
Probabilistic risk analysis in subsurface hydrology

Daniel M. Tartakovsky1,2

Received 7 January 2007; revised 5 February 2007; accepted 14 February 2007; published 15 March 2007.

[1] We present a general framework for probabilistic risk
assessment (PRA) of subsurface contamination. PRA
provides a natural venue for the rigorous quantification of
structural (model) and parametric uncertainties inherent in
predictions of subsurface flow and transport. A typical PRA
starts by identifying relevant components of a subsurface
system (e.g., a buried solid-waste tank, an aquitard, a
remediation effort) and proceeds by using uncertainty
quantification techniques to estimate the probabilities of
their failure. These probabilities are then combined by means
of fault-tree analyses to yield probabilistic estimates of the
risk of system failure (e.g., aquifer contamination). Since
PRA relies on subjective probabilities, it is ideally suited for
assimilation of expert judgment and causal relationships.
Citation: Tartakovsky, D. M. (2007), Probabilistic risk analysis

in subsurface hydrology, Geophys. Res. Lett., 34, L05404,

doi:10.1029/2007GL029245.

1. Introduction

[2] Accurate and verifiable predictions of subsurface
flow and transport are notoriously illusive due to the
heterogeneity of a typical subsurface environment, the lack
of sufficient site characterization, and, occasionally, the
inadequacy of conceptualizations and mathematical descrip-
tions of relevant physical and bio- geochemical processes.
These factors introduce fundamental uncertainty about sub-
surface systems and cast doubts on the feasibility and, in
fact, desirability of obtaining a single deterministic predic-
tion of system’s behavior.
[3] With a possible exception of hydrogeology, both

scientific and engineering communities have fully embraced
the importance of dealing with, and quantifying, predictive
uncertainty. In earth sciences, for example, the NRC report
by the Senior Seismic Hazard Analysis Committee (SSHAC)
[1997] states unambiguously that any seismic hazard anal-
ysis (SHA) must be probabilistic and that the main focus of
any probabilistic SHA (PSHA) should be on uncertainty
quantification.
[4] Many probabilistic analyses distinguish two types of

uncertainty: epistemic and aleatory. The former is defined as
‘‘the uncertainty attributable to incomplete knowledge about
a phenomenon that affects our ability to model it’’ and the
latter as ‘‘the uncertainty inherent in a nondeterministic
(stochastic, random) phenomenon’’ [SSHAC, 1997]. How-
ever, the review of the NRC report by the National
Research Council (NRC) [1997] concluded that ‘‘unless

one accepts that all uncertainty is fundamentally epistemic,
the classification of PSHA uncertainty as aleatory or epi-
stemic is ambiguous.’’ The review further concludes that the
epistemic/aleatory separation is somewhat artificial and not
needed in practical applications. Fortunately, hydrogeologic
applications are virtually free of this controversy, since most
subsurface processes and parameters (e.g., hydraulic con-
ductivity) are inherently deterministic, so that one is pri-
marily concerned with epistemic uncertainty.
[5] Epistemic uncertainty in subsurface phenomena has

been the subject of stochastic hydrogeology, whose progress
over the last several decades can be discerned from the
earliest monograph by Shvidler [1964] to the latest by Rubin
[2003]. (Mathematical representations of deterministic
parameters, e.g., hydraulic conductivity, as random fields
explain a seeming contradiction of using stochastic tools to
deal with epistemic uncertainty.) Despite significant theo-
retical advancements, including an explanation of anoma-
lous behavior of contaminant transport in heterogeneous
subsurface environments [e.g., Cushman, 1997], stochastic
hydrogeology remains a largely academic pursuit.
[6] In this letter, we introduce a general framework for

probabilistic risk assessment (PRA) that bridges this gap by
presenting information (e.g., the risk of aquifer contamina-
tion in 100 years is X and the best remediation strategy is A)
in a way that is more accessible and useful to practitioners
and decision makers than that routinely used by scientists
(e.g., the ensemble mean and standard deviation of a con-
taminant concentration at the water table in 100 years will be
C and sC, respectively). While this framework is applicable
to a variety of subsurface contamination problems, we
demonstrate its basic ideas and concepts by considering a
simple example described in the following section.

