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Abstract

Flow and transport in tubes with rough surfaces play an important role in a variety of applications. Often the topology
of such surfaces cannot be accurately described in all of its relevant details due to either insufficient data or measurement
errors or both. In such cases, this topological uncertainty can be efficiently handled by treating rough boundaries as ran-
dom fields, so that an underlying physical phenomenon is described by deterministic or stochastic differential equations in
random domains. To deal with this class of problems, we use a computational framework, which is based on stochastic
mappings to transform the original deterministic/stochastic problem in a random domain into a stochastic problem in a deter-

ministic domain. The latter problem has been studied more extensively and existing analytical/numerical techniques can be
readily applied. In this paper, we employ both a generalized polynomial chaos and Monte Carlo simulations to solve
the transformed stochastic problem. We use our approach to describe transport of a passive scalar in Stokes’ flow and
to quantify the corresponding predictive uncertainty.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Viscous flow in domains bounded by highly irregular or rough surfaces has been a subject of a plethora of
analytical and numerical studies. The importance of this subject stems from its universal nature, since surface
roughness affects the phenomena as diverse as glacier sliding [1] and micro-electronic-mechanical system
(MEMS) technology [2]. Indeed, given a proper spatial resolution, virtually any natural or manufactured sur-
face becomes rough. Most of the existing studies have focused either on the validity of simplified mathematical
models, e.g. of the lubrication approximation and Reynolds’ equations [3] or the derivation of appropriate
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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boundary conditions [4–6] or on the effects of roughness on fluid behavior [7,8]. This study deals with the pre-
viously unresolved issue of uncertainty quantification for viscous flow and transport in domains with rough
surfaces, whose exact topology cannot be ascertained due to the lack of sufficient information and/or measure-
ment errors.

The emphasis on uncertainty quantification suggests the use of probabilistic descriptions of rough surfaces.
Such descriptions allow for more realistic, data-driven representations of surfaces roughness [9]. This is in con-
trast to deterministic conceptualizations that treat rough boundaries as sinusoidal surfaces [7,8], a surface with
a large number of periodically distributed humps [10,6], and self-similar and fractal surfaces [7]. Of course, not
every stochastic representation of rough surfaces is conducive to uncertainty quantifications. For example, ran-
dom fractals [11] or fractional Brownian motion [12], which were used to represent rough surfaces, are not read-
ily amenable to parameterization by data. Likewise, the representation of a rough surface as a Gaussian
random field with a linear autocorrelation function [13] might conflict with data. One of the goals of this study
is to propose a methodology for uncertainty quantification that is flexible enough to allow for non-trivial prob-
abilistic descriptions of rough surfaces that are determined by data.

The adoption of a probabilistic framework to describe rough surfaces makes even an essentially determin-
istic problem stochastic. In this paper, we use the computational framework first proposed in [14] that is appli-
cable to a wide class of deterministic and stochastic differential equations defined on domains with random
(rough) boundaries. A key component of this framework is the use of robust stochastic mappings to transform
an original deterministic or stochastic differential equation defined on a random domain into a stochastic dif-
ferential equation defined on a deterministic domain. This allows one to employ well-developed theoretical and
numerical techniques for solving stochastic differential equations in deterministic domains. While in [14] we
defined the stochastic mappings as numerical solutions of Laplace’s equations, here we introduce an analytical
mapping. Another important difference is that the present study deals with stochastic parabolic equations,
while [14] dealt with deterministic elliptic problems.

