterministic).
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Finally, a solution of (20) is subject to the constraint

∫
1

C0

p C; x; tð ÞdC = 1 or ∫
C0

1
p C;x; tð ÞdC = 1; ∀x; t; ð30Þ

where the order of limits of integration depends on whether
the initial concentration C0 is smaller or grater than the
equilibrium concentration Ceq, respectively.

4. Computational examples

To demonstrate the salient features of the proposed PDF
approach, we consider reactive transport in heterogeneous
porous media in which reaction rate constant κ xð Þ is the only
source of uncertainty (macroscopic flow velocity field v xð Þ is
certain and, hence, deterministic). Such a setting lends itself
to an exact semi-analytical treatment (Tartakovsky et al.,
2009; Broyda et al., 2010) and, therefore, can be used to
analyze errors introduced by the approximations leading to
the PDF Eq. (20). For v′i xð Þ≡0 (i=1,2,3), the only non-zero
component of the “macro-dispersion” tensor (23) is

D44 ≈Da2fα x4ð Þ∫
t

0
∫
Ω̃

Cκ x; yð Þfα y4ð ÞG x̃; ỹ; t−τð Þdỹdτ; ð31Þ

and the PDF Eq. (20) reduces to

∂p
∂t = −∇⋅ vpð Þ−∂u4p

∂x4
+

∂
∂x4

D44
∂p
∂x4

% &
: ð32Þ

Solution of the PDF Eq. (32) is facilitated by introducing a
new dependent variable,

F x4; x; tð Þ = ∫
x4

C0

p x′4;x; tð Þdx′4 or F x′4; x; tð Þ = ∫
x4

1
p x4; x; tð Þdx′4;

ð33Þ

for the dimensionless initial concentration C0 smaller or
larger than the dimensionless equilibrium concentration
Ceq=1, respectively. To be concrete, the subsequent exam-
ples correspond to the constant initial concentration C0=0,
so that the first definition of F will be used. Since x4≡C, the
new dependent variable F C;x; tð Þ represents a single-point
cumulative distribution function (CDF) of concentration,
which is defined as the probability that the random
concentration c at space–time point x; tð Þ does not exceed a
deterministic value C, i.e., F C;x; tð Þ≡ Pr c x; tð Þ≤C½ $.

Integrating (32) over x4 from C0=0 to x4 and using the
definition of the CDF F x4; x; tð Þ in (33), we obtain a CDF
equation

∂F
∂t = −∇⋅ vFð Þ−u4

∂F
∂x4

+ D44
∂2F
∂x24

; x; x4ð Þ∈Ω × 0;1ð Þ:

ð34Þ

An advantage of using the CDF Eq. (34) instead of the
PDF Eq. (32) is that boundary conditions for the former are

easier to define. Indeed, the definition of CDF, F x4; x; tð Þ ≡
Pr c x; tð Þ≤x4½ $, imposes boundary conditions

F x4 = 0; x; tð Þ = 0; F x4 = 1; x; tð Þ = 1; x∈Ω; t N 0:
ð35aÞ

The initial condition (29) translates into

F x4;x; t = 0ð Þ = 1; x; x4ð Þ∈Ω × 0;1ð Þ: ð35bÞ

Boundary conditions for F x4; x; tð Þ along the boundary ∂Ω
of the flow domain Ω are determined by the corresponding
boundary conditions for concentration c x; tð Þ.

By way of an example, let us consider one-dimensional
flow in the x1 direction (referred to below as x) in a semi-
infinite domainΩ=[0,∞). The non-dimensional macroscopic
flow velocity is set to v=1. The dimensionless concentration
at the flow inlet x=0 is c(x=0, t)=0, while at x→∞ (x=250
in numerical simulations) the equilibrium concentration is
maintained, c(x→∞, t)=1. The corresponding boundary
conditions for the concentration PDF p(x4 ;x, t),

p x4; 0; tð Þ = δ x4ð Þ; p x4;∞; tð Þ = δ x4−1ð Þ; x4∈ 0;1ð Þ; t N 0;
ð36Þ

give rise to the boundary conditions for the concentration
CDF,

F x4; 0; tð Þ = 1; F x4;∞; tð Þ = 0; x4∈ 0;1ð Þ; t N 0: ð37Þ

In the numerical simulations reported below, we truncate
the infinite domain 0≤xb∞ at x=250, and replace the
boundary conditions at x→∞ with boundary conditions ∂p /
∂x=0 and ∂F /∂x=0 at x=250. The rest of this section is
devoted to solving the boundary-value problem (34)–(37)
for linear (α=1) and nonlinear (α=2) heterogeneous
reactions.