2. Probabilistic Risk Analysis (PRA)

[7] The concentration of a contaminant in groundwater,
C, is fundamental in determining environmental health
risks. For example, if the contaminant in question is
carcinogenic, its impact on human health can be quantified
by the Excess Lifetime Cancer Risk (ELCR) factor [U.S.
Environmental Protection Agency (U.S. EPA), 1992]

ELCR ¼ aC; a ¼ IR� EF

365 days� BW
; ð1Þ

where IR is human ingestion rate, EF is exposure frequency,
and BW is average body weight. While any or all
parameters entering the expression for a can be uncertain,
it is common to take IR = 2 liters/day, EF = 350 days/year,
and BW = 70 kg. According to U.S. Environmental
Protection Agency [2004], the levels of a carcinogen (e.g.,
benzene) in groundwater are considered safe (i.e., health
risks are believed to be acceptable) if ELCR is within the
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range [10�4, 10�6]. A key goal of probabilistic risk
assessment is to determine the probability that the
carcinogen’s concentration C in groundwater exceeds, at
time t = T, the EPA mandated value of C* = a�1 ELCR.
[8] Most present-day analyses of groundwater contami-

nation lack probabilistic risk assessment and uncertainty
quantification of the kind routinely required in other engineer-
ing and environmental disciplines [Covello and Mumpower,
1985]. Specifically, a comprehensive risk analysis should
provide answers to the following three questions: ‘‘What can
happen? How likely is it to happen? Given that it occurs,
what are the consequences?’’ [Bedford and Cooke, 2003].
Several recent studies [e.g., Batchelor et al., 1998; Chen et
al., 2003; Wang and McTernan, 2002; Li et al., 2006]
addressed some of these questions, but not all.
[9] A typical subsurface system consists of the vadose

zone and a saturated zone (aquifer), both of which are
heterogeneous and often composed of multiple geologic
facies. Consider a contaminant that migrates through the
vadose zone from a (localized or distributed) source (e.g., a
soil surface spill or a compromised subsurface waste storage
facility) to the water table. We say that the subsurface
system ‘‘fails’’ at time t = T, if the contaminant concentra-
tion at the water table exceeds the EPA mandated levels of
C* = a�1 ELCR. Our objective is to assess both the
likelihood of the system failure (aquifer contamination)
and the efficiency of alternative remediation strategies.
[10] Following Bedford and Cooke [2003], we start by

constructing a fault tree (Figure 1), which relates the
occurrence of the system failure, i.e., aquifer contamination,
to the failures of its constitutive parts (basic events), i.e., the
occurrence of a spill, the failure of natural attenuation, and
the failure of a remediation effort. The term ‘‘natural
attenuation’’ is used here in a broad sense to include not
only ‘‘the combination of natural biological, chemical, and
physical processes that act without human intervention to
reduce the mass, toxicity, mobility, or concentration of the
contaminants’’ [Alvarez and Illman, 2006], but also usual
transport mechanisms (advection, diffusion, and dispersion)
that enable the contaminant to migrate through the vadose
zone. The Boolean operators AND and OR indicate
a collection of basic events that would lead to aquifer
contamination.
[11] The second step is to identify minimal cut sets of the

system, i.e., the smallest collections of events that lead to
aquifer contamination. The fault tree in Figure 1 reveals two
such minimal cuts: {Spill occurs (SO), Natural attenuation
fails (NA)} and {Spill occurs (SO), Remediation effort fails
(RE)}.
[12] The third step is to represent the fault tree in Figure 1

by a Boolean expression. Recalling that the Boolean oper-
ators AND and OR applied to two events X and Y can be
written as X AND Y � X � Y � X \ Y and X OR Y � X + Y �
X [ Y, the Boolean expression corresponding to the fault
tree in Figure 1 is

‘‘Aquifer contamination ACð Þ ¼ SO � NAþ REð Þ

¼ SO � NAþ SO � RE:
ð2Þ

The latter expression is known as a cut set representation of
the fault tree in Figure 1.