In Section 2, we formulate a random domain problem, which describes transport of a passive scalar in
Stokes’ flow in a tube, whose rough surface is modeled as a random field. Our mathematical model consists
of an advection–diffusion equation whose Stokes’ velocity is computed via the lubrication approximation [15].
A computational approach that allows us both to predict the dynamics of a passive scalar and to quantify the
corresponding predictive uncertainty is presented in Section 3. This approach involves an analytical stochastic
mapping, a parameterization of a tube’s random surface (Section 3.1), and a numerical solution of the trans-
formed stochastic transport equation by means of the generalized polynomial chaos (Section 3.2). The simu-
lation results and their analysis are reported in Section 4. We conclude by listing in Section 5 a few open issues
that remain to be studied.
2. Problem formulation

We consider transport of a passive scalar in a low Reynolds number steady-state flow in a pipe (capillary tube)
V with a rough surface oV (Fig. 1). The concentration c(x, t) of a passive scalar is described by an advection–
diffusion equation,
oc
ot
þr � ðvcÞ ¼ Dr2c; x 2 V ; t > 0; ð1Þ
where D is the diffusion coefficient and v(x) is the velocity of a fluid. In a cylindrical coordinate system (r,/,z),
the surface of the pipe can be described by R ¼ Rþ cð/; zÞ, where R is the radius of the pipe ignoring rough-
ness and c(/,z) accounts for the roughness. Assuming the surface of the pipe to be impermeable,
oc
or
ðr ¼ RÞ ¼ 0. ð2Þ
The boundary conditions for the concentration at the pipe’s inlet (z = 0) and outlet (z =1) are
cðr;/; 0; tÞ ¼ C0;
ocðr;/;1; tÞ

oz
¼ 0; 0 < r < R; 0 6 / 6 2p; t > 0. ð3Þ
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Fig. 1. A schematic representation of a tube whose surface exhibits roughness in both longitudinal (z) and angular (/) directions. The
figure on the right shows a few realizations of the tube’s cross-section, which is treated as a random field.
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The initial concentration is
cðr;/; z; 0Þ ¼ 0; 0 < r < R; 0 6 / 6 2p; z > 0. ð4Þ

The fluid velocity v is governed by Stokes’ equations,
r � v ¼ 0; and lr2v ¼ rp; ð5Þ

where l and p denote the viscosity and density of a fluid, respectively. Eqs. (5) are subject to the no-slip bound-
ary condition on the rough walls of the pipe,
vðr ¼ RÞ ¼ 0. ð6Þ

Finally, it is assumed that the pressure drop along the pipe is constant,
dp
dz
¼ �J . ð7Þ
Since the surface roughness is much smaller than the radius of the pipe, c� R, we employ a lubrication
approximation [15], which assumes that flow is essentially horizontal (vr = v/ = 0), so that the direct integra-
tion of (5) gives the parabolic distribution of the velocity
vz ¼ J
R2 � r2

4l
. ð8Þ
The accuracy and validity of a similar approximation for flow between two rough plates were investigated
numerically in [16,17].

Eqs. (1) and (8) served as a basis for the Taylor’s pioneering analysis of solute transport in tubes with
smooth walls [18]. In this study, we extend this analysis to account for the wall’s roughness. To do so, we treat
the surface of the pipe, i.e., R(/,z) or, equivalently, c(/,z), as a random field. This recasts the advection–
diffusion problem (1) and (8) as a stochastic partial differential equation
1

D
oc
ot
þ J

R2 � r2

4Dl
oc
oz
¼ 1

r
o

or
r
oc
or

� �
þ 1

r2

o2c

o/2
þ o2c

oz2
ð9Þ
defined on the random domain V. In dimensionless form, this problem can be formulated as follows.
Let x 2 X be a random realization drawn from a complete probability space ðX;A;PÞ, whose event space

X generates its r-algebra A � 2X and is characterized by a probability measure P. For all x 2 X, let
V ðxÞ � R3 be a three-dimensional random domain bounded by boundary oV(x), some or all of whose
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segments are random. For P-almost everywhere (a.e.) in X, we look for a stochastic solution cd(rd,/,zd, t;x)
of the advection–diffusion equation
ocd

otd

þ Pe
R2

d � r2
d

4

ocd

ozd

¼ 1

rd

o

ord

rd

ocd

ord

� �
þ 1

r2
d

o2cd

o/2
þ o2cd

oz2
d

ð10Þ
subject to the boundary conditions
ocd

ord

ðRd;/; zd; td; xÞ ¼ 0; cdðrd;/; 0; td; xÞ ¼ 1;
ocdðrd;/; zd � 1; td; xÞ

ozd
¼ 0 ð11Þ
and the initial condition
cdðrd;/; zd; 0; xÞ ¼ 0; 0 < rd < Rd; 0 6 / 6 2p; zd > 0. ð12Þ
Here
cd ¼
c

