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Abstract. We propose a new concept of the effective properties of composites with uncertain
spatial arrangements of constitutive materials and within-material properties. Rather than replacing
a heterogeneous property with a constant effective parameter, we seek to preserve the internal macro
structure of a composite. This general concept is used to derive the effective conductivity of composite
heterogeneous media that consist of two materials whose internal geometries and conductivities are
uncertain. Our analysis relies on a random domain decomposition to explicitly account for the
separate effects of material and geometric uncertainties on the ensemble moments of pressure and
flux. We present a general expression for the effective (apparent) conductivity of such media and
analyze it in detail for one- and two-dimensional steady flows in bounded random media composed
of two materials with highly contrasting conductivities.
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1. Introduction. Effective (upscaled) parameters have proved to be a useful
tool for modeling heterogeneous systems. Such models often require assigning system
parameters to large grid blocks, while experimental data are usually available at a
much smaller scale. These parameters can be obtained through either deterministic
approaches, such as homogenization and inverse modeling, or stochastic averaging—
the approach we pursue here. A plethora of approaches used to obtain effective
parameters for composites are reviewed in [3]. These and other methods seek to
replace a heterogeneous system with a homogeneous system that preserves some global
properties. Consider, for example, diffusion in a medium composed of several hetero-
geneous materials whose spatial arrangement is uncertain. Standard upscaling or
homogenization techniques substitute the effective diffusion coefficient Keff for the
space-varying diffusion coefficient K(x) in a way that preserves a global mass flux
induced by a global gradient of substance. While often useful, such effective pa-
rameters fail to predict important characteristics of the system behavior, e.g., the
existence of preferential flow paths in porous media. Rapid advances in noninvasive
data acquisition techniques, such as magnetic resonance imaging and computerized
axial tomography, make it unnecessary to homogenize a system in ways that ignore
the internal composition of a material. What is required instead is to derive effective
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parameters that account for uncertainties in both the material properties and internal
boundaries. This paper takes a first step in this direction.

Stochastic approaches to upscaling are grounded in the fact that, in realistic
settings, system parameters are deduced from measurements at selected locations and
depth intervals, where their values depend on the scale and mode of measurement.
Often, the measurement support is uncertain and data are corrupted by experimental
and interpretative errors. Estimating the parameters at points where measurements
are not available entails additional errors. Treating the system parameters as random
fields provides a natural framework for dealing with these errors and uncertainties.
Within this framework a system parameter K(x) is characterized by a multivariate
probability density function or, equivalently, its joint ensemble moments. Thus, K(x)
varies not only across the real space coordinates x, but also in probability space
(this variation may be represented by another coordinate ξ, which, for simplicity of
notation, is usually suppressed). Whereas spatial moments of K are obtained by
sampling K(x) in real space (across x), its ensemble moments are defined in terms of
samples collected in probability space (across ξ).

Randomness of system parameters renders partial differential equations (PDEs)
governing the dynamics of system states stochastic. Effective parameters are then de-
fined as coefficients in the ensemble-averaged stochastic PDEs. Consider, for example,
Darcy’s law q = −K∇h, which postulates a linear relationship between the mass flux
(Darcian velocity) q(x) and the pressure (hydraulic head) gradient ∇h(x) in porous
media. Apparent conductivity Kapp(x) is defined as a coefficient of proportionality
in the ensemble-averaged Darcy’s law 〈q〉 = −Kapp∇〈h〉. The term “apparent” was
introduced in [2] to emphasize that the effective parameters thus defined are local
quantities that depend not only on a material’s properties, but on external forces
(e.g., boundary conditions) as well.

Much of the existing literature on effective conductivity is limited to mildly het-
erogeneous media composed of a single material whose log conductivity is treated as
a statistically homogeneous (stationary) random field with small variance (e.g., [1]).
One recent example of this approach [5] explores the tensorial nature of apparent
transmissivity for a rectangular flow domain by the localization and perturbation ex-
pansion of the nonlocal mean flow equations in σ2

Y , the variance of Y = lnK. The
requirement that σ2

Y � 1 is crucial for closing the moment differential equations. At
the same time, it clearly limits the applicability of such analyses.

