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[1] We derive probability density functions for advective transport of a solute that
undergoes a heterogeneous chemical reaction involving an aqueous solution reacting with
a solid phase. This enables us to quantify uncertainty associated with spatially varying
reaction rate constants for both linear and nonlinear kinetic rate laws. While many
standard techniques for uncertainty quantification in groundwater hydrology yield only
concentration’s mean and variance, the proposed approach leads to its full probabilistic
description. This allows one to compute so-called rare events (distribution tails), which are
required in modern probabilistic risk analyses. We also compute an effective (apparent
and upscaled) kinetic rate constant, a parameter that enters transport equations governing
the spatiotemporal evolution of mean concentration. We demonstrate that the effective
kinetic rate of nonlinear reactions is time-dependent. This behavior provides a possible
explanation for the observed discrepancy between laboratory-measured rate constants
on uniform grain sizes and measurements in natural systems where the grain size
distributions are heterogeneous.
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1. Introduction

[2] Quantitative analyses of reactive transport in porous
media are notoriously unreliable because of the ubiquitous
uncertainty associated with both identification of a proper
mathematical model and its reliable parameterization
[Srinivasan et al., 2007]. Among the sources of predictive
uncertainty in geochemical modeling are the vast dichotomy
between the scales on which geochemical parameters are
measured (the laboratory scale) and used in numerical
simulations (the field scale) [Lichtner and Tartakovsky,
2003, and references therein], the sparsity of data and pore
structure heterogeneity of porous media. The latter is impor-
tant even for macroscopically homogeneous formations,
since many geochemical reactions are surface-controlled
processes that are highly affected by pore geometry, i.e.,
by heterogeneous distributions of mineral grain sizes. The
practical impossibility of identifying pore structures of large
volumes of porous media has led to statistical (probabilistic)
descriptions of its geometric characteristics, including grain
sizes [Clausnitzer and Hopmans, 1999; Tuli et al., 2001]
and pore sizes [Lastoskie et al., 1993]. This renders trans-
port coefficients (e.g., retardation coefficients and effective
kinetic rate constants), which depend on these characteristics,
random and the corresponding transport equations stochastic.

Solving such equations is equivalent to propagating the
parametric uncertainty (which is expressed in terms of
probability density functions for the transport coefficients)
through a modeling process, thus quantifying the predictive
uncertainty in terms of probability density functions for state
variables (e.g., concentration and first arrival time).
[3] Much of research in stochastic hydrogeology [e.g.,

Rubin, 2003, and references therein] focused on the first two
statistical moments of state variables. The first moment
(ensemble mean) is used as an unbiased estimate of a
system state, and the second moment (ensemble variance)
is used as a measure of uncertainty. These statistical
moments can be obtained either indirectly by solving
stochastic reactive transport equations with Monte Carlo
simulations and other numerical techniques or directly by
deriving deterministic equations for each statistical moment
[e.g., Bellin et al., 1993]. While providing a measure of
predictive uncertainty, such approaches are insufficient for
probabilistic risk analyses [e.g., Tartakovsky, 2007; Winter
and Tartakovsky, 2008] that require the knowledge of a state
variable’s probability density function (pdf).
[4] Monte Carlo simulations and other numerical

approaches for solving stochastic reactive transport equa-
tions can be used in principle to compute pdf’s of system
variables. However, three-dimensional transient problems
render these approaches computationally prohibitive.
Another possibility is to assume that the pdf of a system
state is either Gaussian or a given transform thereof, i.e.,
that it is fully described by its mean and variance [Amir and
Neuman, 2001, 2004]. Even for relatively simple nonlinear
problems (unsaturated flow described by Richards’ equa-
tion), such Gaussian closure approaches proved to be
limited to mildly heterogeneous formations [Tartakovsky and
Guadagnini, 2001; Tartakovsky et al., 2003]. Applications of
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the assumed pdf method [Girimaji, 1991] to solute transport in
heterogeneous subsurface environments can be found in the
work by, e.g., Caroni and Fiorotto [2005] and Bellin and
Tonina [2007]. Assessment of the accuracy and robustness of
such methods requires one to solve stochastic transport
equations by Monte Carlo simulations or other means.
[5] The pdf methods provide an attractive alternative to