C0

; Pe ¼ R3J
Dl

; td ¼
Dt

R2
; rd ¼

r

R
; zd ¼

z

R
; Rd ¼ 1þ �; � ¼ c

R
. ð13Þ
Note that in this formulation, the only source of randomness stems from the wall roughness, i.e., from
Rd(/,zd;x) = 1 + �(/,zd;x). We assume that �(/,zd;x) is sufficiently regular, and the corresponding bound-
ary conditions are properly posed, to guarantee the well-posedness a.e. x 2 X of the problem (10)–(12).
3. Computational approach

Following [14], we pursue a computational approach that consists of the following two steps. First, we
introduce a one-to-one mapping function that maps the random domain V(x) onto a deterministic domain
E. Then we solve the resulting stochastic problem in a deterministic domain. Such an approach allows one
to use the relatively mature theory of stochastic partial differential equations in fixed deterministic domains
to solve differential equations on random domains, the class of problems that has not been systematically
analyzed.

In [14], we introduced a stochastic mapping based on solutions of Laplace’s equations. Here we explore an
analytical mapping
rd ¼ Rdðn2; n3Þn1; / ¼ n2; zd ¼ n3; ð14Þ
which maps random domain V(x) onto a deterministic cylinder of unit radius, and the problem (10)–(12) onto
a stochastic differential equation (see Appendix A)
ocd

otd

þ PeR2
d

4

1� n2
1

h3

ocd

on3

¼ 1

h1h2h3

o

on1

h2h3

h1

ocd

on1

� �
þ o

on2

h1h3

h2

ocd

on2

� �
þ o

on3

h1h2

h3

ocd

on3

� �� �
ð15Þ
subject to the boundary conditions
ocd

on1

ð1; n2; n3; td; xÞ ¼ 0; cdðn1; n2; 0; td; xÞ ¼ 1;
ocdðn1; n2; n3 � 1; td; xÞ

on3

¼ 0 ð16Þ
and the initial condition
cdðn1; n2; n3; 0; xÞ ¼ 0. ð17Þ
Here n1 is a random variable, n2 and n3 are deterministic, and
h1 ¼ Rdðn2; n3Þ; h2 ¼ n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o�

on2

� �2

þ R2
d

s
; h3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1

o�

on3

� �2

þ 1

s
. ð18Þ
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3.1. Parameterization of random surface

To make computation tractable, we assume that the zero-mean random field �(n2,n3;x) can be approxi-
mated by
�ðn2; n3; xÞ � �/ðn2; xÞ�zðn3; xÞ; ð19Þ

where �/ and �z are two statistically independent random fields. Then the parameterization of the random sur-
face Rd = 1 + � consists of the following steps.

First, we represent fluctuation terms as functions of a finite number K P 1 of mutually uncorrelated ran-
dom variables Y1(x), . . . ,YK(x) with zero mean and unit variance, so that �/(n2;x) and �z(n3;x) in (19) can be
written as
�zðn3; xÞ �
XKz

k¼1

�̂zk ðn3ÞY kðxÞ ð20Þ
and
�/ðn2; xÞ �
XK

k¼Kzþ1

�̂/k
ðn2ÞY kðxÞ. ð21Þ
The representation (21) and (20) is an approximation, whose accuracy and robustness are the subject of ongo-
ing research in the field of numerical generation of random processes. If these processes are non-Gaussian, this
task becomes particularly challenging [19–22]. (In such cases, the goal is often reduced to approximating
pointwise marginal distribution functions and two-point covariance functions.) An analysis of the errors
induced by the finite-term representations in (21) and (20), as well as of their efficiency, lies beyond the scope
of this paper. Instead we refer the interested readers to the references mentioned above.

