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Prior mapping for nonlinear flows in random environments
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We analyze nonlinear flows in randomly heterogeneous environments, which are characterized by state-
dependent diffusion coefficients with spatially correlated structures. The prior Kirchhoff mapping is used to
describe such systems by linear stochastic partial differential equations with multiplicative noise. These are
solved through moment equations which are closed, alternatively, either by perturbation expansions, or by a
posterior linear mapping closure. The latter relies on the assumption that the state variable is a spatially
distributed Gaussian field. We demonstrate that the former approach is more robust.
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According to general diffusion theory, the flux of su
stance,u, is down gradient of the system state,p, i.e., u
52K“p. Quite often, the environment is heterogeneo
and the coefficient of proportionalityK depends on the sys
tem state,K5K(x,p). In most applications,K cannot be
known precisely in all of its relevant details. For examp
predicting flow and transport in subsurface environment
complicated by the high degree of heterogeneity and the
of detailed characterization of their hydraulic properties.
the same token, modeling semiconductor fabrication m
take into account the presence of impurities whose loca
and density are seldom knowna priori. ConsequentlyK
should be treated as a random variable, so that the co
sponding equations become stochastic@1,2#.

To be specific, we formulate the problem in terms relev
to gas flow through porous media. Thenu andp denote the
Darcian ~macroscopic! flux and the gas pressure, respe
tively. Hydraulic conductivity of the medium,K, is related to
its permeabilityk throughK5k/m(p), wherem is the gas
viscosity. Assuming isothermal conditions with temperatu
T and constant chemical composition, density of a real
can be expressed asr(p)5p/@Z(p)RT#, whereZ(p) is the
compressibility factor andR is the gas constant. Then, in th
steady-state regime, accounting for the conservation of m
yields the nonlinear flow equation,

“•@D~x,p!“p#50, D~x,p![k~x!
p

m~p!Z~p!
. ~1!

If properties of a porous medium are highly varying a
uncertain,k can be conveniently treated as a correlated r
dom field @3#.

Such stochastic partial differential equations~PDEs! are
notoriously hard to analyze due to the nonlinearity of t
spatially correlated multiplicative noise. Linear stochas
PDEs, such as Eq.~1! with D5D(x), can be successfully
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analyzed through the moment equations@4,5#. This approach
typically relies on perturbation expansions to close the s
tem, but alternative methods, such as Gaussian approx
tion @6#, are also available. However, direct application of t
moment equations method to Eq.~1! would require either
expandingD(p) into Taylor series about~ensemble! mean
pressure,̂ p&, or a simple linearization̂ D(p)&'D(^p&).
Both approaches can hardly be considered satisfactory s
their validity cannot be assesseda priori. For example, a
similar linerization used in a study of the interface dynam
in random media was shown to be less than optimal@7#.

On the other hand, stochastic PDEs with nonlinearit
stemming from the presence of nonlinear source te
proved to be amenable to approaches which rely on deriv
the probability density function~PDF! for the system state
@8,9#. Mapping closures are usually used to derive t
closed-form PDF equations@10,11#. While PDF approaches
treat nonlinear source terms exactly, their applicability
systems with nonlinear multiplicative noise of the kind pr
sented in Eq.~1! is less clear. Application of the linea
Gaussian mapping to an equation similar to Eq.~1! proved to
be successful only under limited conditions@12#.

In this Rapid Communication, we employ the Kirchho
mapping to the stochastic flow equation~1! prior to its en-
semble averaging. Moment equations are then derived for
resulting linear PDE, and the closures are obtained by a
turbation expansion. We assess the quality of our predictio
and the validity of our perturbation expansion, by compar
them with Monte Carlo simulations~MCS! of Eq. ~1!. These
consist of~i! generating multiple realizations of the perm
ability field k(x) with a given correlation structure,~ii ! solv-
ing Eq. ~1! for each realization ofk(x), and ~iii ! obtaining
the statistics of these solutions. We also explore an alte
tive closure of the moment equations for the Kirchhoff tran
form. This closure assumes that the state variable is a Ga
ian random field~or a map of thereof!.

The prior Kirchhoff mapping was used earlier to analy
effective properties of gas flow in random media@13#. Since
the averaged equations are known to be nonlocal@5,14#, such
effective properties exist only in a few special cases, such
©2001 The American Physical Society02-1
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mean uniform flow, where the localization is possible. T
paper describes an approach which is applicable to arbit
flow scenarios.

The Kirchhoff mapping,

F@p~x!#5E
0

p sds

m~s!Z~s!
, ~2!

transforms Eq.~1! into a linear stochastic PDE,

“•@k~x!“F~x!#50. ~3!

