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[1] Insufficient site parameterization remains a major
stumbling block for efficient and reliable prediction of
flow and transport in a subsurface environment. The lack of
sufficient parameter data is usually dealt with by treating
relevant parameters as random fields, which enables one to
employ various geostatistical and stochastic tools. The
major conceptual difficulty with these techniques is that
they rely on the ergodicity hypothesis to interchange spatial
and ensemble statistics. Instead of treating deterministic
material properties as random, we introduce tools from
machine learning to deal with the sparsity of data. To
demonstrate the relevance and advantages of this approach,
we apply one of these tools, the Support Vector Machine, to
delineate geologic facies from hydraulic conductivity
data. INDEX TERMS: 1829 Hydrology: Groundwater
hydrology; 1869 Hydrology: Stochastic processes; 3210
Mathematical Geophysics: Modeling. Citation: Tartakovsky,
D. M., and B. E. Wohlberg (2004), Delineation of geologic
facies with statistical learning theory, Geophys. Res. Lett., 31,
L18502, doi:10.1029/2004GL020864.

1. Introduction

[2] Our knowledge of the spatial distribution of the
physical properties of geologic formations is often uncertain
because of ubiquitous heterogeneity and the sparsity of data.
Geostatistics has become an invaluable tool for estimating
such properties at points in a computational domain where
data are not available, as well as for quantifying the
corresponding uncertainty. Geostatistical frameworks treat
a formation’s properties, such as hydraulic conductivity
K(x), as random fields that are characterized by multivariate
probability density functions or, equivalently, by their joint
ensemble moments. Thus, K(x) is assumed to vary not only
across the real space coordinates x, but also in probability
space (this variation may be represented by another coor-
dinate &, which is usually suppressed to simplify notation).
Whereas spatial moments of K are obtained by sampling
K(x) in real space (across x), its ensemble moments are
defined in terms of samples collected in probability space
(across €). Since in reality only a single realization of a
geologic site exists, it is necessary to invoke the ergodicity
hypothesis in order to substitute the sample spatial statistics,
which can be calculated, for the ensemble statistics, which
are actually required. Ergodicity cannot be proved and
requires a number of modeling assumptions [Rubin, 2003,
section 2.7, and references therein].

[3] Machine learning provides an alternative to the geo-
statistical framework, allowing one to make predictions in
the absence of sufficient data parameterization, without
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treating geologic parameters as random and, hence, without
the need for the ergodicity assumptions. Intimately
connected to the field of pattern recognition, machine
learning refers to a family of computational algorithms for
data analysis that are designed to automatically tune them-
selves in response to data. Neural networks [Bishop, 1995]
are an example of such a class of algorithms that has found
its way into hydrologic modeling. While versatile and
efficient for many important applications, such as the
delineation of geologic facies [Moysey et al., 2003], the
theory of neural networks remains to a large extent empir-
ical in this context.

[4] Here we introduce another subset of the machine
learning techniques — the Support Vector Machine
(SVM) and its mathematical underpinning, the Statistical
Learning Theory (SLT) of Vapnik [1998] — which is ideally
suited for the problem of facies delineation in geologic
formations. While similar to neural networks in its goals,
the SVM is firmly grounded in rigorous mathematical
analysis, which allows one not only to assess its perfor-
mance but to bound the corresponding errors as well. Like
other machine learning techniques, the SVM and SLT
enable one to treat the subsurface environment and its
parameters as deterministic. Uncertainty associated with
insufficient data parameterization is then represented by
treating sampling locations as a random subset of all
possible measurement locations. Since such a formulation
is ideally suited for hydrologic applications, the use of the
SVM in the context of subsurface imaging deserves to be
fully explored. This letter is the first step in this direction.

[s] We consider an idealized problem of identifying a
boundary between two geologic facies from a sparsely
sampled parameter K. We formulate the problem in
Section 2, and provide a brief description of a geostatistical
approach to its solution in Section 3. Section 4 introduces
Support Vector Machines, which we use in Section 5 to
estimate the boundary between the two heterogeneous
facies in a simulated problem.

2. A Problem of Facies Delineation

[6] Consider the problem of reconstructing a boundary
between two heterogeneous materials (geologic facies) from
parameter data, say conductivity measurements K; = K(X;),
collected at selected locations x; = (x;, yi)T, where i €
{1,..., N}. The first step to the facies delineation consists
of analyzing a data histogram to assign to each data point a
value of the indicator function,

1 x; €M,
1(x;) = ()
0 x; €M,

where M; and M, are the two facies.
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Figure 1. A schematic representation of the boundary
between two heterogencous facies M; and M, (located
above and below the boundary, respectively) in a perfectly
stratified geologic formation. The + and ® signs indicate the
locations where a parameter K is sampled.