Second, we choose �̂zk and �̂/k
to satisfy prescribed accuracy. One popular choice is the Karhunen–Loève

(KL) decomposition [23], which is an optimal decomposition in term of the mean-square approximation error
and has been used extensively to represent random inputs [24–26]. Other types of decomposition also can be
employed. In this paper, we explore both the KL expansion and a Fourier expansion described below.

3.1.1. Parameterization of the longitudinal roughness
Let the random field �z(n3,x) have zero mean Æ�z(n3;x)æ = 0 and an exponential two-point covariance

function
Czðn3; f3Þ ¼ E½�zðn3; xÞ�zðf3; xÞ� ¼ r2
z exp � jn3 � f3j

lz

� �
; ð22Þ
where r2
z and lz > 0 are the variance and correlation length of the wall roughness in the longitudinal direction,

respectively. In the computational examples below, we set lz = 1, which corresponds to a boundary of mod-
erate roughness.

In the finite-term Karhunen–Loève type expansion (20), the expansion coefficients f�̂zkg
Kz
k¼1 are given by

�̂zk ðn3Þ ¼
ffiffiffiffiffiffi
kzk

p
wzk
ðn3Þ, where fkzk ;wzk

ðn3Þg are the eigenvalues and eigenfunctions of the integral equations
Z
Czðn3; f3Þwzk

ðf3Þdf3 ¼ kzk wzk
ðn3Þ; k ¼ 1; . . . ;Kz. ð23Þ
Then the decomposition (20) becomes
�zðn3; xÞ � rz

XKz

k¼1

�̂zk ðn3ÞY kðxÞ ¼ rz

XKz

k¼1

ffiffiffiffiffiffi
kzk

p
wzk
ðn3ÞY kðxÞ. ð24Þ
We set fY kðxÞgKz
k¼1 to be independent random variables uniformly distributed on (�1,1), and use the param-

eter 0 < rz < 1 to control the maximum deviation of the rough surface.
It is worthwhile to stress again that the expansion (24) introduces two sources of errors – errors due to the

finite Kz-term truncation and errors due to the assumption of independence of {Yk(x)}. The latter errors
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vanish for Gaussian processes, for which the lack of correlation is equivalent to independence. In our simu-
lations, extensive tests were conducted to conclude that Kz = 4 is sufficient to obtain results that are indepen-
dent of resolution (in terms of the number of the KL modes).
3.1.2. Parameterization of the angular roughness

Let the random field �/(n2;x) have zero mean Æ�/(n2;x)æ = 0 and its statistics be rotationally invariant on
the circle, i.e., Æ�/(n2;x)�/(f2;x)æ = C/(jn2 � f2j). Since the random field �(n2;x) is periodic, a natural form
of (21) is given by a Fourier type expansion
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�/ðn2; xÞ � r/

XN

n¼�N

�/n
ðxÞe�inn2 ; ð25Þ
where 0 < r/ < 1 specifies the maximum angular roughness, and the coefficients �/n
ðxÞ ¼ �r

/n
ðxÞ þ i�i

/n
ðxÞ are

complex random variables. It is straightforward to show that if the real ð�r
/n
Þ and imaginary ð�i

/n
Þ components

are both statistically independent for all n and have variances Cn/4, where
Cn ¼
1

p

Z 2p

0

C/ cosðnhÞdh ð26Þ
are the coefficients of the Fourier cosine series of the covariance function C/, then the random field �/(n2,x) in
(25) approximates the prescribed covariance function C/.