To derive effective parameters that preserve the internal structure of a highly
heterogeneous composite, we employ the random domain decomposition approach [6,
7]. It enables us to deal with uncertainty in both the spatial arrangement of composite
materials and their parameters. While the approach we propose is applicable to a wide
variety of physical systems, in this paper we focus on the derivation of the effective
conductivity for porous media composed of two materials. The main results of our
study are formulated in sections 3 and 4, where we provide a general expression for
effective conductivity and analyze it, both analytically and numerically, for one- and
two-dimensional flow configurations.

2. Problem formulation. Consider steady-state saturated flow in a flow do-
main Ω = Ω1 ∪Ω2, which is composed of two disjoint subdomains Ω1 and Ω2, sepa-
rated by a contact surface Γ12 = Ω1 ∩ Ω2. Flow is described by the combination of
Darcy’s law and mass conservation,

q = −K∇h and −∇ · q + f = 0,(2.1)
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where f is a random source term. Random hydraulic head H and flux Q are prescribed
on the Dirichlet (ΓD) and Neumann (ΓN ) boundary segments (ΓD ∪ ΓN = ∂Ω),
respectively,

h(x) = H(x), x ∈ ΓD,(2.2a)

−q(x) · n(x) = Q(x), x ∈ ΓN ,(2.2b)

where n is the unit vector normal to the boundary.
Let the random hydraulic conductivity field belong to two distinct statistically

independent populations,

K(x) =

{
K1(x), x ∈ Ω1,

K2(x), x ∈ Ω2.
(2.3)

(Note that one can easily generalize the results obtained below to incorporate corre-
lations between the K1 and K2 fields by following [7].) Then the flow equation (2.1)
can be rewritten as

∇ ·Ki∇h + f = 0, x ∈ Ωi.(2.4)

The boundary conditions (2.2) are now supplemented by the continuity conditions on
the random interface Γ12,

h(x−) = h(x+)(2.5a)

and

K(x−)∇h(x−) · n(x−) = K(x+)∇h(x+) · n(x+).(2.5b)

Here the superscripts − and + indicate the limits as x → Γ12 from Ω1 and Ω2,
respectively.

In this formulation, the randomness of K(x) stems from two factors: small-scale
within-material uncertainty in Ki(x) and large-scale uncertainty in the spatial ar-
rangement of Ωi or, equivalently, in the boundary Γ12. Hence pK(k), the proba-
bility density function of K, is replaced with the joint probability density function
pK(k, γ) = pK(k|γ)pΓ(γ). While for highly contrasting composites pK(k) is bimodal
with large variance σ2

K , the conditional distribution pK(k|γ)—representing the ran-
dom fluctuations of conductivity within each material Ωi—is likely to be unimodal
with small variances σ2

Ki
. This is important because closure approximations associ-

ated with the (conditional) stochastic averaging of the flow equation (2.4) are carried
out within each subdomain Ωi separately.

3. Apparent conductivity. Applying the Reynolds decomposition to represent
random fields R = 〈R〉 + R′ as the sum of their ensemble means 〈R〉 and zero-mean
fluctuations R′ and taking the ensemble mean of (2.4) yields the mean Darcy’s law,

〈q(x)〉 = −〈Ki(x)〉∇〈h(x)〉 + 〈ri(x)〉, x ∈ Ωi,(3.1)

where “residual” flux 〈ri〉 = −〈K ′
i∇h′〉 represents the single point cross-covariance

between the fluctuations of head gradient and hydraulic conductivity. The ensemble
mean of a random field R is given by

〈R(x)〉 =

∫∫
R(k, γ;x)pK(k, γ)dkdγ =

∫
〈R(γ;x)〉ΓpΓ(γ)dγ,(3.2a)
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where

〈R(γ;x)〉Γ =

∫
R(k, γ;x)pK(k|γ)dk(3.2b)

is the ensemble mean of R conditioned on the location of the internal boundary Γ12.
Let G be a random Green’s function for (2.4) subject to (2.2) and (2.5), but with

the fixed (known) boundary Γ12. (Realizations of Γ12 come from its distribution pΓ.)
Then conditional residual flux can be found as a solution of the integral equation [7]

〈ri(γ;x)〉Γ =

∫
Ωi

ai(γ;y,x)∇〈h(γ;y)〉Γdy +

∫
Ωi

bi(γ;y,x)〈ri(γ;y)〉Γdy,(3.3)

with the kernels ai and bi taking the form of second-rank tensors

ai = 〈K ′
i(x)K ′

i(y)∇y∇T
xG(γ;y,x)〉Γ, bi = 〈K ′

i(x)∇y∇T
xG(γ;y,x)〉Γ.(3.4)

It follows from (3.1) and (3.3) that the mean Darcy’s flux 〈q(x)〉 is nonlocal; i.e., it
depends on the mean head gradient ∇〈h〉 at points other than x. Hence the apparent
conductivity does not exist, in general. This finding is in line with numerous previous
investigations, e.g., [1] and references therein.

