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Abstract A typical subsurface environment is heterogeneous, consists of
multiple materials (geologic facies), and is often insufficiently characterised
by data. The ability to delineate geologic facies and to estimate their properties
from sparse data is essential for modeling physical and biochemical processes
occurring in the subsurface. We study the problem of facies delineation in
geologic formations by means of a subset of the machine learning techniques -
the Support Vector Machine (SVM) and its mathematical underpinning, the
Statistical Learning Theory. To demonstrate the potential of the SVM, we
randomly generate a two-dimensional porous medium composed of two
heterogeneous materials, and then reconstruct boundaries between these
materials from a few data points. We analyse the accuracy of the SVM facies
delineation, and compare the SVM performance with that of a geostatistical
approach.
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INTRODUCTION

Our knowledge of the spatial distribution of the physical properties of geologic
formations is often uncertain because of ubiquitous heterogeneity and the scarcity
and sparsity of information. Geostatistics has become an invaluable tool for
estimating such properties at points in a computational domain where data are not
available, as well as for quantifying the corresponding uncertainty. Geostatistical
frameworks treat a formation's properties (e.g, hydraulic conductivity, K) as random
processes that are characterized by multivariate probability density functions or,
equivalently, by their joint ensemble moments. Whereas spatial moments of K are
obtained by sampling K in physical space, its ensemble moments are defined in
terms of samples collected in probability space. In reality only a single realisation of
a geologic site exists. Therefore, it is necessary to invoke the ergodicity hypothesis
in order to substitute the sample spatial statistics, which can be calculated, for the
ensemble statistics, which are actually required as input to a stochastic model of
flow or contaminant transport. Ergodicity cannot be proved and requires a number
of modeling assumptions.

Machine learning provides an alternative to the geostatistical framework,
allowing one to make predictions in the absence of sufficient data parameterization,
without treating geologic parameters as random and, hence, without the need for the
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ergodicity assumptions. Intimately connected to the field of pattern recognition,
machine learning refers to a family of computational algorithms for data analysis
that are designed to automatically tune themselves in response to data. Neural
networks (Bishop, 1995) are an example of such a class of algorithms that has
found its way into hydrologic modeling. While versatile and efficient for many
important applications, such as the delineation of geologic facies (Morsey ef al.,
2003), the theory of neural networks remains to a large extent empirical in this
context. Tartakovsky and Wohlberg (2004) used a subset of the machine learning
techniques - the Support Vector Machine (SVM) and its mathematical
underpinning, the Statistical Learning Theory (SLT) of Vapnik (1998) - which is
ideally suited for the problem of facies delineation in geologic formations. While
similar to neural networks in its goals, the SVM is firmly grounded in rigorous
mathematical analysis, which allows one not only to assess its performance but to
bound the corresponding errors as well. Like other machine learning techniques, the
SVM and SLT enable one to treat the subsurface environment and its parameters as
deterministic. Uncertainty associated with insufficient data parameterization is then
represented by treating sampling locations as a random subset of all possible
measurement locations. Since such a formulation is ideally suited for hydrologic
applications, the use of the SVM in the context of subsurface imaging deserves to
be fully explored. This is precisely the objective of this paper, where we
demonstrate the potential of the SVM by means of a synthetic example.

PROBLEM SETTING

We consider a problem of reconstructing the spatial location of the boundary between
two heterogeneous materials M; and M, from spatially distributed parameter data. The
latter can consist of hydrodynamic dats (e.g., hydraulic conductivity), geophysical data
(e.g., electric resistivity), and/or sedimentological data, collected at N selected
locations x; = (x;, y})', where i = 1, ..., Nand " is transpose. The first step in our facies
delineation procedure is to analyse samples distributions with the goal of assigning an
indicator function:

Ix) 1 x,eM, M
X,)=
: 0 x,eM,

to each point where data are available. Let I(x, o) be an estimate of a “true” indicator
field /(x), whose adjustable parameters o are consistent with, and determined from, the
available data. Our objective is to construct an estimate that is as close to the true field
as possible, i.e., to minimize the difference between the two, ||[/-1||.

SUPPORT VECTOR MACHINES

The theoretical foundation of SVM techniques relies on the definition of a bound for
the expected risk, R..,, which is provided by the maximum margin SVM (Cristianini
and Shawe-Taylor, 2000; Scholkopf and Smola, 2002). The simplest maximum margin
SVM deals with linearly separable data collected from perfectly stratified geologic
media, where different geologic facies are separated by planes (in three dimensions) or
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straight lines (in two dimensions). A description of the linear maximum SVM is
provided by Tartakovsky and Wohlberg (2004) who applied the method to reconstruct
a linear boundary between two materials in a two-dimensional domain on the basis of a
few selected data points. In most practical problems, boundaries between geologic
facies are significantly more complex than a straight line or a plane.

To account for this geometric complexity, one can generalize the linear maximum
margin SVM by noting that data which cannot be separated by a straight line or plane
in the two- or three-dimensional space of observation often become linearly separable
(by a hyperplane) when projected onto another, usually higher-dimensional space. In
this case, it can be shown (e.g., Wohlberg e al., 2005) that the required indicator
function is provided by the following decision function:

7 () =sign| £ TN(xx,) +5) @

Here J(x) = 2 I(x) — 1 (so that J = —1 whenever / = 0 and J = 0 whenever I = 1), J; =
J(x;), the kernel N (x, x’) = F(x) F(x’), F being a mapping of the n-dimensional
physical space onto a m-dimensional space (known as a feature space) in which linear
SVM can be applied, y; (i = 1, .., N) is defined as the solution of the dual

optimisation problem

N 1~ N
myaxz Z;«yi —52}2‘17,‘7.#]1‘]1&("[’)‘]‘) 3)
= i=] j=
and
* * N *
b'=——a'(x,+x_); a =YyJF(x,) 4)
i=1
where x: and x_ denote arbitrary support vectors for which J = 1 and J = -1,

respectively. We will consider the performance of the following set of expressions for
the kernel N appearing in (2)

Npom(x, X)) =(x - x* + 1Y Nsi6(x, X)) = tanh(px - X" + p) (%)
and the
Nerp(X, X) = exp(—[x - x| /26%);  Nera(x, X’) = exp(-[x — x| (257 (6)

where Npry, Nsig, Ners, and N grg denote a polynomial kernel of order p, a sigmoid
kernel, an exponential radial basis kernel, and a Gaussian radial basis function kernel,

respectively; here o and p are fitting parameters.