A 2p-periodic covariance function C/(jn2 � f2j) is constructed by extending the standard Gaussian covari-
ance function CG ¼ exp½�ðn2 � f2Þ2=l2

/� to the periodic domain (0,2p), where l/ is the correlation length of
angular roughness. Fig. 2(a) shows such a periodic covariance function and contrasts it with the standard
non-periodic Gaussian covariance function. Fig. 2(b) demonstrates the decay of the Fourier cosine coefficients
{Cn} for the periodic covariance function with the correlation length l/ = 0.5. Based on the decay of Cn, we
choose N = 8 (C9 = 0.0052, C1 = 0.2821, C9/C1 < 2%).

In the following examples, we take the coefficients �r
/n
ðxÞ and �i

/n
ðxÞ in the expansion (25) to be independent

random variables uniformly distributed on (�1,1) for all n = 0, . . . , N. This results in a 17-dimensional (K �
Kz = 2N + 1 = 17) random space. Combined with the Kz = 4 random dimensions from the KL model of the
longitudinal roughness, this results in a 21-dimensional (K = 21) random space. Below we use Y = (Y1, . . . , YK)T

to denote the 21-dimensional random vector.
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(a) Periodic covariance function C/(n2) (solid line) based on the non-periodic Gaussian function CG ¼ expð�n2=l2
/Þ with l/ = 0.5

d line with circles). (b) Decay of the Fourier cosine coefficients of the periodic covariance function.
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3.2. Numerical solutions of the transformed equations

Since the stochastic mapping (14) is represented by (24) and (25) as a function of Y, the metrics terms and
the Jacobian corresponding to the coordinate transformation from xd = (rd,/,zd) to n = (n1,n2,n3) become
functions of Y as well. For example, the Jacobian takes the form
Table
Corres

Rando

Gauss
c
b
Unifor
Jðn; xÞ 	 oðrd;/; zdÞ
oðn1; n2; n3Þ

¼ Rdðn;YÞ. ð27Þ
Hence, according to the Doob–Dynkin lemma [27], a solution of the problem (15)–(18) can be described by the
same set of random variables, i.e.,
cdðxd; td; xÞ ¼ cdðxd; td; YÞ. ð28Þ
To facilitate numerical implementation, we follow the standard practice (e.g. [24,26,28] and references therein)
and assume that random variables fY kðxÞgK

k¼1 are mutually independent.
The generalized polynomial chaos (gPC) represents cd in (28) as
cdðxd; td; xÞ ¼
XM

j¼1

ajðxd; tdÞUj½YðxÞ�; ð29Þ
where {Uj} are (multi-dimensional) orthogonal polynomials of the random vector Y(x), which satisfy the
orthogonality relation
hUiUji ¼ hU2
i idij. ð30Þ
Here dij is the Kronecker delta, and the ensemble average of UiUj is defined by the inner product
hUiðYÞUjðYÞi ¼
Z

UiðYÞUjðYÞwðYÞdY; ð31Þ
with w(Y) denoting a weighting function. If P is the order of the polynomials {Uj} that satisfies accuracy
requirements, then M, the number of terms in the expansion (29), is defined by M = (K + P)!/K!P!. There
exists a one-to-one correspondence between the type of the orthogonal polynomials {Ui} and the type of
the random variable Y. A few types of the gPC corresponding to the commonly used distributions are listed
in Table 1 (see [29] for a detailed discussion).

Traditional implementations of the gPC relies on a Galerkin procedure and results in stochastic Galerkin
algorithms. In these algorithms, (29) is substituted into (10)–(12), and the resulting equations are projected
onto each gPC basis to ensure that the truncation errors are orthogonal to the subspace of {Ui}. While the
gPC-Galerkin approach was successfully applied to various stochastic problems, e.g. [24–26], it often results
in a (large) system of coupled equations for each gPC expansion coefficients. This is particularly the case in
solving (15), where the presence of the metrics terms complicates the direct Galerkin projection.