4.1. Linear heterogeneous reaction, α=1

With the Green's function given by (B. 13) of Appendix B,
the “dispersion" coefficient in (31) and the effective “velocity"
in (27) become (Appendix C)

D44 = Da2 x4−1ð Þ2
∫
t

0
Cκ x; x−Tð Þe2DaTdT if t≤t%

∫
t%

0
Cκ x; x−Tð Þe2DaTdT if t N t%

8
>>>>><

>>>>>:

ð38Þ

and

u4 = Da 1−x4ð Þ−Da2 x4−1ð Þ

∫
t

0

Cκ x; x−Tð ÞeDaTdT if t≤t%

∫
t%

0
Cκ x; x−Tð ÞeDaTdT if t N t%;

8
>>>>><

>>>>>:

ð39Þ
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where

t% =
1
Da

ln
1

1−x4

# $
: ð40Þ

We are now in a position to explore how the coefficients D44

and u4 and, hence, the evolution of predictive uncertainty (the
concentration CDFF) are affected by Cκ, the spatial correlation
of reaction rate constant κ(x).

4.1.1. White-noise correlation function
We start by considering random reaction rate constants

κ(x) that lack spatial correlations,

Cκ x; yð Þ = σ2
κ δ x−yð Þ: ð41Þ

This correlation model was used by Tartakovsky et al., (2009)
as a large-time approximation of a correlated κ(x). Substitut-
ing (41) into (38) and (39) yields

D44 =
Da2σ2

κ
2

1−x4ð Þ2; u4 = Da 1 +
Daσ2

κ
2

 !
1−x4ð Þ; ð42Þ

The CDF Eq. (34) with the coefficients (42), subject to the
initial and boundary conditions (35) and (37) was solved
with a finite-difference discretization. The concentration PDF
p(C ;x, t) was then computed via numerical differentiation of
the computed CDFF(C ;x, t) (recall that x4≡C). An outcome of
these calculations is presented in Fig. 1 in the form of
temporal snapshots of the concentration PDF.

Fig. 2 explores the dependence of the concentration PDF
on the Damköhler number Da. The smaller the value of Da, the
stronger the dominance of the dissolution reaction over
advection. For Da=10−3, the dimensionless concentration c
(x=50, t=25) is close to its deterministic initial value C0=0,
which corresponds to a sharply peaked PDF. For Da=0.1, the
dimensionless concentration c(x=50, t=25) approaches its
deterministic equilibrium state Ceq=0, but the predictive
uncertainty persists, manifesting itself in the long tail of a
highly skewed PDF. For intermediate Da, the dimensionless
concentration c(x=50, t=25) is far from its deterministic
bounds, giving rise to higher predictive uncertainty. While
the concentration PDF for Da=0.01 is almost Gaussian, its
counterpart for Da=0.05 is highly skewed. This suggests that
the reliance on assumed concentration PDFs is problematic.