SYNTHETIC EXAMPLE: RESULTS AND COMMENTS
To demonstrate the applicability of SVMs to subsurface imaging, and to elucidate its

relative advantages with respect to a geostatistical approach, we reconstruct, from a
few data points selected at random from a uniform distribution, the boundaries
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between two heterogeneous geologic facies in a synthetic porous medium shown in
Figure la. This synthetic example was constructed by generating two autocorrelated,
weakly stationary, and normally distributed processes, representing two distinct spatial
distributions of log hydraulic conductivity ¥ = InK with the ensemble means of —0.1
and 7.0. Both distributions have unit variance and Gaussian autocorrelation with unit
correlation scale, and are mutually uncorrelated. None of these features is essential for
the implementation of our approach. The composite porous medium in Figure la is
constructed by setting an arbitrary shape of the internal boundary between the two
materials and by assigning values of log-conductivity to cells in the domain. Assigning
an mdicator function with a threshold value of 4.0 to each element on the grid results
in Figure 1b.

We use an SVM (Gunn, 1998) to reconstruct the boundary between the two
geologic facies in Fig. 1b from a few (randomly) selected data points. Sampling
densities ranging from 0.25% (9 data points) to 20% (720 data points) were
considered. Figure 2 compares the performance of the SVMs whose kernels are given
by the polynomial (PLM), exponential radial basis (ERB), Gaussian radial basis
(GRB), and sigmoid (SIG) functions. For each sampling density, we randomly
generated 20 realizations of the locations of data points and counted the number of
clements on the grid that were misclassified by the SVMs. The error in Fig. 2
represents the average (over 20 realizations) number of misclassified elements. One
can see that the kernels given by the exponential radial basis (ERB) function provide
the best performance. Wohlberg et al. (2005) noted that, for sampling density
exceeding 2%, the performance of the SVM is relatively insensitive to the choice of
the fitting parameter ¢ in (6).

Fig. 1 (a) Image of the synthetic data of log-hydraulic conductivity (values range
between -2.04 and 9.89) (b) Classification of data obtained by setting a threshold
value of 4.0.

This finding is encouraging, since the optimal choice of ¢ is nontrivial. Figures 3a,
b show the geologic facies reconstructed by an ERB SVM with ¢ = 1.0 from 9 and 180
sample points, respectively. The locations of sample points are indicated by the lighter
shades.

The comparison of these reconstructions with the true field in Figure 1a, b shows
that even very sparse sampling might be sufficient for the SVMs to capture general
trends in the spatial arrangement of geologic facies. However, the performance of the
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SVMs on such sparse data sets is highly sensitive to the locations of data points. As the
sampling density increases, the SVMs capture finer features of the spatial arrangement
of geologic facies, and their performance is less dependent on a sampling realization.
Finally, we compare the accuracy of the facies reconstruction by means of the SVM
with that obtained by the geostatistical approach (GSA) proposed by Ritzi et al. (1998).
It is important to note that this and other geostatistical approaches to facies delineation
assume that the relative volumes occupied by the two materials obtained from a sample
are representative of the whole field.
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Fig. 2 Error rates corresponding to the SVMs with polynomial (PLM), exponential
radial basis (ERB), and Gaussian radial basis (GRB) kernels.

Fig. 3 (a) Classification of data in Figure la, obtained by an ERB SVM using 9
sample points (0.25% sampling density); (b) Classification of data in Figure 1a,
obtained by an ERB SVM using 180 sample points (5% sampling density).

This assumption is usually difficult to validate a priori. Figure 4 compares the
performance of the GSA and the SVM with the ERB kernel and 6 = 1.0 both averaged
over 20 trials for each of sampling densities. When the sampling density is large
enough, both methods perform equally well, with the SVM being slightly more
accurate than the GSA. Two factors, however, argue strongly in favor of SVMs. First,
they perform relatively well even on highly sparse data sets (see the boundary
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reconstruction from 9 sampling points in Figure 4), on which GSA fails. Second,
SVMs are highly automated, while GSAs require manual data analysis to construct
spatial variograms.
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Fig. 4 Error rates corresponding to GSA and SVM approaches.

CONCLUSIONS

We explored the potential of the statistical learning theory in general, and support
vector machines (SVMs) in particular, to delineate geologic facies from limited data.
This was accomplished (i) by reconstructing, from a few data points, a synthetic
randomly generated porous medium consisting of two heterogeneous materials; and
(ii) by comparing the performance of the SVMs with that of the geostatistical approach
(Ritzi et al., 1994). Our analysis leads to the following major conclusions: (a) for any
sampling densities the SVMs slightly outperforms the geostatistical approach in
reconstructing the boundaries between two geologic facies, while significantly
reducing the computational time; (b) For very low sampling densities, which make the
inference of statistical parameters meaningless, the geostatistical approach fails, while
the SVMs still offer a reasonable reconstruction of the boundaries.
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