Assume that both the mean pressure gradient and the residual flux vary slowly in
space [5] within Ωi (i = 1, 2). Then (3.3) can be localized, leading to an approximate
expression

〈ri(γ;x)〉Γ ≈ Ai(γ;x)∇〈h(γ;y)〉Γ + Bi(γ;x)〈ri(γ;y)〉Γ,(3.5)

where

Ai =

∫
Ωi

ai(γ;y,x)dy and Bi =

∫
Ωi

bi(γ;y,x)dy.(3.6)

Substituting (3.5) into a conditional version of (3.1) yields the conditional mean
Darcy’s law

〈q(x)〉Γ = −Kappi
(γ;x)∇〈h(x)〉Γ, x ∈ Ωi.(3.7)

The conditional apparent conductivity tensor in (3.7) is given by

Kappi
= 〈Ki(x)〉ΓI − ki(γ;x),(3.8a)

where I is the identity tensor and

ki(x) =
[
I − Bi(x)

]−1
Ai(x).(3.8b)

Evaluation of the conditional apparent conductivity requires a closure approxi-
mation for the tensors ai and bi in (3.4). Following [5], we obtain such a closure
by using perturbation expansions in σ2

Yi
, the variances of log-hydraulic conductivities

Yi = lnKi (i = 1, 2). Consider asymptotic expansions

〈K〉Γ = Tgi
(1 + σ2

Yi
/2 + · · · ), T = T (0) + T (1) + · · · ,(3.9)

where Kgi = exp(〈Yi〉) is the geometric mean of the conductivity of the ith material
and T stands for h, q, r, and other relevant random fields. The superscript (n) denotes
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the nth-order terms, i.e., the terms that are proportional to σ2n
Yi

. It follows from
(3.5) and (3.6) that the first-order (in σ2

Yi
) approximation of the localized conditional

residual flux 〈ri〉Γ is given by 〈ri〉Γ = A
(1)
i ∇〈h〉(0)Γ , where [7]

A
(1)
i =

∫
Ωi

a
(1)
i (γ;y,x)dy and a

(1)
i = σ2

Yi
K2

gi
ρYii∇y∇T

xG.(3.10)

Here ρYii(x,y) is the two-point correlation function of Y for x,y ∈ Ωi and G = 〈G〉(0)Γ .
In analogy to [5], it then follows from (3.8) that, up to the first order in σ2

Yi
, the

conditional apparent conductivity tensor is given by K
[1]
appi

= K
(0)
appi

+ K
(1)
appi

,

K[1]
appi

(γ;x) = Kgi

(
1 +

σ2
Yi

2

)
I − σ2

Yi
K2

gi

∫
Ωi

ρYii(y,x)∇y∇T
xG(γ;y,x)dy.(3.11)

The final step in obtaining the apparent conductivity consists of the ensemble aver-
aging of (3.11) by computing (3.2b).

The perturbation approximation in (3.11) is carried out in terms of the variances
within the materials σ2

Yi
, which are small in most natural formations. However, if they

are not small enough for (3.11) to remain accurate, one can generalize this expression
by means of the Matheron–Landau conjecture [4].

4. Computational examples. To analyze our general expression for the appar-
ent conductivity of composite media in detail, we consider one- and two-dimensional
flows in layered media. The one-dimensional example is amenable to analytical anal-
ysis, while the two-dimensional example relies on numerical evaluation of the Green’s
function and quadratures in (3.11).