As an alternative, we adopt a gPC-collocation method, which typically consists of repetitive runs of a deter-
ministic solver on a set of prescribed (deterministic) nodal points, and results in a completely uncoupled
system of equations. Hence, its implementation is trivial and parallelization straightforward. The choice of
nodal points is critical. While in one random dimension the choices are abundant (e.g. quadrature points
of orthogonal polynomials), the problem becomes much more challenging in multiple dimensions. Indeed,
1
pondence between the type of the gPC and the underlying random variables

m variable Y gPC basis {U(Y)} Support

ian Hermite (�1,1)
Laguerre [0,1)
Jacobi ½a; b�; b > a 2 R

m Legendre ½a; b�; b > a 2 R
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construction of the tensor product becomes unfeasible, since the total number of nodes in a K-dimensional
space is mK (where m is the number nodes used in one dimension) grows fast for K� 1.

We use the approach proposed in [30], where the Smolyak sparse grid is used as nodal points. It has been
shown in [30] that such a method is highly efficient for (nonlinear) stochastic differential equations. The gPC-
collocational approach retains many properties of the high-order polynomial approximation of gPC-Galerkin,
and the total number of nodes grows weakly with respect to the number of random dimensions. For large
dimensions K� 1, the number of nodes scales as 2PM = 2P(K + P)!/K!P!, where P is the polynomial order.
The factor 2P is independent of the dimension K, and therefore the nodal set can be regarded as ‘‘optimal’’. A
detailed description of the stochastic collocation method, including its error estimate and numerical proper-
ties, can be found in [30].

4. Simulation results

The quantity most readily measured and analyzed in the laboratory setting is the concentration averaged
over a cross-section in the tube A(zd;x),
a

M
ea

n

Fig. 3.
roughn
cavðzd; td; xÞ ¼ 1

A

Z 2p

0

Z Rd

0

cdrd drd d/; Aðzd; xÞ ¼ 1

2

Z 2p

0

R2
d d/. ð32Þ
In the transformed coordinate system (32) is given by
cavðn3; td; xÞ ¼ 1

A

Z 2p

0

Rd

Z 1

0

cdn1 dn1 dn2; Aðn3; xÞ ¼
1

2

Z 2p

0

R2
d dn2. ð33Þ
In all simulations, we set the Peclet number Pe = 50. Spatial discretizations are the Fourier collocation in the
angular direction and the fourth-order central difference in the remaining two directions. The second-order
Crank–Nicolson scheme is used as a temporal scheme. Spatial and temporal steps are chosen based on exten-
sive numerical tests that guarantee that solutions are resolution independent. In the analysis below, we focus
on the transitional regime, i.e., on the early time (td 6 2.5) behavior of the concentration cd in the region close
to the inlet (0 6 zd 6 2).

Fig. 3 shows the first two ensemble moments of the concentration cav(zd, td), i.e., its mean and standard
deviation (STD). The mean concentration profile remains practically unchanged for the degree of roughness
varying between 0% and 5% of the tube’s radius. This leads to a conclusion that, for this degree of roughness,
the roughness-induced dispersion of a passive scalar can neglected if one is interested in the mean behavior
alone. However, as we demonstrate below, roughness is important for uncertainty quantification.
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The STD shown in Fig. 3(b) allows one to estimate the uncertainty associated with the prediction of con-
centration dynamics in Fig. 3(a). Deterministic boundary and initial conditions (11) and (12) imply the precise
knowledge of both the concentration profile cd at time td and its value at the inlet zd = 0 for all td P 0. As one
would expect, the predictive uncertainty increases with time and the distance from the inlet. These results are
visualized in Fig. 4.

To ascertain the errors introduced by our numerical procedure, we compare in Fig. 5 the standard deviation
(STD) computed by means of the generalized polynomial chaos (gPC) with that computed by means of Monte
Carlo simulations (MCS). The two approaches give qualitatively similar uncertainty estimates (as expressed by
STD). The difference between the two solutions decreases with the number of Monte Carlo realizations.