[7] Let Z(x, o) be an estimate of a “‘true” indicator field
I(x), whose adjustable parameters o are consistent with,
and determined from, the available data {/(x;)}Y,. One
would like to construct an estimate, that is as close to the
true field as possible, i.e., to minimize the difference
between the two, |[I — Z||. In general, both the indicator
field 7 and the choice of sampling locations {x;}%; can be
modeled as random, and be described by a joint probability
distribution P(/, x) or, equivalently, a joint probability
density function p(/, x). Then the problem of obtaining
the best estimate of the indicator field is equivalent to
minimizing the functional

R:/||IfZ|| dP([,x):/ | 1—7Z]| p(I,x)dldx. (2)

Unfortunately, since in reality only a single geologic
formation exists, there is no direct way to evaluate P(/, X).
Geostatistical and Statistical Learning techniques provide
two alternatives for evaluating equation (2).

[8] To compare these alternative approaches, we con-
struct a synthetic perfectly stratified geologic formation
consisting of two highly contrasting heterogeneous layers
M, and M,, and then reconstruct the linear boundary based
on the values of the indicator function / (as inferred from
conductivity measurements) at a number of randomly se-
lected sample points. Figure 1 illustrates the form of the
boundary and an example set of sample points, designated
by the + and ® signs for locations where / =1 and / =0
respectively. Even though this setup is somewhat simplistic,
it is ideal for demonstrating the main concepts of the SVM.
We will also comment on generalizations that are necessary
for applying the SVM to more general problems of facies
delineation.

3. Geostatistical Approaches

[9] Geostatistical approaches use the L? norm in
equation (2), and treat

1. the indicator function / is a random field, and

2. the choice of sampling locations {x;} 2, as deterministic.
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[t1o] Then the problem of minimizing equation (2)
reduces to the minimization of the indicator variance

o2 = / (I —T)%dP(I) = / (I =T)°p(1)dl. 3)

To approximate p([), geostatistical approaches assume
ergodicity, i.e., that the sample statistics of /, such as mean
Ly, variance o7, and correlation function p; computed from
spatially distributed data {/(x;)}Y, can be substituted for the
ensemble statistics. Furthermore, it is necessary to assume
that these sampling statistics are representative of the whole
field.

4. Support Vector Machines

[11] The statistical learning theory of Vapnik [1998] often
uses the L' norm in equation (2), and treats

1. the indicator function / as deterministic, and

2. the choice of sampling locations {xi}fil as random.

[12] Then the problem of minimizing equation (2)
reduces to the minimization of the expected risk

Rexp = % /\1 — T|dP(x) = % /|1 ~Ip)dx.  (4)

Rather than attempting to estimate probability distributions,
such as p(x), from spatially distributed data, statistical
learning replaces the expected risk Ry, with the empirical
risk

1 N
Remp:ﬁ;V(xl')_I(xi)" (5)

These two quantities are related by a probabilistic bound,
Rexp < Remp + C, where the function C depends on the
Vapnik - Chervonenkis (VC) dimension and the number of
data points N [Burges, 1998; Cristianini and Shawe-Taylor,
2000, chap. 4]. The VC dimension represents a measure of
the complexity of the family of functions Z. Analysis of the
tightness of this bound, which while providing a useful
theoretical motivation for the SVM described below, is
often too loose to be of much practical significance, is an
active area of research in the field of statistical learning.

[13] The SVM is a relatively recent technique that
has attracted a great deal of interest due to its excellent
performance on a wide range of classification problems
[Cristianini and Shawe-Taylor, 2000; Burges, 1998; Gunn,
1998]. The theoretical foundation of this technique is
grounded in the fact that the maximal margin SVM, which
we describe and implement below, provides a bound of the
expected risk Rex, [Cristianini and Shawe-Taylor, 2000,
chap. 6, remark 6.7; Scholkopf and Smola, 2002, chap. 7].

[14] The problem of locating the boundary between two
geologic layers is ideally suited for illustration of basic ideas
of the SVM. First, soft data or expert knowledge, e.g.,
geologic site characterization, is used to provide a rough
guess about the shape of the boundary. Then hard data are
used to find its optimal location. In this, the SVM is
analogous to Bayesian statistical tools.