these approaches by deriving a deterministic equation for
the pdf of a system variable. In subsurface hydrology,
equations for the pdf of the concentration of a conservative
solute advected by a random velocity field were derived by
Indelman and Shvidler [1985] and Shvidler and Karasaki
[2003]. Lichtner and Tartakovsky [2003] obtained a pdf
equation for a batch system undergoing kinetic reactions.
An additional benefit of pdf methods is that they enable one
to avoid a linearization of reactive transport equations. This
nonlinearity arises through, for example, kinetic rate laws
describing precipitation/dissolution of solids and kinetic
sorption/desorption rates, as well as through incorporation
of local equilibrium relations derived from the law of mass
action for homogeneous and heterogeneous reactions. Mo-
ment equation approaches [e.g., Espinoza and Valocchi,
1997; Reichle et al., 1998; Dagan and Indelman, 1999;
Miralles-Wilhelm and Gelhar, 2000] generally require
expanding the nonlinear terms about the local mean con-
centration of the system and retaining only linear terms. As
a consequence, such approaches apply at best to small
deviations from the mean, an approach that is inadequate
for most natural geochemical systems [Cirpka et al., 2008].
[6] A major goal of this study is to present a pdf

formulation applied to advective transport of a contaminant
that undergoes a heterogeneous chemical reaction involving
an aqueous solution reacting with a solid phase. Section 2
contains a mathematical formulation of the problem. In
section 3, we present closed form analytical solutions for
the pdf of concentration for several statistical models of the
kinetic rate constant. These are used to derive an effective
transport equation and an effective kinetic rate constant in
section 4.

2. Problem Formulation

[7] Consider a heterogeneous chemical reaction taking
place in a porous medium between a dissolved species C
and a solid C(s),

aC Ð C sð Þ; ð1Þ

where a is the stoichiometric coefficient. The speed with
which c, the concentration of C, reaches its equilibrium level
ceq is determined from the product of the laboratory
measured kinetic rate constant k0 [mol L�2 T�1] for
reaction (1) and specific surface area A [L�1] of a porous
matrix, designated as k and referred to as the kinetic rate
constant in what follows:

k ¼ k0Ac
�a
eq : ð2Þ

In this definition, the kinetic rate constant k [(mol L�3)1�a T�1]
includes the contribution from the specific surface area A,
assumed to be constant in time in the following. On the
local scale w, the evolution of the solute concentration c(x, t)
in steady macroscopic velocity field v(x) = q(x)/f, where

q(x) denotes Darcy’s flux and f is porosity, can be described
by an advection-reaction equation (ARE)

@c

@t
þr 	 vcð Þ ¼ � k

f
fa cð Þ; fa cð Þ 
 a ca � caeq

� �
; ð3Þ

where fa(c) represents the product of the stoichiometric
coefficient and the affinity factor giving the degree of
disequilibrium. The transport equation is subject to the initial
condition

c x; t ¼ 0ð Þ ¼ cin xð Þ ð4Þ

and appropriate boundary conditions. The initial concentra-
tion cin may be larger or smaller than the equilibrium
concentration ceq resulting in precipitation of the reacting
species or dissolution of the solid matrix, respectively. It is
worthwhile emphasizing that the methodology developed
below is equally applicable to other types of chemical
reactions and other functional forms of fa(c).
[8] The transport model, (3) and (4) contains a number of

implicit assumptions. First, following Neuman [1993],
Shvidler and Karasaki [2003] and many others, we neglect
dispersion on the local scale w. In this view, dispersion is an
emerging transport phenomenon that arises from velocity
fluctuations and manifests itself on scales larger than w.
This is a reasonable assumption for transport phenomena in
which mixing in the aqueous phase does not control
reactions. Second, (3) breaks down when the reaction rate
becomes large enough to produce gradients on the scale of
the separation between solid grains. In such cases it is
necessary to explicitly account for diffusion-controlled
reaction at the surface of solid grains [e.g., Tartakovsky et
al., 2008]. Third, k(x) is assumed to be independent of time.
For the case of dissolution, as reaction proceeds the surface
may in fact increase with time because of the formation of
etch pits on the mineral surface. As individual grains
completely dissolve the associated surface area would tend
to zero. For the system considered here, it is assumed that
equilibrium is reached before appreciable changes in grain
surface can occur. For the case of precipitation it is assumed
that the precipitating solid nucleates on the existing mineral
surface although this need not necessarily be the case in
general. Surface armoring effects, not considered here,
could also result in a time-dependent surface area.
[9] A typical porous matrix exhibits highly nonuniform