4.1.2. Exponential correlation function
Next, we consider an exponential covariance function for

kinetic rate constant k(x),

Cκ x; yð Þ = σ2
κexp − jx−y j

λκ

# $
; ð43Þ

where λκ is the dimensionless correlation length of κ, set to
λκ=1 in the subsequent numerical simulations. (One can
think of the dimensional correlation length as a characteristic
length of an infinite flow domain.) Substituting (43) into (38)
and (39) yields

D44 =
Da2σ2

κ x4−1ð Þ2

2Da−1
e 2Da−1ð Þt−1
e 2Da−1ð Þt%−1

if t≤ t%
if t N t%

'
ð44Þ

and

u4 = Da 1−x4ð Þ−Da2σ2
κ x4−1ð Þ

Da−1
e Da−1ð Þt−1
e Da−1ð Þt%−1

if t≤ t%
if t N t%

;

'
ð45Þ

respectively.
The concentration PDF computed with numerical differ-

entiation of the concentration CDF calculated as a finite-
difference solution of (34) with the coefficients (44) and
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Fig. 1. Temporal evolution of the concentration PDF for the linear reaction law
(α=1), spatiallyuncorrelated reaction rate constant κ(x) and the following choice
of parameters: Da=0.05 and σκ

2=1. Snapshots are calculated at point x=50.
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Fig. 2. The concentration PDF for the linear reaction law (α=1) with
spatially uncorrelated reaction rate constant κ(x) of variance σκ

2=1,
computed at x=50 and t=25 for several values of Da.
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2=1, and λppa=1. Snapshots
are calculated at point x=50.
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(45) is shown in Fig. 3. At early times, the PDF is close the
delta function δ(0), reflecting the assumed certainty about
the initial concentration C0=0. At intermediate times, the
concentration PDF is highly non-Gaussian, exhibiting non-
symmetrical shapes and long tails. For large times, the PDF
tends to the delta function δ(C−1) as the solute concen-
tration reaches its deterministic equilibrium value. Com-
parison of Figs. 1 and 3 reveals that spatial correlations of
the reaction rate constant κ(x) reduce predictive uncertain-
ty (result in more peaked concentration PDFs). This is to be
expected, since the presence of correlations in input para-
meters provides additional information about their spatial
variability.

4.2. Nonlinear reactions, α=2

With the Green's function given by (B.16) of Appendix B,
the “dispersion" coefficient in (31) and the effective “veloc-
ity" in (27) become (Appendix C)

D44 = 64Da2
∫
t

0

Cκ x; x−Tð Þ g2dT
g−1ð Þ4

if t ≤ t%

∫
t%

0
Cκ x; x−Tð Þ g2dT

g−1ð Þ4
if t N t%

8
>>>>><

>>>>>:

ð46Þ

and

u4 = −2Da x24−1
( )

−32Da2
∫
t

0
Cκ x; x−Tð Þ g g + 1ð Þ

g−1ð Þ3
dT if t ≤ t%

∫
t%

0
Cκ x; x−Tð Þ g g + 1ð Þ

g−1ð Þ3
dT if t N t%

;

8
>>>>><

>>>>>:

ð47Þ

where

t% =
1

4Da
ln

1 + x4
1−x4

# $
; g x4; Tð Þ = x4 + 1

x4−1
e−4DaT

: ð48Þ

4.2.1. White-noise correlation function
For spatially uncorrelated random field κ, substituting

(41) into (46) and (47) gives

D44 = 2Da2σ2
κ ðx

2
4−1Þ2; u4 = 2Dað1−x24Þð1+2Daσ2

κx4Þ: ð49Þ

The finite-difference solution of the resulting CDF equa-
tion and its subsequent numerical differentiation leads to the
concentration PDFs shown in Fig. 4. Comparison of this figure
with Fig. 1 shows that the effect of nonlinearity of the
dissolution reaction is to speed up the transition to
equilibrium, which decreases the time interval over which
predictive uncertainty is significant. This is manifested in the
sharp (nearly δ-like) PDF profile at t=100.

4.2.2. Exponential correlation function
For the covariance function (43), the quadratures in the

expressions for the “macro-dispersion" coefficient (46) and the
effective “velocity" (47) were computed numerically. The
resulting PDF profiles are shown in Fig. 5. Comparison of Figs. 4

and 5 confirms our earlier finding that the absence of spatial
correlations of the reaction rate constant κ(x) enhances the
predictive uncertainty for solute concentration. Comparison of
Figs. 3 and 5 demonstrates that the nonlinearity decreases the
time interval over which predictive uncertainty is significant.