[15] For stratified geologic media shown in Figure 1,
such boundaries can be assumed to be planes, or in two
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Figure 2. Maximum margin linear classifier for displayed
samples. The solid line indicates the decision boundary (the
boundary estimate), and the dotted lines denote the margin.

dimensions, straight lines (methods for dealing with more
complicated geometries are outlined later in this section).
Consider a boundary given by a straight line with equation

a-x+b=0. (6)

Our goal is to determine the unknown coefficients a =
(a1, a)" and b from the data set {I(xi)}ﬁil. In machine
learning, an algorithm for constructing such a boundary
between samples from two classes is known as a linear
classifier.

[16] A maximum margin linear classifier is illustrated in
Figure 2 — the boundary estimate is indicated with the solid
line, and the dotted lines indicate the extent of the margin,
i.e., the region within which the boundary could be shifted
orthogonally without misclassifying any of the data
samples. If d; and d, designate the perpendicular distances
from the estimated boundary (solid line) to the nearest data
point(s) in materials M, and M,, respectively, then the size
of the margin (dotted lines) is d = d| + d,, and the sample
points determining the position of the margin are called the
support vectors. Since the lines bounding the margin are
parallel to the boundary equation (6), their normal is also a.
The maximal margin SVM determines the coefficients a and
b in equation (6) by maximizing the size of this margin.
While any choice of straight line that lies within the margin
provides the same empirical risk Ry, the maximum margin
straight line is a principled choice for minimizing the
expected risk Rexp.

[17] The maximal margin SVM is constructed as follows.
Since the boundary equation (6) separates the two materials,
all data points satisfy eithera - x;+b >+ 1lora-x;+b <
—1. Mapping the indicator function /(x) onto an indicator
function I*(x), so that I"(x) = —1 whenever I(x) = 0 and
I*(x) = 1 whenever I(x) = 1, and denoting I; = I"(x;) allows
one to combine these to sets of inequalities into one set,

(a-x;+b)F>1 for ie{l,...,N}. (7)
The inequalities (7) become equalities for the x; that are
support vectors. Since the distance from the coordinate
origin to the line a - x; + b = 1 is —(b + 1)/||a]| and the
distance to a - x; + b = —1 is —(b — 1)/||al|, the distance
between these two lines, i.e., the margin d, is given by d =
2/|\al|, where ||a|| = \/a?} + a3 is the Euclidean length of a.
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Thus the SVM can be formulated as a problem of maxi-
mizing d (or, equivalently, minimizing ||a||) subject to the
linear constraints (7). Introducing Lagrangian multipliers
N >0 (@ € {l,..., N}) gives the following minimization
problem,

N
g})i’rxl{;a||2—z>\,-[(a‘x+b)li*—1)}}. (8)

Its solution defines a and b/ and thus, in accordance with
equation (6), the boundary between the two layers, located
at the center of the margin.

[18] While the procedure described above provides the
best estimate of the boundary location, it does not quantify
the corresponding predictive uncertainty. When it is
required, as is the case in random domain decompositions
[Winter and Tartakovsky, 2000], one can employ probabi-
listic SVM approaches [Platt, 1999].

[19] The SVM approach described above is applicable to
the delineation of geologic facies in perfectly stratified
layered media. It can be generalized to account for a variety
of more realistic settings, some of which are described
below.

[20] When the properties of adjacent geologic facies
cannot be well differentiated or data are too noisy, it is
possible to mislabel the data points in the process of
assigning the values of the indicator function. Then even
for the case of perfectly stratified aquifer it might not be
possible to fit a straight line to such data following the
procedure outlined above. This complication is accounted
for by replacing the optimization problem (8) with the
so-called soft margin optimization [Cristianini and Shawe-
Taylor, 2000, section 6.1.2]. It introduces slack variables
€, > 0 to replace the constraints (7) with the constraints
(a-x;+b)f >1—¢,forie{l,.. N}

[21] In most practical problems, boundaries between
geologic facies are significantly more complex than a
straight line or a plane. The kernel technique [Cristianini
and Shawe-Taylor, 2000, chap. 3; Scholkopf and Smola,
2002] allows the use of non-linear decision functions, based
on Mercer kernels, while retaining the quadratic optimiza-
tion of the linear SVM.