geometry, even if it is macroscopically homogeneous, i.e.,
even if its macroscopic hydraulic properties are constant.
This is because natural porous media composed of an
aggregate of mineral grains involve a distribution of grain
sizes, typically over a wide range of values [Clausnitzer and
Hopmans, 1999; Tuli et al., 2001]. Since the kinetic rate
constant k(x) is determined by the reacting surface area (see
its definition above), it cannot be determined with certainty
on a typical local scale w, let alone large scales used in
predictive models of reactive transport. This lack of cer-
tainty can be quantified by treating k(x) as a random field
with the multivariate probability density function P[k(x)],
from which one can compute its ensemble mean k, variance
sk
2, and two-point correlation function rk(x, x

0) with corre-
lation length l.
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[10] It is important to recognize that randomness in
hydrogeology is a mathematical representation of uncertainty
about our knowledge of the hydraulic and transport prop-
erties of the subsurface. In this study, we treat the kinetic
reaction rate constant k(x) as the sole source of uncertainty
by regarding the remaining parameters in the reactive
transport equation (3), e.g., the macroscopic flow velocity
v(x), as deterministic. (The deterministic treatment of
velocity v(x) implies that correlation length lk of the random
field k(x) is larger than the characteristic length of the
support volume w, but much smaller than the variation
scale of v.) Likewise, the equilibrium concentration ceq is
assumed to be deterministic, as inferred from thermody-
namic considerations. As discussed below, uncertainty in
the initial concentration can be easily accounted for, even
though we take cin to be deterministic in order to simplify
the presentation. Uncertainty (randomness) in flow velocity
v(x) will be tackled in a follow up study.
[11] To be specific, we assume that the kinetic reaction

rate constant k(x) is a statistically homogeneous (station-
ary) random field, so that both k and sk

2 are constant and
rk(x, x

0) 
 rk(jx � x0j). We use the Reynolds decompo-
sition to represent the random field k(x) as the sum of its
ensemble mean k and zero-mean normalized fluctuations
k0(x),

k xð Þ ¼ k 1þ k 0 xð Þ½ �; k 0 xð Þ ¼ 0: ð5Þ

The two-point covariance function of the normalized
fluctuations k0(x) is given by

k 0 xð Þk 0 x0ð Þ ¼ ŝ2
krk x� x0ð Þ; sk ¼ kŝk : ð6Þ

[12] Let us introduce dimensionless parameters and
variables

x̂ 
 x

l
; t̂ 
 t

tq
; k̂ 
 k

k
; v̂ 
 v

U
; ĉ 
 c

ceq
; ð7Þ

where tq = l/U is the advection time scale that defines
the time it takes solute transported by advection with
characteristic (e.g., average) velocity U to travel one
correlation length l. It follows from (7) that the dimension-
less correlation scale is l̂ = 1. The dimensionless form of
ARE (3) is given by

@ĉ

@ t̂
þr̂ 	 v̂ĉð Þ ¼ �Da k̂ f̂a ĉð Þ; f̂a ĉð Þ ¼ a ĉa � 1ð Þ: ð8Þ

The Damköhler number Da 
 tq k ceq
a�1/f compares the

advection time scale tq with the reaction time scale 1/k. The
dimensionless reaction time scale equals Da�1. Equation (8)
is subject to the initial condition ĉ(x̂, 0) = ĉin(x̂), where
ĉin 
cin/ceq. In the following we drop the hats^ to simplify
the notation.

3. The pdf Solutions

[13] Since the kinetic rate constant k(x) is modeled as a
random space function, the concentration distribution c(x, t)
is a random function as well. Our goal is to determine the
single-point distribution density of c(x, t), i.e., the distribu-

tion of concentration values at a point (x, t), which is

defined by p(c; x, t) = d c� cðx; tÞ½ �. In the following, we
derive an exact map between the pdf of the kinetic rate
constant k(x) and the concentration pdf p(c; x, t).
[14] Since r 	 v = 0, a family of characteristics for (8) is

given by

dxi

dt
¼ vi xð Þ; xi 0ð Þ ¼ xi; i ¼ 1; 2; 3; ð9Þ

where xi, vi and xi are the components of vectors x, v and x,
respectively. Along the characteristics x(t), a solution of (8)
takes the form c[x(t), t] and satisfies

dc

dt
¼ �Da k x tð Þ½ � fa cð Þ; fa cð Þ ¼ a ca � 1ð Þ ð10Þ

subject to the initial condition c(x, 0) = cin(x). A solution of
(10) is given implicitly by