4.3. Comparison with exact PDF equations

Concentration PDFs for reactive transport with constant
flow velocity v and uncorrelated reaction rate constant κ xð Þ
satisfy exactly the Fokker–Planck equation (Tartakovsky et al.,
2009, Eq. 26).

Dp
Dt

= −∂uexp

∂x4
+

∂
∂x4

Dex
∂p
∂x4

# $
; ð50Þ

where D =Dt = ∂= ∂t + v⋅∇ denotes the material derivative,
and

uex = Da 1−σ2
kDa
2

dfα
dx4

# $
fα ; Dex = σ2

kDa
2f 2α

2
: ð51Þ

Next, we note that both the effective “velocities” u4 and
“macro-dispersion” coefficients D44 in (42) and (49) can be
written in the form that coincides with (51). Hence the PDF
equation based on the LED approximation is exact for reaction
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Fig. 4. Temporal evolution of the concentration PDF for the nonlinear
reaction law with α=2, spatially uncorrelated reaction rate constant κ(x)
and the following choice of parameters: Da=0.05 and σκ

2=1. Snapshots are
calculated at point x=50.
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Fig. 5. Temporal evolution of the concentration PDF for the nonlinear
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and the following choice of parameters: Da=0.05, σκ
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Snapshots are calculated at point x=50.
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rate constants that can be treated as white noise (an
uncorrelated random field).

5. Summary and conclusions

We considered advective transport of a reactive solute in
heterogeneous porous media. Uncertainty in hydraulic and
transport properties of porous media was quantified by
treating the relevant parameters as random fields. Under
these conditions, reactive transport is described by a
stochastic partial differential equation (SPDE) for concentra-
tion where the randomness is multiplicative and quenched.
We derived an equation for the probability density function
(PDF) of concentration by employing a closure based on the
Large-Eddy-Diffusivity (LED) approximation. We used the
proposed approach to compute the concentration PDFs for
one-dimensional advective–reactive transport in a porous
medium with uncertain reaction rate constants. Both linear
and nonlinear heterogeneous reactions were considered.

Our analysis leads to the following major conclusions.

(1) The PDF equations derived in this study are capable of
handling uncertainty (randomness) in both macroscopic
(Darcian) velocities and reaction rate constants, andallow
for an arbitrary degree of correlation between the two.

(2) By virtue of relying on the LED closure, these PDF
equations are approximate. For transport with deter-
ministic (certain) velocity and uncorrelated reaction
rate constants, our PDF equations are exact for both
linear and nonlinear reaction laws.

(3) The lack of spatial correlations of reaction rate
constants enhances uncertainty in predictions of
solute concentration.

(4) The shape of concentration PDFs is strongly influenced
by the Damköhler number, which quantifies the relative
importance of advection and reactions. This indicates
that a functional form of concentration PDFs depends on
a flow regime, boundary and initial conditions, etc.,
whichmakes the reliance on assumed PDFs problematic.

(5) The effect of nonlinearity of the dissolution reaction is
to speed up the transition to equilibrium, which
decreases the time interval over which predictive
uncertainty is significant.

Appendix A. LED closure

Subtracting (18) from (17) yields an equation for random
fluctuations Π′,

∂Π′

∂t = −∇x̃⋅ ṽΠ′ + ṽ′p− ṽΠ′h ið Þ: ðA:1Þ

Rewriting (A.1) in terms of τ and ỹ, multiplying the result
with a (random) test function G x̃; ỹ; t−τð Þ and integrating in
space and time yield

∫
t

0

∫
Ω̃

∂Π′

∂τ Gdỹdτ + ∫
t

0

∫
Ω̃

∇ỹ⋅ ṽΠ′ð ÞGdỹdτ

= −∫
t

0

∫
Ω̃

∇ỹ⋅ ṽ′p− ṽΠ′h ið ÞGdỹdτ:

ðA:2Þ

Integrating by parts and applying the Green's identity to
the left-hand-side of (A.2) yield