[13] The final step is to use (2) to compute P[AC], the
probability of aquifer contamination at time t = T, as

P AC½ � ¼ P SO \ NAð Þ [ SO \ REð Þ½ �
¼ P SO \ NA½ � þ P SO \ RE½ � � P SO \ NA \ RE½ �: ð3Þ

The uncertainty about the basic event ‘‘Spill occurs (SO)’’
relates not only to the occurrence of a contaminant release
per se, but also to its precise location, strength, toxicity,
duration, etc. Let P[SO] denote the probability that ‘‘Spill
occurs (SO)’’, and P[XjY] denote the probability of the
occurrence of X conditioned on the occurrence of Y. Then
(3) can be rewritten as P[AC] = {P[NAjSO] +P[REjSO] �
P[NA \ REjSO]} P[SO], which leads to

P ACjSO½ � ¼ P NAjSO½ � þ P REjSO½ � � P NA \ REjSO½ �: ð4Þ

Suppose, for the sake of simplicity, that the spill has already
occurred and that all of its characteristics are known with
certainty. Then P[SO] = 1, and the probability of aquifer
contamination is given by

P AC½ � ¼ P NA½ � þ P RE½ � � P NA \ RE½ �: ð5Þ

[14] In engineering applications, the probability of a
component failure, e.g., P[NA] or P[RE], is typically small
and the probability of a simultaneous failure of more than
one components, e.g., P[NA \ RE], is often an order of
magnitude smaller than that. While the latter observation is
not universal, it allows one to further simplify (5) by
employing a rare event approximation [Bedford and Cooke,
2003],

P AC½ � � P NA½ � þ P RE½ �; ð6Þ

in which the probability of a system failure depends
exclusively on the probability of failure of its constitutive
parts. The validity of this approximation in the hydro-
geologic context is discussed in the following section.

3. PRA in Hydrogeology

[15] The procedure described above is used extensively
in probabilistic risk assessments for complex artificial
systems, such as nuclear power plants and space shuttles
[Bedford and Cooke, 2003]. Its use in the hydrogeologic
context is much more challenging due to the following
reasons.

’’

Figure 1. Fault tree for a possible aquifer contamination.
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3.1. Definition of Probabilities

[16] All probabilities in modern PRAs are subjective, i.e.,
probability is defined as ‘‘degree of belief, of one individual’’
[Bedford and Cooke, 2003]. Subjective probabilities in
hydrogeology must be used to deal with both parametric
and structural (model) uncertainties, since many fundamen-
tal issues in subsurface flow and transport are yet to be
resolved [Christakos, 1992; Rubin, 2003]. This is wit-
nessed, for example, by the ongoing debates on whether
hydraulic conductivity can be accurately represented by
multi-Gaussian random fields and whether subsurface trans-
port can be adequately modeled with advection-dispersion
equations. The subjective beliefs of this author result in
negative answers to both of these questions, but other
opinions, and mathematical models based on these opin-
ions, should be incorporated into a rigorous PRA to avoid a
systematic predictive bias.
[17] In other words, the ability to incorporate expert

knowledge into quantitative subsurface modeling becomes
paramount. Fortunately, several formal approaches to deal-
ing with diverging expert opinions originally developed in
economics [e.g., Otway and von Winterfeldt, 1992] can be
adapted in hydrogeology, just as it has been done in
seismology [SSHAC, 1997; NRC, 1997]. Their practical
implementation is a separate topic that lies outside the scope
of the present letter.

3.2. Computation of Probabilities

[18] PRAs used in most engineering applications rely on
reliability databases and manufacturing specifications to
estimate the probabilities of basic events. In hydrogeology,
one must solve (stochastic) differential equations to com-
pute probabilities, which reflect structural (model) and
parametric uncertainties associatedwith subsurface processes.
Recent advances in stochastic hydrogeology and other
scientific and engineering fields allow one to quantify these
uncertainties and, thus, to compute the probabilities of the
basic events in (3). Some of the relevant approaches are
mentioned below.
[19] Structural uncertainty arises from imperfect knowl-