Fa cð Þ ¼ �DaK tð Þ; K tð Þ 

Z t

0

k x t0ð Þ½ �dt0; ð11aÞ

where

Fa cð Þ 
 c

a 2 F1

1

a
; 1; 1þ 1

a
; ca

� �

� cin xð Þ
a 2 F1

1

a
; 1; 1þ 1

a
; cain

� �
ð11bÞ

and 2F1(a, b, c, x) is the hypergeometric function.
[15] For a given (deterministic) velocity field v(x), the

characteristics x(t) can be obtained from (9). This, in turn,
enables one to generate the random function K(t) in (11a).
Given the implicit relation (11a) between concentration c
and K, p(c; x, t) can now be expressed in terms of pK(K, t)
as

p c; x; tð Þ ¼ 1

Da fa cð Þ pK � 1

Da
Fa cð Þ; t

� �
: ð12Þ

It remains to compute the pdf of K(t) in (12) in terms of the
pdf of the kinetic reaction rate constant k(t).
[16] To simplify the subsequent analysis, we take the flow

velocity v to be constant and aligned with the x1 coordinate,
v = (U, 0, 0)T or in dimensionless form v̂ = (1, 0, 0)T. It
follows from (10) that x(t) = (x1 � t, x2, x3)

T. The statistical
homogeneity (stationarity) of the random field k(x) implies
that for a fixed x, the random field k(x1 � t, x2, x3) in (11a)
is statistically equivalent to k(t) 
 k(t, 0, 0). The two-point
correlation function of the fluctuations k0(t) 
 k0(t, 0, 0) is
obtained from (6) as

k 0 tð Þk 0 t0ð Þ ¼ s2
krk t � t0; 0; 0ð Þ: ð13Þ

(Note that the dimensional correlation time is tq, and its
nondimensional counterpart is 1.) Thus, in the ensemble
sense (11a) is equivalent to

Fa cð Þ ¼ �DaK tð Þ; K tð Þ ¼
Z t

0

k t0ð Þdt0: ð14Þ
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It follows from (14) that the mean and variance of K(t) are
given by

K tð Þ ¼ t ð15aÞ

and

s2
K tð Þ ¼ s2

k

Z t

0

Z t

0

rk t0 � t00ð Þdt0dt00 ¼ 2s2
k

Z t

0

t � sð Þrk sð Þds;

ð15bÞ

respectively. The remainder of this section is devoted to the
derivation of the full pdf of K(t) and thus the pdf of c(x, t).

3.1. Relaxation to Equilibrium

[17] We study here the nonequilibrium behavior of reac-
tive transport and the relaxation to equilibrium. To this end,
we focus on the regimes characterized by Da � 1, so that
the correlation time of k(t) is small relative to the reaction
time scale. In other words, we derive the concentration pdf
in (14) for the dimensionless time 1 � t < T, where T is
given in multiples of Da�1. In this regime, the kinetic rate
constant k0(t) can be approximated by a (non-Gaussian) zero
mean white noise,

k 0 tð Þk 0 t0ð Þ ¼ s2
kd t � t0ð Þ; ð16Þ

where d(	) is the Dirac delta function. A single-variable
pdf pk(k) completely characterizes k(t). The white noise
approximation (16) of the correlated process (13) is valid
after a solute species travels many pore lengths.
[18] To be specific, we take the kinetic reaction rate k(x)

to be lognormal [e.g., Lichtner and Tartakovsky, 2003],

pk kð Þ ¼ 1

k
ffiffiffiffiffiffiffiffiffiffi
2ps2

p exp � ln k þ s2=2ð Þ2

2s2

" #
; ð17Þ

so that k = 1 and sk
2 = es

2 � 1, where s2 is the variance of
ln k. In sections 3.1.1 and 3.1.2, we present two alternative
approaches for computing the pdf of K(t), i.e., for
evaluating the stochastic integral in (14).
3.1.1. Random Walk Particle Tracking
[19] It follows from (14) that K(t) satisfies the linear