∫
Ω̃

Π′G½ $tτ=0dỹ−∫
t

0
∫
Ω̃

Π′
∂G
∂τ dỹdτ + ∫

t

0
∫
Γ̃

ñ⋅ṽΠ′Gds̃dτ

−∫
t

0

∫
Ω̃

Π′ṽ⋅∇ỹGdỹdτ = −∫
t

0

∫
Ω̃

∇ỹ⋅ ṽ′p− ṽΠ′h ið ÞGdỹdτ;

ðA:3Þ

where n denotes the outward normal vector to the boundary
Γ̃ ≡ ∂Ω̃ of the hyper-domain Ω̃≡Ω × C0;1ð Þ or Ω̃≡Ω × 1;C0ð Þ,
depending on the initial concentration value. Let G x̃; ỹ; t−τð Þ
be the Green's function defined as a solution of (19) subject to
the initial condition G x̃; ỹ; t = τð Þ = 0. Then denoting
Π′0 ỹð Þ = Π′ ỹ; τ = 0ð Þ, ṽn = n⋅ṽ and Q = ṽΠ′h i yields an
integral equation for fluctuations Π′ x̃; tð Þ,

Π′ = −∫
t

0

∫
Ω̃

∇ỹ⋅ ṽ′p−Qð ÞGdỹdτ + ∫
Ω̃

Π′0G x̃; ỹ; tð Þdỹ

−∫
t

0
∫
Γ̃

ṽnΠ′Gds̃dτ:

ðA:4Þ

Recalling that ∇̃⋅ṽ = Dadfκ = dx4, this gives

Π′ x̃; tð Þ = −∫
t

0

∫
Ω̃

Gṽ′⋅∇ỹp + Dadf
′
κ

dy4
pG−G∇ỹ⋅Q

# $
dỹdτ

+ ∫
Ω̃

Π′0G x̃; ỹ; tð Þdỹ−∫
t

0

∫
Γ̃

ṽnΠ′Gds̃dτ:

ðA:5Þ

Multiplying (A.5) with ṽ′ xð Þ and taking the ensemble
mean, while accounting for the statistical independence of
the driving forces, give an integral equation for the compo-
nents of the vector Q x̃; tð Þ,

Qi = −∫
t

0
∫
Ω̃

〈Gṽ′i x̃ð Þṽ′j ỹð Þ〉
∂p
∂ỹj

+ Da〈Gṽ′i x̃ð Þ
df ′κ
dy4

〉p− Gṽ′i x̃ð Þh i
∂Qj

∂ỹj

 !

dỹdτ;

ðA:6Þ

where the Einstein notation is used to indicate the summa-
tion over the repeated index j. This expression for the mixed
ensemble moment Q is exact, but requires some approxima-
tions to be workable. First, we note that the last term in (A.6)
is of the lower order than the other three terms and, hence,
can be dropped, i.e.,

Qi x̃; tð Þ≈−∫
t

0
∫
Ω̃

〈Gṽ′i x̃ð Þṽ′j ỹð Þ〉
∂p
∂ỹj

+ Da〈Gṽ′i x̃ð Þ df ′κ
dy4

〉p
 !

dỹdτ:

ðA:7Þ
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To arrive at the LED approximation, we further assume
that both ∇p and p vary slowly in space, so that

Qi x̃; tð Þ≈−∂p x̃; tð Þ
∂x̃j

∫
t

0

∫
Ω̃
〈Gṽ ′i x̃ð Þṽ′j ỹð Þ〉dỹdτ

−p x̃; tð ÞDa∫
t

0
∫
Ω̃
〈Gṽ′i x̃ð Þ df ′κ

dy4
〉dỹdτ:

ðA:8Þ

Substituting (A.8) into (18) leads to (20).