5. Simulation Results

[22] We construct a simple simulation of the facies
identification problem as follows. First, we generate two
uncorrelated Gaussian random fields on a 128 x 256 grid,
one with mean of 1 and a standard deviation of 0.1, and the
other with a mean of 3 and a standard deviation of 0.2.
Correlated log-normal random fields are then derived from
these fields by convolving with a lowpass filter and then
exponentiating the result. The final random field is con-
structed by combining these two fields at a fixed linear
boundary (as indicated in Figure 1), with the first compo-
nent above the boundary, and the second below it. The
marginal histogram of the resulting field is displayed in
Figure 3.

[23] We compare the accuracy of the boundary recon-
struction by means of the SVM with that obtained by a
geostatistical (GS) approach due to Ritzi et al. [1994]. This
approach consists of the following steps: First, we use
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Kriging [Deutsch and Journel, 1992] to construct a map of
the ensemble average of the indicator function (/(x)) from
the data {I(x,)}Y,. The ensemble mean /(x) is the probabil-
ity that a point x lies in Material 1, (/(x)) = P[x €M;]. Then
we define a boundary between the two materials as an
isoline P[x €M;] = ¢, where c is a number of data points in
Material 1 (or 2) relative to the total number of data points,
after accounting for data clustering. This geostatistical
approach to facies delineation assumes that the relative
volumes occupied by the two materials obtained from a
sample are representative of the whole field.

[24] The comparison of the performance of the GS
and SVM approaches consisted of 20 trials for each of
6 sampling densities. For each trial, a fixed number of
sampling points was selected according to a uniform distri-
bution (an example is illustrated in Figure 1). These
sampling points and the value of the random field at these
points were then used within the GS approach, and as a
training set for a SVM (A. Schwaighofer, unpublished data,
2002) to estimate the boundary between the two random
fields. The results of this comparison are displayed in
Figure 4 — the sampling density indicates the number of
sample points as a fraction of the total grid points, and the
error is the percentage of the grid misclassified according to
the estimated boundaries. The SVM method outperforms the
GS approach by a very significant margin. This is because
the knowledge (often derived from soft data or expert
opinion) that the geologic formation in Figure 1 is perfectly
stratified—i.e., that the two heterogeneous layers are sepa-
rated by a plane, or a straight line in two dimensions — has
been explicitly incorporated into our SVM procedure.

[25] The relative performance of the two approaches
under more general conditions, as well as of other geo-
statistical approaches, remains to be investigated. Neverthe-
less, we argue that the SVM method has great potential,
especially when some information (e.g., geologic and other
soft data) regarding the shape of the boundary is available.

6. Discussion and Conclusions

[26] The main goal of this letter is to introduce a general
framework of the statistical learning theory to the fields of
hydrology and subsurface imaging. One of the ubiquitous
features of these applications is the sparsity of data, which
results in parameter uncertainty, leading, in turn, to predic-
tive uncertainty in subsurface modeling. Prevailing
approaches to quantifying these uncertainties rely on geo-
statistical and stochastic methods, which treat the subsur-
face and its parameters as random. An attractive feature of
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Figure 3. Histogram of the parameter K sampled at the
locations denoted by the + and ©® signs in Figure 1.
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Figure 4. Comparison of boundary estimation errors using
the geostatistical approach (GSA) of [Ritzi et al., 1994] and
SVM.

the statistical learning theory is that it does not require
ergodicity and other assumptions associated with such
approaches.

[27] It is important to note a key difference between
geostatistics and statistical learning. While geostatistics
provides a set of interpolation tools, SVMs are essentially
regression techniques. Specifically, in the absence of a
nugget effect and measurement errors, Kriging and other
geostatistical estimation techniques produce ensemble esti-
mates of a random field that match the data exactly. In
contrast, SVMs provide estimates that minimize overall
errors without matching the data exactly.

[28] Other useful features of statistical learning theory in
general, and support vector machines in particular, include

[29] ® The ease with which prior information, e.g.,
geologic site characterization, can be incorporated. This is
accomplished by selecting the shapes of boundaries that are
consistent with such prior knowledge.

[30] @ The ability to estimate boundaries between geo-
logic facies from poorly differentiable data. This is accom-
plished by assigning reliability weights to the indicator
function, which account for the relative values of conduc-
tivity, and may be included in the SVM optimization.

[31] We will explore these and other issues related to the
performance of statistical learning techniques for subsurface
imaging in future studies.
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