Langevin equation

dK tð Þ
dt

¼ k tð Þ; K 0ð Þ ¼ 0: ð18Þ

Its discretized form reads

K nþ1ð Þ ¼ K nð Þ þ k nð Þ; ð19Þ

where Dt = 1; that is, time is measured in pore lengths
traveled (recall that the time unit is defined by the time it
takes the solute to traverse one correlation scale l). The
white noise process {k(i)}i=1

n is distributed according to

Pkfk ið Þg ¼ exp
Xn
i¼1

ln pk k ið Þ
� �h i( )

: ð20Þ

[20] The concentration c(n) at the nth time step can now
be obtained from the first equation in (14). This procedure is
equivalent to solving the (nonlinear) Langevin equation,

dc

dt
¼ �Da k tð Þ fa cð Þ; c x; t ¼ 0ð Þ ¼ cin xð Þ; ð21Þ

using the Stratonovich interpretation [e.g., Risken, 1996].
The numerical random walk simulations presented in
section 3.2 use 105 particles.
3.1.2. Gaussian Approximation
[21] According to the central limit theorem (CLT), the

sum of ± independent identically distributed random vari-
ables whose mean is zero and whose variance sk

2 is finite, is
Gaussian with zero mean and variance sk

2 t. This implies
that the distribution of K(t) is approximately Gaussian,

pK K; tð Þ � 1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

k t

q exp � K� tð Þ2

2s2
k t

" #
; ð22Þ

provided the dimensionless time t is large enough; that is,
the solute has traveled over many pore lengths.
[22] For the lognormal distribution (17), the quality of

this approximation depends strongly on s2, the variance of
ln k. Figure 1 compares the distribution of K(t) computed by
solving the discretized Langevin equation (19) with its
Gaussian counterpart, (22), for s = 1 (sk � 1.31) and s = 2
(sk � 7.32). After the solute travels approximately 103

pore lengths, a Gaussian form is achieved for s = 1 but not
for s = 2.
[23] As outlined above, we investigate the nonequilibrium

reactive transport regime and the relaxation to equilibrium.
In this regime the solute can travel a large number of pore
lengths, expressed as a multiple of Da�1. Recall that Da�1

is equal to the dimensionless reaction time scale and thus
measures the number of pore length traveled before the
system crosses over to equilibrium on the reaction time
scale. In this early preasymptotic time regime, the Gaussian
approximation (22) is satisfactory if (1) Da is small enough
(dimensionless time is large enough) to ensure that the
solute samples a sufficiently large number of pore lengths
and (2) the variance of ln k is not too large.

3.2. Computational Examples

[24] In this section we present simulation results for the
dimensionless reaction term fa(c) = a (ca � 1) in which the
stoichiometric coefficient is set to either a = 1 or a = 2.
To be specific, we assume that the initial concentration is
smaller than or equal to the equilibrium concentration,
cin(x) � 1. This model describes dissolution of the solid
C(s) and results in a reactive system with the dimensionless
concentration c 2 [0, 1]. (The opposite process of precipita-
tion can be handled as well by taking the initial concentration
to be larger than the equilibrium concentration, resulting in
cin(x) � 1.)
[25] It follows from (11b) that

Fa cð Þ ¼
ln 1� cð Þ � ln 1� cin x1 � t; yð Þ½ � a ¼ 1

artanh cin x1 � t; yð Þ½ � � artanh cð Þ a ¼ 2;

8<
: ð23Þ
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where y = (x2, x3)
T. Combining the Gaussian approximation

(22) with (23) and (12) we obtain analytical expressions for
the pdf of concentration,

p c; x; tð Þ ¼ 1

Da

ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

k t

q 1
1�c

e�g1 c;x;tð Þ a ¼ 1

1
2 1�c2ð Þ e

�g2 c;x;tð Þ a ¼ 2;

(
ð24aÞ

where

g1 c; x; tð Þ ¼ 1

2s2
k t

Da�1F 1 c; x; tð Þ þ t
� �2 ð24bÞ

g2 c; x; tð Þ ¼ 1

8s2
k t

Da�1F 2 c; x; tð Þ þ 2t
� �2

: ð24cÞ

[26] Figure 2 shows the temporal evolution of the pdf of
concentration p(c; x, t) for the nonlinear reaction with
stoichiometric coefficient a = 2 and lognormal kinetic
reaction rate k(x). For illustration, we present the results for a
one-dimensional scenario in which p(c; x, t) is independent
of both x2 and x3. The Damköhler number is set to Da =