edge of the geologic makeup of the subsurface and from
incomplete understanding of physical and bio- geochemical
processes affecting the fate and transport of contaminants at
any given site. Geologic uncertainty and its effects on
contaminant transport can be quantified by means of the
random domain decomposition [Winter and Tartakovsky,
2002; Guadagnini et al., 2004]. Model uncertainty often
manifests itself via the existence of several competing
conceptual and mathematical descriptions whose ability to
accurately describe naturally occurring transport phenomena
cannot be validated by data with a required degree of
fidelity. To quantify this source of uncertainty, one
can use either a Bayesian maximum entropy approach
[Christakos, 1990] or maximum likelihood Bayesian
averaging [Neuman, 2003].
[20] Parametric uncertainty arises from spatial heteroge-

neity coupled with limited and often noisy measurements of
hydraulic and bio- geochemical parameters, such as hydrau-
lic conductivity and retardation coefficient. Its quantification
is the traditional raison d’etre of stochastic hydrogeology
[Shvidler, 1964], which routinely employs Monte Carlo
simulations and moment analyses [Rubin, 2003] and, more

recently, polynomial chaos expansions [e.g., Ghanem,
1998]. These approaches are currently used to compute
the mean and variance of contaminant concentration
and require further assumptions to compute the probabili-
ties in (3). Alternatively, one can attempt to derive
deterministic equations for the probability density function
of contaminant concentration [Shvidler and Karasaki,
2003; Tartakovsky et al., 2003].

3.3. Dependent Probabilities

[21] The rare event approximation (6) provides a conser-
vative estimate of the probability of aquifer contamination,
which might prove to be overly pessimistic in many
situations. When the rare event approximation becomes
invalid (e.g., if the probabilities of failure of both natural
attenuation and the remediation effort are larger than 0.5),
(5) must be used instead.
[22] In the example considered above, the failure of both

natural attenuation and a remediation effort often stems
from a common cause, such as ‘‘the presence of a prefer-
ential flow path’’ (PF) between the source of contamination
and the water table. In principle, the methods for uncertainty
quantification described above are capable of computing not
only the probabilities of basic events, such as the failures of
natural attenuation P[NA] and a remediation effort P[RE],
but also the probability of their joint failure P[NA \ RE].
However, their practical implementation might prove to be
computationally prohibitively expensive.
[23] The computational burden can be reduced if one may

assume that the presence of a preferential flow path is the
only common cause of the failure of both natural attenuation
and the remediation effort. This assumption results in a
conservative estimate of contamination risks and implies
that PF completely couples the occurrence of NA and RE
but does not necessarily cause them

P NA \ REjPF½ � � P NAjPF½ �: ð7Þ

Let PF0 denote the absence of a preferential flow path,
whose probability is P[PF0] � 1 � P[PF]. Since

P NA \ RE½ � ¼ P NA \ REjPF½ �P PF½ �
þP NA \ REjPF0½ �P PF0½ �; ð8Þ

the approximation (7) yields

P NA \ RE½ � � P NAjPF½ �P PF½ �
þP NA \ REjPF0½ �P PF0½ �: ð9Þ

Assume next that, in the absence of a preferential flow path,
NA and RE are independent, P[NA \ REjPF0] � P[NAjPF0]
P[REjPF0]. Then (9) becomes

P NA \ RE½ � � P NAjPF½ �P PF½ �
þP NAjPF0½ �P REjPF0½ �P PF0½ �:

ð10Þ

Finally, if P[PF] � 1 it is reasonable to assume that
P[NAjPF0] � P[NA] and P[REjPF0] � P[RE], so that

P NA \ RE½ � �P NAjPF½ �P PF½ � þ P NA½ �P RE½ �P PF0½ �: ð11Þ
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An in-depth discussion of conditional independence in
Bayesian systems, which encompasses the analysis above,
is given by Pearl [2000]. Expression (11) is analogous to
the common cause approximation used in reliability
analysis [Bedford and Cooke, 2003]. The probability of
aquifer contamination can now be computed by combining
(5) and (11).
[24] The proposed approach can be used to estimate the

probability of success of alternative remediation strategies
by minimizing the effect of dependent probabilities. For
example, the existence of a preferential flow path might
have more severe implications for the success of an in situ
remediation effort than for the success of an attempt to
construct a hydrologic barrier.