4.1. One-dimensional flow. Consider the one-dimensional version of (2.4)
with f ≡ 0, which is defined on the interval x ∈ Ω = (0, 1). The boundary con-
ditions are

K
dh

dx
= −Q for x = 0(4.1a)

and

h(x) = 0 for x = 1.(4.1b)

The flow domain Ω is composed of two materials Ω1 = [0, β] and Ω2 = [β, 1] joined at
the point x = β. The continuity conditions (2.5) at the interface x = β become

h(β−) = h(β+) and K1(β
−)

dh(x = β−)

dx
= K2(β

+)
dh(x = β+)

dx
.(4.2)

The subdomains Ω1 and Ω2 are characterized by random conductivity fields K1 and
K2, respectively. These fields are assumed to be log-normal, statistically homoge-
neous, and mutually uncorrelated. The fields Yi = lnKi are described by their geo-
metric means Kgi = exp(〈Yi〉), variances σ2

Yi
, and correlation functions ρYi(y, x). The

contact point β is assumed to have a truncated Gaussian distribution with mean 〈β〉
and variance σ2

β , so that its probability density function has the form

p(β) =
1

W exp

[
−1

2

(
β − 〈β〉

σβ

)2
]
,(4.3a)
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where

W(〈β〉, σβ) =

∫ 1

0

exp

[
−1

2

(
β − 〈β〉

σβ

)2
]
dβ.(4.3b)

4.1.1. First-order approximation. It is easy to verify that the conditional
mean Green’s function G(β; y, x) is given by

G(y, x ≤ β) =

⎧⎨
⎩

x−y
Kg1

H(y − x) + β−x
Kg1

+ 1−β
Kg2

, 0 < y ≤ β,

1−y
Kg2

, β < y < 1
(4.4a)

and

G(y, x > β) =

⎧⎨
⎩

1−x
Kg2

, 0 < y ≤ β,

x−y
Kg2

H(y − x) + 1−x
Kg2

, β < y < 1,
(4.4b)

where H(z) is the Heaviside function. Substituting (4.4) into the one-dimensional
version of (3.11) yields, for an arbitrary ρYi

(y, x),

K [1]
app(β;x) = Kg1

(
1 −

σ2
Y1

2

)
H(β − x) + Kg2

(
1 −

σ2
Y2

2

)
H(x− β).(4.5)

To ascertain the accuracy of the perturbation approximation of the conditional
apparent conductivity, we derive in the next section the corresponding exact expres-
sion.

4.1.2. Exact solution. Integrating the flow equation once and taking the con-
ditional mean yields

d〈h〉
dx

= −Q

[
H(β − x)

Kh1

+
H(x− β)

Kh2

]
,(4.6)

where Khi = Kgi
exp(−σ2

Yi
/2) is the harmonic mean of Ki (i = 1, 2). Hence, the

conditional apparent conductivity is given by

K−1
app(β;x) =

H(β − x)

Kh1

+
H(x− β)

Kh2

.(4.7)

Comparing (4.5) and (4.7), while recalling the definition of the harmonic mean, shows
that (4.5) is indeed the first-order approximation of the exact expression (4.7). Since
the approximation (4.5) is analogous to the expansion exp(−σ) ≈ 1 − σ, it remains
valid as long as σ2

Yi
< 2.

It is important to contrast our expression for the (conditional) apparent con-
ductivity with the traditional apparent conductivity that effectively homogenizes the
medium. One can easily verify that the latter is given by the weighted sum of the
harmonic means of K1 and K2,

K−1
hom =

β

Kh1

+
1 − β

Kh2

.(4.8)

Of course, the traditional definition of apparent conductivity is constant in space.
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Fig. 4.1. Relative errors between the exact and perturbation expressions for the apparent con-
ductivity Kapp as a function of the variance of log conductivity σ2

Y1
= σ2

Y1
= σ2

Y .

The final step in obtaining the apparent conductivity is to average the conditional
apparent conductivity (4.7) in the probability space of β. For β whose probability
density function is given by (4.3), the apparent conductivity takes the form

K−1
app(x) =

erf(u) − erf(u0)

erf(u1) − erf(u0)

[
1

Kh2

− 1

Kh1

]
+

1

Kh1

,(4.9)

where

u =
x− 〈β〉√

2σβ

, u0 = − 〈β〉√
2σβ

, u1 =
1 − 〈β〉√

2σβ

.(4.10)

By the same token, the first-order approximation of the apparent conductivity is
obtained by averaging (4.5). Relative errors between the two solutions are shown in
Figure 4.1. These errors are uniform in space and, as expected, increase exponentially
with the variance of log conductivities σ2

Y1
= σ2

Y2
= σ2

Y .
Figure 4.2 shows the spatial variation of the apparent conductivity Kapp(x) in

(4.9) for 〈Y1〉 = 3.5, 〈Y2〉 = 7.0, σ2
Y1

=σ2
Y2

= 1, 〈β〉= 0.25 and several values of σβ .
Also shown in this figure is the constant Kapp corresponding to the homogeneous
model (4.8). As can be seen from Figure 4.2 and following directly from (4.9), the
apparent conductivity Kapp(x) is given by the harmonic means Kh1

or Kh2
, when x is

deep within the subdomains Ω1 or Ω2, respectively. The width of a transitional zone
between these two harmonic means increases with uncertainty in β, i.e., with σβ . If β
is known with certainty (σβ = 0), Kapp(x) becomes a step function, and (4.9) reduces
to (4.7).