10�3. Random walk simulations (solid lines) and the
Gaussian approximation (dashed lines) are used to evaluate
the pdf’s at fixed (x1 � t) = 0 for several values of t. The
initial concentration at x1 = 0 is given by cin(0) = 0. The
Gaussian approximation (24a) performs well for s = 1
(Figure 2a), but breaks down for s = 2 for times shown in
Figure 2b. This should come as no surprise, since the
quality of the Gaussian approximation depends on the
number of pore length traveled and thus on the time that has
passed. It also depends on the variance s2 of ln k.
[27] As the system is driven toward its equilibrium

concentration with increasing time, the region of highest
probability moves along the c axis. The distribution is sharp
at concentration values on the order of the initial
concentration, and becomes more diffuse with increasing
time up to t � 250. Then the distribution sharpens again as
concentration moves further toward the equilibrium value of
c = 1. In the asymptotic long time limit (t � Da�1) the
system approaches equilibrium; the pdf p(c; x, t) becomes
independent of space and time and is given by the delta
distribution p(c; x, t) = d(c � 1).

Figure 2. Snapshots of temporal evolution of the pdf of
concentration p(c; x1, t) for (a) s = 1 at times t = 50, 100,
250, 500, and 750 (from left to right) and (b) s = 2 at times
t = 50, 100, 250, 500, and 1000. The pdf is evaluated at
constant x = x1 � t = 0 using random walk simulations
(solid lines) and the Gaussian approximation (dashed lines).
The initial concentration at x1 = 0 is cin(0) = 0.

Figure 1. A snapshot at t = 103 of the pdf of K(t) for a
lognormally distributed k(t) with (a) s = 1 and (b) s = 2.
The solid and dashed lines correspond to numerical
simulations and the Gaussian approximation, respectively.
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[28] As expected, the concentration pdf is sharper for
s = 1 (Figure 2a) than for s = 2 (Figure 2b), reflecting an
obvious fact that larger uncertainty in the input parameter k
leads to larger predictive uncertainty. For s = 2, the
distribution of rate coefficients is much broader than for
s = 1 and the probability of encountering large rate
coefficients is increased. The pdf p(c; x, t) spreads toward
higher concentration values because at a given position
the probability of being closer to equilibrium increases as
the probability of encountering a fast kinetic rate constant
increases.

4. Effective Transport Equations

[29] In subsurface hydrology, one is often interested in
the mean behavior of a system, i.e., in the ensemble mean
concentration c(x, t). The latter can be computed by
integrating the pdf of concentration

c x; tð Þ ¼
Z1

0

cp c; x; tð Þdc; ð25Þ

or, equivalently, by solving a so-called effective transport
equation. We obtain this equation below starting with the
derivation of a deterministic equation that governs the
evolution of the pdf p(c; x, t).

4.1. The pdf Equation

[30] When the kinetic rate constant k(x) can be approxi-
mated by a Gaussian white noise (see the discussion in
section 3.1), the Langevin equation (21) gives rise to the
Fokker-Planck equation for the pdf p(c; x, t) (in the
Stratonovich interpretation) [e.g., Risken, 1996],

dp

dt
¼ @

@c
Da� s2

kDa
2

2

dfa

dc

� �
fap

� �
þ s2

kDa
2

2

@2f 2a p

@c2
: ð26Þ

We use here the Stratonovich interpretation because it
honors the fact that k(x) is correlated on the small scale. The
initial condition for p(c; x, t) is given by the pdf for the
initial concentration cin(x). If the initial concentration is
known with certainty, i.e., deterministic, then p(c; x, 0) =
d[c � cin(x)].

[31] The boundary conditions for p(c; x, t) at c = 0 and
c = 1 are specified in a manner that conserves the probability,
i.e., satisfies the condition

Z1

0

p c; x; tð Þdc ¼ 1: ð27Þ

[32] A few general comments are in order. First, one can
verify by substitution that the pdf’s p(c; x, t) given by either
(14) and (22) or (24a) are indeed solutions of (26). Second,
the limit of sk

2 ! 0 is a singular limit as it changes the order
of the partial differential equation (26). Thus, solutions
based on small perturbation expansions sk

2, a prevailing
approach in stochastic hydrogeology, are not guaranteed to
converge.