Appendix B. Green's functions

For deterministic flow velocity, v′i xð Þ≡0 (i=1,2,3), so that
the general Green's function Eq. (25) simplifies to

∂G
∂τ + v⋅∇yG + Dafα y4ð Þ ∂G∂y4

= −δ x−yð Þδ x4−y4ð Þδ t−τð Þ:

ðB:1Þ

This equation is defined for τb t, and is subject to the initial
condition G x̃; ỹ; τ = tð Þ = 0 and the causality principle
G x̃; ỹ; τ N tð Þ = 0. Setting T≡ t−τ and recalling that fα(y4)≡
−α(y4α−1), we obtain

∂G
∂T −v⋅∇yG + αDa yα4−1

! " ∂G
∂y4

= δ x−yð Þδ x4−y4ð Þδ Tð Þ; T N 0

ðB:2Þ

subject to G x̃; ỹ;0ð Þ = 0 and G x̃; ỹ; Tb0ð Þ = 0. Since the
Green's function G in (B.2) can be found as the product of
one-dimensional Green's functions, e.g., G x̃; ỹ; Tð Þ =
G3d x; y; Tð ÞG4 x4; y4; Tð Þ, we start by solving

∂G4

∂T + αDa yα4−1
! " ∂G4

∂y4
= δ x4−y4ð Þδ Tð Þ; T N 0: ðB:3Þ

The equation for characteristics in (B.3) is

dy4
dT

= αDa yα4−1
! "

; y4 0ð Þ = ξ: ðB:4Þ

Along these characteristics,

dG4
dT

= δ x4−y4 ξ; Tð Þ½ $δ Tð Þ; G4 x4; ξ;0ð Þ = 0: ðB:5Þ

For an arbitrary α, the solution of (B.4) is given by

2F1
1
α
;1; 1 +

1
α
; yα4

% &
y4−2F1

1
α
;1; 1 +

1
α
; ξα

% &
ξ = αDaT;

ðB:6Þ

where 2F1 is a hypergeometric function. The solution of (B.5)
is

G4 x4; ξ; Tð Þ = ∫
T

0
δ x4−y4 ξ; T′ð Þ½ $δ T′ð ÞdT′ = δ x4−y4 ξ;0ð Þ½ $

= δ x4−ξð Þ:
ðB:7Þ

The Green's function G3d x; y; Tð Þ is a solution of

∂G3d

∂T −v⋅∇yG3d = δ x−yð Þδ Tð Þ; T N 0: ðB:8Þ

Using the method of characteristics to solve (B.8) for constant
v leads to

G3d x; y; Tð Þ = δ x−y−vTð Þ; T N 0: ðB:9Þ

The complete Green's function is given by the product of
(B.9) and (B.7),

G = 1−H τ−tð Þ½ $δ x−y− t−τð Þð Þδ x4 τð Þ−ξð Þ; ðB:10Þ

where the constant velocity v is alignedwith the x1 coordinate
(denoted forthwith by x) and set to v=1,H(⋅) is theHeaviside
function and ξ is a solution of (B.6) with T ≡ t−τ.

Appendix B.1. Linear reaction, α=1

For α=1, (B.6) simplifies to

y4 ξ; Tð Þ = 1 + ξ−1ð ÞeDaT : ðB:11Þ

Using (B.11) to eliminate ξ in favor of y4 and T, and
substituting the result into (B.7), we obtain

G4 x4; y4; Tð Þ = δ x4− y4−1ð Þe−DaT−1
h i

; T N 0: ðB:12Þ

Substituting (B.12) into (B.10) gives an expression for the
Green's function,

G = 1−H τ−tð Þ½ $δ x−y− t−τð Þ½ $δ x4− y4−1ð Þ−Da t−τð Þ−1
h i

:

ðB:13Þ

Appendix B.2. Nonlinear reaction, α=2

For α=2, (B.6) reduces to

y4 ξ; Tð Þ = 2 1− ξ−1
ξ + 1

e4DaT
# $−1

−1: ðB:14Þ

Using (B.14) to eliminate ξ in favor of y4 and T, and
substituting the result into (B.7), we arrive at

G4 x4; y4; Tð Þ = δ x4−2
y4 + 1
y4−1

e4DaT−1
# $−1

−1
% &

; T N 0:

ðB:15Þ

Substituting (B.15) into (B.10) gives an expression for the
Green's function,

G = H Tð Þδ x−y−T½ $δ x4−2
y4 + 1
y4−1

e4DaT−1
# $−1

−1
% &

; ðB:16Þ

where T= t−τ.
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Appendix C. Dispersion coefficient and effective velocity

Appendix C.1. Linear reaction

Substituting (B.13) into (31) gives

D44 = Da2 x4−1ð Þ∫
t

0
∫
Ω̃

Cκ x; yð Þ y4−1ð Þ

&δ x−y− t−τð Þ½ $δ x4− y4−1ð Þ−Da t−τð Þ−1
h i

dỹdτ:

ðC:1Þ

Denoting T= t−τ, recalling that Ω4≡ [0,1], and integrating
over y yield

D44 = Da2 x4−1ð Þ∫
t

0
Cκ x; x−Tð Þ∫

1

0
y4−1ð Þ

&δ x4− y4−1ð Þe−DaT−1
h i

dy4dT:

ðC:2Þ

To evaluate the integral over y4, we note that for any
function g(z),

δ g zð Þ½ $ = ∑
i

δ z−zið Þ
jg′ zið Þ j

; ðC:3Þ

where zi are roots of the equation g(z)=0. This leads to

D44 = Da2 x4−1ð Þ∫
t

0

Cκ x; x−Tð ÞeDaT∫
1

0

y4−1ð Þ

&δ y4−1− x4−1ð ÞeDaT
h i

dy4dT :

ðC:4Þ

This integral is not zero as long as 1+(x4−1)eDaT∈ [0,1].
Since x4∈ [0,1] and y(T)=1+(x4−1)eDaT is a decreasing
function, we have to consider two cases.

Case 1. y4(T= t)=1+(x4−1)eDat≥0. Then

D44 = Da2 x4−1ð Þ∫
t

0
Cκ x; x−Tð ÞeDaT∫

x4

0
y4−1ð Þ

&δ y4−1− x4−1ð ÞeDaT
h i

dy4dT

= Da2 x4−1ð Þ2∫
t

0

Cκ x; x−Tð Þe2DaTdT:

ðC:5Þ

Case 2. y4(T= t)=1+(x4−1)eDatb0. Then

D44 = Da2 x4−1ð Þ∫
t%

0
Cκ x; x−Tð ÞeDaT∫

x4

0
y4−1ð Þ

&δ y4−1− x4−1ð ÞeDaT
h i

dy4dT

= Da2 x4−1ð Þ2∫
t%

0
Cκ x; x−Tð Þe2DaTdT;

ðC:6Þ

where

y4 T = t%ð Þ = 0 ⇒ t% =
1
Da

ln
1

1−x4
: ðC:7Þ

This gives (38).

Substituting (B.13) into the second equation in (27) gives

u4 = Da 1−x4ð Þ−Da2 x4−1ð Þ∫
1

0
Cκ x; x−Tð Þ

&∫
1

0
δ x4− y4−1ð Þe−DaT−1
h i

dy4dT :

ðC:8Þ

Following the reasoning used to compute the dispersion
coefficient D44, we have to consider two cases while
computing this integral.

Case 1. y4(T= t)=1+(x4−1)eDat≥0. Then

u4 = Da 1−x4ð Þ−Da2 x4−1ð Þ∫
t

0
Cκ x; x−Tð ÞeDaT∫

x4

0

&δ y4−1− x4−1ð ÞeDaT
h i

dy4dT

= Da 1−x4ð Þ−Da2 x4−1ð Þ∫
t

0

Cκ x; x−Tð ÞeDaTdT:

ðC:9Þ

Case 2. y4(T= t)=1+(x4−1)eDatb0. Then

u4 = Da 1−x4ð Þ−Da2 x4−1ð Þ∫
t%

0
Cκ x; x−Tð ÞeDaT

&∫
x4

0
δ y4−1− x4−1ð ÞeDaT
h i

dy4dT

= Da 1−x4ð Þ−Da2 x4−1ð Þ∫
t%

0
Cκ x; x−Tð ÞeDaTdT:

ðC:10Þ

This gives (44).