Figure 4.3 elucidates a relative impact of the two sources of uncertainty (ran-
domness) on apparent conductivity Kapp. The full model (solid line) corresponds to
the random β (〈β〉 = 0.5 and σβ = 0.1) and random log conductivities (〈Y1〉 = 3.5,
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Fig. 4.2. Apparent conductivity Kapp for the one-dimensional random composite with uncertain
internal geometry β and conductivities K1 and K2.
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Fig. 4.3. A relative impact of the two sources of uncertainty on apparent conductivity Kapp:
Uncertain geometry β and uncertain conductivities K1 and K2.

〈Y2〉 = 7.0, and σ2
Y1

= σ2
Y2

= σ2
Y = 0.5). The simplified models assume that either Yi,

i = 1, 2 (broken line), or β (dotted line) is deterministic, i.e., that either σ2
Y = 0 or

σβ = 0, respectively. One can see that, in general, both sources of uncertainty have
to be accounted for in deriving expressions for apparent conductivity.
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Fig. 4.4. Two-dimensional flow domain.

4.2. Two-dimensional flow. Consider flow in a square domain composed of
two materials separated by an uncertain boundary (Figure 4.4). The materials are
characterized by log conductivities Yi = lnKi, which are treated as statistically ho-
mogeneous Gaussian random fields with means 〈Y1〉 = 3.5 and 〈Y2〉 = 7.0, variances
σ2
Y1

=σ2
Y2

= 1, and two-point exponential correlation functions ρYi
of unit correlation

lengths, λY1
=λY2

= 1. A random location of the internal boundary between the two
materials x1 =β is taken to be Gaussian with mean 〈β〉=L/2 and variance σ2

β , where
L is the square’s size.

The Dirichlet boundary conditions are prescribed on the vertical boundaries,
h(0, y) =Ha and h(L, y) =Hb, while the remaining two boundaries (y = 0, L) are
assumed to be impermeable. In the reported simulations, we set Ha = 1.6, Hb = 1.0,
and L= 12.

The apparent conductivity Kapp in (3.11) is obtained by evaluating numerically
(i) the conditional mean Green’s functions for each realization of β, (ii) the quadra-
tures in (3.11), and (iii) the weighted averages of the conditional apparent conduc-
tivities, whose weights are determined from the distribution of β. Figure 4.5 shows
a horizontal cross-section x2 = L/2 of Kapp for several values of σβ . The apparent
conductivity of the two-dimensional composite exhibits the same general behavior as
its one-dimensional counterpart.

5. Conclusions. We derived a general expression for the apparent conductivity
of materials composed of multiple materials, whose internal geometries and conduc-
tivities are uncertain. This study leads to the following major conclusions:

1. Apparent properties of composite materials should preserve their internal
structure whenever possible. This is crucial for probabilistic analyses of the
critical behavior of physical systems, such as the existence of preferential flow
paths in natural porous media.
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Fig. 4.5. A horizontal cross-section x2 = L/2 of the apparent conductivity Kapp for the two-
dimensional random composite with uncertain internal boundary x1 = β and conductivities K1

and K2.

2. For steady-state flow in bounded heterogeneous composite media, we used
perturbation expansions in the variances of log conductivities to derive a
general expression for the apparent conductivity. Since the conductivity of
each material is more uniform than that of a composite as a whole, this
expression is more accurate and robust than its homogeneous counterpart.

3. The general perturbation expression for apparent conductivity is analyzed
in detail for one- and two-dimensional steady flow in the bounded porous
medium composed of two materials. Both log conductivities and the inter-
nal boundaries between materials are assumed to be Gaussian. Away from
the internal boundaries, the apparent conductivity is given by the harmonic
means of the corresponding conductivities of each material. Within a transi-
tional zone around the boundary, the apparent conductivity varies smoothly
between these harmonic means. The width of the transitional zone increases
with the degree of uncertainty about the internal boundary.
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