4.2. Effective Transport Equation

[33] We obtain an effective equation for the average
concentration (25) by multiplying both sides of the pdf
equation (26) with c and integrating over c from 0 to 1.
After accounting for the boundary conditions for the pdf,
this yields

@c

@t
þ @c

@x
¼ �Da

Z1

0

fa cð Þ � s2
kDa

4

df 2a
dc

� �
p c; x; tð Þdc; ð28Þ

where boundary terms of the type p(0, x, t) are subleading
for Da � 1 and are disregarded.
[34] For the dimensionless reactive term fa(c) = a(ca � 1)

with the stoichiometric coefficient a = 1, the effective
transport equation (28) reduces to

@c

@t
þ @c

@x
¼ �Da 1� s2

kDa

2

� �
c� 1ð Þ: ð29Þ

Its solution yields the mean concentration

c x; tð Þ ¼ 1� exp �Da t þ s2
kDa

2

2
t

� �
1� cin x1 � t; yð Þ½ �: ð30Þ

It follows from (30) that perturbation expansions in sk
2 are

bound to fail as time increases, even if sk
2 � 1.

[35] For a = 2, the effective transport equation (28)
becomes

@c

@t
þ @c

@x
¼ �2Da c2 � 1

� �
þ 4s2

kDa c3 � c
� �

: ð31Þ

[36] Comparison of the effective equations (29) and (31)
with their stochastic counterpart, (8), reveals that the two
descriptions can be fundamentally different, so that effective
parameters do not generally exist. The effective and stochastic
descriptions have the same functional form only when the
reaction term is linear (a = 1).
[37] The computational examples presented in the follow-

ing are one-dimensional and correspond to the deterministic
initial concentration

cin x1ð Þ ¼ 1� e�x2
1
=2: ð32Þ

[38] Figure 3 presents the mean concentration c(x1, t)
given by the solution of the nonlinear (a = 2) effective
transport equation (31) at time t = 100. It is accompanied by

Figure 3. A snapshot (at t = 100) of average concentration
c(x1, t) (solid line) and standard deviation sc(x1, t) (dashed
line) for nonlinear reactive transport with a = 2 and s = 1.
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the standard deviation of concentration sc(x1, t), which was
computed from the concentration variance

s2
c x1; tð Þ ¼

Z1

0

c� c x1; tð Þ½ �2p c; x1; tð Þdc: ð33Þ

Both the best estimate of the concentration, c(x1, t), and a
measure of predictive uncertainty, sc(x1, t), are computed at
the dimensionless time t = 100 for s2 = 1 and Da = 10�3. At
any given time, the mean concentration remains constant
except for the regions where the traveling wave cin(x1 � t)
passes through. The center of this region, the point x1 = 100
in the results reported in Figure 3, is the center of mass of
the traveling wave. Uncertainty, as quantified by the
standard deviation sc, remains unchanged in the region of
constant mean concentration. Elsewhere, it increases as the
mean concentration decreases. This is complementary to our
observation in section 3.2, where we found that the pdf of
concentration sharpens (i.e., variance is reduced) as the
mean concentration increases.
[39] The temporal evolution of the mean concentration

and standard deviation is analogous to the spatial behavior
and is not displayed here.

4.3. Effective Transport Coefficients

[40] In section 4 we have shown that effective equations
differ functionally from their local-scale counterparts, unless
the reaction term is linear (a = 1). Yet, the prevailing
approach is to search for a standard, but not necessarily
correct, apparent equation

@c

@t
þ @c

@x1
¼ �Da keff x; tð Þ ca � 1½ �: ð34Þ

Following the approach of Lichtner and Tartakovsky
[2003], we derive such an equation by comparing (34)
with (28). The requirement that the two be equivalent gives

keff x; tð Þ ¼ 1

ca � 1

Z1

0

1� s2
kDa

dfa

dc

� �
fa cð Þp c; x; tð Þdc; ð35Þ

where we used the fact that fa(c = 1) = 0.