As observed earlier, the mild roughness (<5%) of a tube’s surface does not affect the mean behavior of a
passive scalar. However, it has a pronounced effect on uncertainty quantification. Fig. 6, on which three fam-
ilies of the STD curves corresponding to different r/ and rz are shown, demonstrates this effect. As should
be expected, the increase in the surface roughness (i.e., in r/ and rz) leads to the increase in predictive
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Fig. 4. Prediction of the time evolution of concentration with the corresponding error bars. The roughness parameters are r/ = 2% and
rz = 5%.
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lines) realizations of Monte Carlo simulations. The roughness parameters are r/ = 2% and rz = 5%.
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Fig. 6. Families of the STD profiles corresponding to several degrees of roughness: r/ = 1% and rz = 1% (solid lines), r/ = 1% and
rz = 5% (dashed lines), and r/ = 5%, rz = 1% (dash-dotted lines).
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Fig. 7. Relative effect of uncertainty in angular and longitudinal roughness. The first set of the STD profiles corresponds to a fixed
r/ = 1% and several values rz, i.e., rz = 1% (solid lines), to rz = 2% (dashed lines) and rz = 5% (dash-dotted lines). The second set of the
STD profiles corresponds to a fixed rz = 1% and several values r/, i.e., r/ = 1% (solid lines), to r/ = 2% (dashed lines) and r/ = 5%
(dash-dotted lines).
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uncertainty. The uncertain angular roughness (r/) contributes more to predictive uncertainty than the uncer-
tain longitudinal roughness does. The latter point is elucidated further in Fig. 7.

5. Summary

We used the computational framework of Xiu and Tartakovsky [14] to predict transport of a conservative
scalar in a tube, whose rough surface is under-specified by data and is modeled as a random field. A key com-
ponent of this approach is the use of stochastic mappings to transform the original problem into a (better
understood) problem of stochastic equations in deterministic domains. While our previous analysis [14] relied
on a mapping defined by numerical solutions of the Laplace equations, here we propose and implement an
analytical mapping. Another key difference is that here we use the mean domain (a cylinder in the case of
a tube) as a mapping target, rather than a canonical domain (such as a square) used in [14].
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This random mapping enables us to apply the existing numerical methods for the resulting transformed
stochastic equations in fixed domains. Here we used the generalized polynomial chaos expansions, although
we emphasize that other suitable techniques can be used. The analytical nature of the proposed stochastic
mapping enabled us to consider a transient three-dimensional advection–diffusion equation. We found that


 The effects of low to moderate roughness (the normalized standard deviation of the surface roughness
below 5%) on mean dispersion of a passive scalar are negligible.

 The predictive uncertainty increases with time. Its maximum propagates away from the inlet, where con-

centration is fixed and deterministic.

 The effects of the angular roughness (roughness in the / direction) are more prominent than those of the

axial roughness (roughness in the z direction).

It remains to investigate the effects of more severe degrees of roughness. The challenges involved are both
computational and conceptual:


 A more realistic description of the roughness, which replaces (19) with a fully two-dimensional random field
representation of a tube’s surface R(z,/;x).

 The surface roughness, whose standard deviation significantly exceeds 5% and exhibits short correlation

lengths, increases the number of terms in the generalized polynomial chaos expansion, thus increasing
the computational burden.

 Under conditions of severe roughness, the validity of the lubrication approximation (8) might break down.