We use the Reynolds decompositionA5^A&1A8 to repre-
sent a random fieldA as the sum of its mean,^A&, and a
zero-mean random fluctuation,A8. Stochastic averaging o
the transformed flow equation yields

“•@^k&“^F&2r #50. ~4!

First, a closure approximation for the cross-product te
r (x)[2^k8¹F8& is obtained through the perturbation e
pansion insY

2 , the variance of log permeabilityY5 ln k. In-
stead of using the direct interaction approximation~the
Corrsin-like conjecture! @5#, we rely on a recursive set o
equations for thei th-order terms in the asymptotic serie
^F&5^F (0)&1^F (1)&1O(sY

4) @15#. The superscript~i! de-
notes terms that contain onlyi th powers ofsY

2 . In particular,
the zeroth-order approximation,^F (0)&, is found as the solu-
tion of the Laplace equation“•@kg“^F (0)&#50, wherekg
5exp(̂ Y&) is the geometric mean ofk. The first-order ap-
proximation,^F (1)&, is the solution of the Poisson equatio
“•@kg“^F (1)&#1 f 50, where f 5“•@kgsY

2/2“^F (0)&#
1r (1)] and

r (1)5E
V

kgCY¹x¹y
TG¹y^F

(0)&dy. ~5!

Here integration is over the flow domainV, CY(y,x)
5^Y8(y)Y8(x)& is the two-point covariance function ofY,
andG(y,x) is the corresponding zeroth-order mean Gree
function. The resulting recursive approximations, toget
with a similarly derived equation for the first-order approx
mation of the Kirchhoff transform covariance, are solved
nonlocal finite elements@16#.

Note that our perturbation solution for the Kirchho
transform ^F& does not require the random fieldk to be
statistically homogeneous, and allows for an arbitrary spa
correlation structure. Unlike closures based on the Cor
conjecture@5#, the recursive approximation does not result
nonlocal, integro-differential equations. Hence, there is
need for localization of Eq.~5!.

By way of example, we consider two-dimensional flow
a unit square whose permeabilityk is a statistically homoge
neous, log-normally distributed random field with an exp
nential covariance function,CY(y,x)5sY

2 exp(2uy2xu/l),
wherel is the correlation length. The following paramete
are used in all subsequent calculations,sY

251, l51/12.
Constant pressure is maintained on the lateral bounda
p5P151 at x150 and p5P250 at x151. Two other
03530
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boundaries,x250 and x251 are assumed impermeabl
Without loss of generality, we further assume ideal gas@m
5const andZ(p)51], so that 2mF5p2, and the conditions
on the Dirichlet boundaries becomeF5F150.5 at x150
and F5F250 at x151. Note that here and everywher
below we dropm, so thatF denotes the renormalized Kirch
hoff transform.F denotes the Kirchhoff transform norma
ized bym.

We check the accuracy of the first-order perturbation
lutions for the mean,̂F [1]&5^F (0)&1^F (1)&, and variance,
@sF

2 # [1] , of the Kirchhoff transform,F, through the compari-
son with MCS.~The superscript@i# denotes the summation o
all terms up toi th power ofsY

2 .! To insure the stability and
accuracy of MCS, we used 4000 realizations of random p
meability fields with spatial discretization ofl/4. This com-
parison shows an excellent agreement between the two m
ods, with maximum discrepancies of 0.05% for mean,^F&
and 1.74% for variance,sF

2 . Note that while our perturba
tion solutions are formally valid forsY

2!1, they remain ro-
bust forsY

251 used in our example.
Given the moments of the Kirchhoff transform,^F [1]&

and @sF
2 # [1] , the first-order approximation of the mean g

pressure can be obtained as^p[1]&5^p(0)&1^p(1)&, where

^p(0)&252^F (0)& ~6!

and

^p(1)&5
2^F (0)&^F (1)&2@sF

2 # [1] /2

~2^F (0)&!3/2
. ~7!

Similarly, the first-order approximation of gas pressure va
ance is given by

@sp
2# [1]5

@sF
2 # [1]

2^F (0)&
. ~8!

Alternatively, the mixed moment,r , in Eq. ~4! can be
derived by assuming that the random state variableF is
Gaussian@6#. This posterior linear mapping is a special ca
of mapping closures@11#, which assume the state variable
be a function of a Gaussian variable. However, the mapp
closures are used in the context of the PDF methods, ra
than in the method of moments. AssumingF to be Gaussian,
leads to the straightforward evaluation of the moments op.
The comparison with MCS shows that the mean and varia
of p obtained by means of the Gaussian assumption ar
accurate (0.05% discrepancy for the mean and 1.26%
crepancy for the variance! as their counterparts obtaine
through the perturbation expansion.~The accuracy of our
posterior Gaussian mapping suggests that for nonlinear
fusion considered in Ref.@12# one should use the log-norma
prior mapping rather than the Gaussian one. Since the
mappings are similar for small values of variancesY

2 , it
explains why the prior Gaussian mapping of Ref.@12# was
accurate for small variances only.! However, as we demon
2-2
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strate below, the validity and accuracy of the Gaussian
sumption are highly sensitive to the flow scenario and can
be assesseda priori.