4. Problem-Specific PRAs

[25] An additional significant reduction in the computa-
tional burden associated with a comprehensive uncertainty
quantification required by modern PRAs can be achieved by
making them problem specific. For example, a wide range
of contamination problems, including the one described in
section 2, do not require point-wise probabilistic predictions
of contaminant behavior. Instead, mass-balance calculations
are often sufficient to assess probabilities of the occurrence
of basic events by quantifying epistemic uncertainty in
appropriate lumped-parameter models.
[26] These models result in simple, closed-form expres-

sions for the bulk behavior of a contaminant and its
response to various remediation strategies. A typical exam-
ple of such analyses is provided by Rabideau et al. [1999],
who modeled the remediation of TCE-contaminated soils by
air sparging. Their analytical solutions depend on a number
of parameters, some of which are measured (e.g., flow rates)
and some are fitted to data (e.g., sorption coefficient). In any
field application, the values of these parameters are uncer-
tain and should be modeled probabilistically.
[27] Suppose that a probabilistic analysis of the lumped-

parameter model and site-characterization data resulted in
the following (subjective) probabilities: The probability that
TCE reaches the water table at time t = T through a
preferential flow path (PF) is P[PF] = 0.01; The probabil-
ities of failure of natural attenuation and the remediation
effort at time t = T are P[NA] = 0.5 and P[RE] = 0.1,
respectively; If TCE were to migrate through the preferen-
tial flow path, the probabilities of failure of both natural
attenuation and the remediation effort at time t = T are
P[NAjPF] = P[REjPF] = 1.
[28] The probability of aquifer contamination at time

t = T computed with the rare event approximation (6) is
P[AC] = 0.6, while its counterpart computed with the
common cause approximation (5) and (11) is P[AC] �
0.54. Note that the contribution of the low-probability
common cause PF to both the probability of the joint failure
of natural attenuation and the remediation effort and the
probability of aquifer contamination is quite significant.
Another interesting observation is that the rare event
approximation (6) gives a reasonably accurate risk estimate,
even though the probability of failure of natural attenuation
is 50%.
[29] This simple analysis can be used to obtain rough

estimates of the risks posed by subsurface contamination. A

more detailed and rigorous PRA would require the use of
the probabilistic and stochastic tools described in section 2.

5. Summary

[30] The general framework for probabilistic risk assess-
ment (PRA) we presented in this letter is capable of
handling subsurface phenomena that range from contami-
nation of municipal water supplies to subsurface carbon-
dioxide sequestration to oil recovery. This framework can
be used to make decisions under uncertainty, including
(1) determination of the viability of natural attenuation and
other alternative remediation strategies, (2) optimization of
data collection andmonitoring campaigns, (3) selection of the
optimal use of a contaminated site, and (4) assessment of
subsurface water resource vulnerability. Key features of this
approach are (1) the comprehensive treatment of structural
(model) and parametric uncertainties inherent in subsurface
flow and transport, and (2) the use of subjective probabilities,
i.e., the reliance on expert knowledge.
[31] Any PRA of subsurface processes must be flexible

and extensible enough to make optimal use of existing site
characterization data and to accommodate new information,
including new data, and conceptual models. The extensibil-
ity is critical for both the long-term relevance of the
framework and its impact on the development and deploy-
ment of effective tools for monitoring and/or remediation of
contaminated sites. It can be achieved by using some of the
appropriate probabilistic tools for quantification of various
types and levels of uncertainty that contribute to the overall
predictive uncertainty. The flexibility comes from the mod-
ular use of some or all of these techniques and the
possibility of incorporating other approaches.
[32] Applications of the PRA approach to complex sub-

surface problems might necessitate a computerized construc-
tion of fault trees. Commercially available PRA software
often produces fault trees that are non-coherent, i.e., contain,
in addition to the operators AND and OR, inverse operators
of Boolean algebra. A probabilistic analysis of non-coherent
trees is often preceded by the construction of binary decision
diagrams [Bedford and Cooke, 2003].
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