This will necessitate a numerical solution of a system of Stokes’ and advection–diffusion equations.
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Appendix A. Stochastic domain mapping

Consider a transformation of coordinates ðr;/; zÞ ! ð~r; ~/;~zÞ such that r ¼ frð~r; ~/;~zÞ 	 Rð~/;~zÞ~r, / ¼
f/ð~r; ~/;~zÞ 	 ~/ and z ¼ fzð~r; ~/;~zÞ 	 ~z. The corresponding diagonal metric tensor is gij = giidij, where dij is the
Kronecker delta. Since x ¼ ~rRð~/;~zÞ cos ~/, y ¼ ~rRð~/;~zÞ sin ~/ and z ¼ ~z, the scale factors are given by
hr 	 hii ¼
ffiffiffiffiffi
gii
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ox
o~r

� �2

þ oy
o~r

� �2

þ oz
o~r

� �2
s

¼ Rð~/;~zÞ; ðA:1Þ
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; ðA:2Þ
and
hz 	 h22 ¼
ffiffiffiffiffiffi
g22

p ¼
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� �2
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. ðA:3Þ
In the new coordinate system ð~r; ~/;~zÞ, the gradient and Laplacian operators are given by
r ¼ ~r
1

hr

o

o~r
þ ~/

1

h/

o

o~/
þ ~z

1

hz

o

o~z
ðA:4Þ
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and
M ¼ 1

hrh/hz

o

o~r
h/hz

hr

o

o~r

� �
þ o

o~/

hrhz

h/

o

o~/
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þ o

o~z
hrh/

hz

o

o~z

� �� �
; ðA:5Þ
respectively.
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[6] W. Jäger, A. Mikelić, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Diff. Equations

170 (2001) 96–122.
[7] C. Pozrikidis, Unsteady viscous flow over irregular boundaries, J. Fluid Mech. 255 (1993) 11–34.
[8] D.L. Jacono, F. Plouraboue, A. Bergeon, Weak-inertial flow between two rough surfaces, Phys. Fluids 17 (2005) 063602-1–063602-10.
[9] J. Rudzitis, V. Padamans, E. Bordo, R. Haytham, Random process model of rough surfaces contact, Meas. Sci. Technol. 9 (7) (1998)

1093–1097.
[10] K.M. Jansons, Determination of the macroscopic (partial) slip boundary condition for a viscous flow over a randomly rough surface

with a perfect slip microscopic boundary condition, Phys. Fluids 31 (1) (1988) 15–17.
[11] M.G. Blyth, C. Pozrikidis, Heat conduction across irregular and fractal-like surfaces, Int. J. Heat Mass Transf. 46 (8) (2003) 1329–

1339.
[12] M. Madadi, M. Sahimi, Lattice boltzmann simulation of fluid flow in fracture networks with rough, self-affine surfaces, Phys. Rev. E

(Statistical, Nonlinear, and Soft Matter Physics) 67 (2) (2003) 26309-1.
[13] S.R. Harp, R.F. Salant, An average flow model of rough surface lubrication with inter-asperity cavitation, J. Tribol. 123 (2001) 134–

143.
[14] D. Xiu, D.M. Tartakovsky, Numerical methods for differential equations in random domains, SIAM J. Sci. Comput. 27 (3) (2005)

1118–1139.
[15] G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge, 1967.
[16] S.R. Brown, Fluid flow through rock joints: The effect of surface roughness, J. Geophys. Res 92 (1987) 1337–1347.
[17] V.V. Mourzenko, J.F. Thovert, P.M. Adler, Permeability of a single fracture: Validity of the Reynolds equation, J. Phys. II France 5

(1995) 465–482.
[18] G.I. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. Roy. Soc. London, Ser. A 219 (1137) (1953)

186–2003.
[19] M. Grigoriu, Simulation of stationary non-Gaussian translation processes, J. Eng. Mech. 124 (2) (1998) 121–126.
[20] S. Sakamoto, R. Ghanem, Simulation of multi-dimensional non-gaussian non-stationary random fields, Prob. Eng. Mech. 17 (2002)

167–176.
[21] M. Shinozuka, G. Deodatis, Simulation of stochastic processes by spectral representations, Appl. Mech. Rev. 44 (1991) 191–203.
[22] F. Yamazaki, M. Shinozuka, Digital generation of non-Gaussian stochastic fields, J. Eng. Mech. 114 (7) (1988) 1183–1197.
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