To demonstrate this point, we consider a more com
cated flow structure. We modify our original example
injecting gas~at the specific rateq51) through the opening
~of width 1/3) located at the center of the impermea
boundaryx251. Zero pressure is prescribed at the Dirich
boundaries,x150 andx151. The bottom boundary,x250 is
impermeable. Such a flow scenario may serve as an idea
model for the subsurface CO2 sequestration used to reduc
global warming.

The first-order approximations of the mean Kirchho
transform,^F&, is in excellent agreement with MCS, wit
the maximum discrepancy<1%. The first-order approxima
tion of the Kirchhoff transform variance,sF

2 , differs by
about 25% in the immediate vicinity of the injection are
This discrepancy dissipates rapidly with the distance fr
the injection interval, where the maximum discrepancy
about 5%. Overall,@sF

2 # [1] captures correctly the qualitativ
behavior of the Kirchhoff transform variance. It is worth
while to remember that@sF

2 # [1] represents the lowest-orde
approximation of gas pressure variance,sF

2 . We expect that
evaluating higher-order approximations will improve the a
curacy.

Figure 1 compares the mean gas pressure,^p&, calculated
from ~i! MCS, ~ii ! first-order approximations, and~iii ! the
linear posterior mapping. This comparison shows that b
approximations are accurate. The maximum relative e
~MRE! between MCS and the perturbation solution is ab
0.5%. Once again, this is so despite the fact that the pe
bation parameter is relatively high,sY

251. MRE for the lin-
ear posterior mapping is about 1.2%. In the absence
sources, zeroth-order approximation of mean pressure c

FIG. 1. Mean gas pressure computed by MCS~solid line!, the
perturbation expansion~dashed line!, the linear posterior mapping
~dash-dotted line!, and the mean-field approximation~dotted line!.
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cides with the mean field approximation~the dotted line in
Fig. 1!. MRE for the mean field approximation is about 6%

A similar comparison for gas pressure variance is sho
in Figs. 2 and 3. While the perturbation solution rema
relatively robust, the linear posterior mapping leads to a s
nificant discrepancy with the MCS standard deviation. T
discrepancy persists over the whole flow domain. MRE
the perturbation solution is about 20% in the immediate
cinity of the injection interval, and decreases rapidly to 5
away from it. On the other hand, MRE for the linear pos
rior mapping decays gradually from about 20% in the vic
ity of the injection interval to about 15% in the interior pa
of the flow domain. In the neighborhood of the constant pr

FIG. 2. Gas pressure variance computed by MCS~solid line!
and the perturbation expansion~dashed line!.

FIG. 3. Gas pressure variance computed by MCS~solid line!
and the linear posterior mapping~dash-dotted line!.
2-3
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sure boundaries, MRE exceeds 50%. The relative failure
the posterior linear mapping suggests that it might be ne
sary to employ nonlinear transformationsT, which map a
Gaussian random fieldX(x) onto the random field of stat
variable, i.e.,p(x)5T@X(x)#.

We used the Kolomogorov test to assess Gaussianit
the empirical distribution of the Kirchhoff transform com
puted from MCS. The Gaussian hypothesis is rejected at
nificance levels of 1%, 5%, and 10% forN54000 Monte
Carlo realizations. The difference between the empiri
~MCS! and Gaussian distribution exceeds the critical K
mogorov statistic~for a given significance level! to a differ-
ent degree throughout the flow domain. Thus, it seems n
essary to introduce the space dependency into the post
mapping closure,p(x)5T@x,X(x)#.

The analysis in this paper leads us to the following ma
conclusions. The prior Kirchhoff mappings, which transfo
stochastic nonlinear equations similar to Eq.~1! into linear
s
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stochastic PDEs, are a useful tool for the moment analysi
such systems. Stochastic averaging of the resulting lin
stochastic PDEs with spatially correlated multiplicative no
can be carried out by means of either perturbation exp
sions or posterior mapping closures. Since Gaussian m
ping closures are sensitive to a flow configuration~as speci-
fied, for example, by initial, boundary and source function!,
the reliance on perturbation expansions seems to be m
appealing. This is especially so, since such expansions o
remain robust for relatively large variances of the underly
multiplicative noise.
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