[41] For the linear reaction with the stoichiometric coef-
ficient a = 1, (35) gives

keff ¼ 1� s2
kDa

2
; ð36Þ

which can be verified by the direct comparison of (8) and
(29). In this case, the effective and apparent equations
coincide, and the effective kinetic reaction rate constant keff

arises naturally.
[42] It is interesting to note that the effective kinetic rate

constant keff for a reactive batch system (i.e., a system
without advection) varies in time, tending to zero as time
becomes large [Lichtner and Tartakovsky, 2003]. Here, the
effective kinetic rate keff is constant and smaller than the
mean reaction rate. This can be explained by the fact that a
solute ‘‘samples’’ the chemical heterogeneity of a medium
as it migrates along its flow pathway in a single realization.
Only after the solute has sampled the heterogeneity over
many correlation lengths does the local reaction rate law
become valid on a large scale. For the batch system, a single
medium realization is homogeneous and the concentration
statistics reflect purely the differences between realizations.
The effective rate tends to zero with time because the proper
average over the reactive system approaches equilibrium
faster than the mean reaction law that has the same
appearance as the local reaction law.
[43] For a = 2, the effective kinetic rate constant is given

by

keff x; tð Þ ¼ 2

c� 1
c2 � 2s2

kDa c3 � c
� �

� 1
h i

: ð37Þ

The nth moment of concentration in (37) can be computed
as

c x; tð Þn ¼
Z1
�1

pK K; tð Þ

� 2 1þ 1� cin x1 � t; yð Þ
1þ cin x1 � t; yð Þ e

�4Da Kþtð Þ
� ��1

�1

( )n

dK;

ð38Þ

where pK(K, t) is given by its Gaussian approximation (22).
Note that the effective kinetic rate for the nonlinear reaction
is a function of space and time. The initial value of the
effective kinetic rate constant can be evaluated explicitly,

keff x; 0ð Þ ¼ 2
c2in xð Þ � 2s2

kDa c3in xð Þ � cin xð Þ
� �

� 1

cin xð Þ � 1
: ð39Þ

[44] The computational examples shown are one dimen-
sional and correspond to the initial distribution (32). Figure 4
provides a snapshot of keff(x1, t = 100). The effective rate is
constant far away from the bulk concentration, which is
located at x1 = 100. It increases in the vicinity of x = 100
where the mean concentration starts to change (see also
Figure 3), reaches its maximum values closer to the center
of mass of c(x, t), and then decreases to a local minimum
value at the center of mass. The increase of keff(x1, t) reflects
the fact that the system is more reactive when the mean

Figure 4. A snapshot (t = 100) of the effective kinetic rate
constant keff(x1, t) for the nonlinear reaction with a = 2 and
s = 1.
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concentration deviates from equilibrium. At the plateau
value, the actual average reaction and the assumed mean
reaction law as expressed by the definition (35) differ only
by a constant factor. Closer to the center of mass of the
mean reaction, however, the temporal change of the actual
mean concentration is faster than the one predicted by the
assumed mean reaction law (34).

5. Conclusions

[45] We presented an approach for computing pdf’s of the
concentration of a reactive solute that is being advected by a
deterministic velocity field. Our analysis leads to the fol-
lowing major conclusions.
[46] 1. While many standard techniques for uncertainty

quantification in groundwater hydrology yield only concen-
tration’s mean and variance, the proposed approach leads to
its full probabilistic description. This allows one to compute
so-called rare event (distribution tails), which are required in
modern probabilistic risk analyses.
[47] 2. The shape and type of the pdf change in time.

They vary between the known initial and steady state
distributions that are given by the Dirac delta functions
when both the initial and equilibrium concentrations are
known with certainty. This makes reliance on a single
assumed form of the pdf problematic.
[48] 3. Effective (averaged) transport equations are gener-

ally different from their local-scale (stochastic) counterparts.
[49] 4. Effective parameters for average reactive transport

equations do not generally exist because of the nonlinearity
of the latter. Effective parameters in apparent advection-
reaction equations can vary in space and time.
[50] 5. Perturbation expansions routinely used to predict

flow and transport in ‘‘mildly heterogeneous’’ porous media
fail when applied to advection-reaction transport.
[51] While the presented methodology is applicable to

any deterministic flow velocity fields v(x, t) for which a
solution of (9) exists, we considered the simplest case of
constant velocity to simplify the presentation. In follow up
studies, we will extend this analysis to the cases of space-
time variable deterministic velocity fields and uncertain
(random) velocity fields.
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