Appendix C.2. Nonlinear reaction, α=2

Substituting (B. 16) into (31) gives

D44 = 4Da2 x24−1
( )

∫
t

0
Cκ x; x−Tð Þ∫

1

0
y24−1

( )
δ g y4; Tð Þ½ $dy4dT ;

ðC:11Þ
where

g y4; Tð Þ = x4−2
y4 + 1
y4−1

e4DaT−1
# $−1

−1: ðC:12Þ

To evaluate the integral over y4, we observe that a root y* of
the equation g(y4,T)=0 is

y% = 1 + 2
x4 + 1
x4−1

e−4DaT−1
# $−1

: ðC:13Þ

Then, according to (C.3),

δ g y4; Tð Þ½ $ = 4
x4−1ð Þ2

e−4DaT x4 + 1
x4−1

e−4DaT−1
# $−2

δ y4−y%ð Þ

ðC:14Þ
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and (C.11) becomes

D44 = 16Da2
x4 + 1
x4−1

∫
t

0
Cκ x; x−Tð Þe−4DaT x4 + 1

x4−1
e−4DaT−1

# $−2

&∫
1

0
y24−1

( )
δ y4−y%ð Þdy4dT:

ðC:15Þ

This integral is not zero as long as yi∈ [0,1]. Again, two
cases are possible, depending on the sign of y

*
(T= t). In other

words, we have to consider two cases, t≤ t
*
or tN t

*
, where

t% =
1

4Da
ln

1 + x4
1−x4

: ðC:16Þ

Case 1. t≤ t
*
. It follows from (C.15) that

D44 = 16Da2
x4 + 1
x4−1

∫
t

0
Cκ x; x−Tð Þe−4DaT x4 + 1

x4−1
e−4DaT−1

# $−2

&∫
1

0
y24−1

( )
δ y4−y%ð Þdy4dT

= 16Da2
x4 + 1
x4−1

∫
t

0
Cκ x; x−Tð Þe−4DaT x4 + 1

x4−1
e−4DaT−1

# $−2
y2%−1

( )
dT :

ðC:17Þ

Case 2. t N t
*
. Then

D44 = 16Da2
x4 + 1
x4−1

∫t%
0
Cκ x; x−Tð Þe−4DaT x4 + 1

x4−1
e−4DaT−1

# $−2

&∫
1

0

y24−1
( )

δ y4−y%ð Þdy4dT

= 16Da2
x4 + 1
x4−1

∫
t%

0
Cκ x; x−Tð Þe−4DaT x4 + 1

x4−1
e−4DaT−1

# $−2
y2%−1

( )
dT:

ðC:18Þ

Substitution of (C. 13) into (C.17) and (C.18) leads to (46).
The effective velocity u4 is computed by substituting (B. 16)

into (27),

u4 = Daf2 + 4Da2f2∫
t

0
Cκ x; x−Tð Þ∫

1

0
y4

&δ x4−2
y4 + 1
y4−1

e4DaT−1
# $−1

−1
% &

dy4dT :

ðC:19Þ

Replacing the delta function in (C.19) with (C.14) leads to

u4 = Daf2 + 16Da2
f2

x4−1ð Þ2
∫
t

0

Cκ x; x−Tð Þe−4DaT x4 + 1
x4−1

e−4DaT−1
# $−2

&∫
1

0
y4δ y4−y%ð Þdy4dT :

ðC:20Þ

Computing the integral over y4, while accounting for the
requirement that y ∈[0,1], we obtain

u4 = Daf2 +
16Da2f2
x4−1ð Þ2

∫
t

0

Cκ x; x−Tð Þe−4DaT x4 + 1
x4−1

e−4DaT−1
# $−2

y%dT t ≤ t%

∫
t%

0
Cκ x; x−Tð Þe−4DaT x4 + 1

x4−1
e−4DaT−1

# $−2
y%dT t N t%

:

8
>>>>>><

>>>>>>:

ðC:21Þ

Recalling the definitions of y and f2, we obtain (47).
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