RAPID COMMUNICATIONS

PHYSICAL REVIEW E, VOLUME 64, 03530&R)

Prior mapping for nonlinear flows in random environments
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We analyze nonlinear flows in randomly heterogeneous environments, which are characterized by state-
dependent diffusion coefficients with spatially correlated structures. The prior Kirchhoff mapping is used to
describe such systems by linear stochastic partial differential equations with multiplicative noise. These are
solved through moment equations which are closed, alternatively, either by perturbation expansions, or by a
posterior linear mapping closure. The latter relies on the assumption that the state variable is a spatially
distributed Gaussian field. We demonstrate that the former approach is more robust.
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According to general diffusion theory, the flux of sub- analyzed through the moment equati¢pas]. This approach
stance,u, is down gradient of the system stafg,i.e., u  typically relies on perturbation expansions to close the sys-
=—KVp. Quite often, the environment is heterogeneousem, but alternative methods, such as Gaussian approxima-
and the coefficient of proportionalitit depends on the sys- tion[6], are also available. However, direct application of the
tem state,K=K(x,p). In most applicationsK cannot be moment equations method to E(.) would require either
known precisely in all of its relevant details. For example,expandingD(p) into Taylor series aboutensembl mean
predicting flow and transport in subsurface environments igressure,(p), or a simple linearizationD(p))~D({p)).
complicated by the high degree of heterogeneity and the lacRoth approaches can hardly be considered satisfactory since
of detailed characterization of their hydraulic properties. Bytheir validity cannot be assessedpriori. For example, a
the same token, modeling semiconductor fabrication mus§imilar linerization used in a study of the interface dynamics
take into account the presence of impurities whose locatiofh random media was shown to be less than optifial

and density are seldom knowa priori. ConsequentlyK On the other hand, stochastic PDEs with nonlinearities
should be treated as a random variable, so that the corrgtemming from the presence of nonlinear source terms
sponding equations become stochafti@)]. proved to be amenable to approaches which rely on deriving

To be specific, we formulate the problem in terms relevanthe probability density functiofPDF) for the system state
to gas flow through porous media. Therandp denote the [8,9]. Mapping closures are usually used to derive the
Darcian (macroscopi flux and the gas pressure, respec-closed-form PDF equatiorf40,11]. While PDF approaches
tively. Hydraulic conductivity of the mediunk, is related to  treat nonlinear source terms exactly, their applicability to
its permeabilityk throughK=k/u(p), where u is the gas  systems with nonlinear multiplicative noise of the kind pre-
viscosity. Assuming isothermal conditions with temperaturesented in Eq.(1) is less clear. Application of the linear
T and constant chemical composition, density of a real gasaussian mapping to an equation similar to &g proved to
can be expressed agp)=p/[Z(p)RT], whereZ(p) is the  be successful only under limited conditiofis].
compressibility factor an® is the gas constant. Then, in the  |n this Rapid Communication, we employ the Kirchhoff
steady-state regime, accounting for the conservation of massapping to the stochastic flow equati¢h prior to its en-
yields the nonlinear flow equation, semble averaging. Moment equations are then derived for the
resulting linear PDE, and the closures are obtained by a per-
p turbation expansion. We assess the quality of our predictions,
w(p)Z(p) @) and the validity of our perturbation expansion, by comparing
them with Monte Carlo simulationdICS) of Eq. (1). These
If properties of a porous medium are highly varying andco.n'sist. of (i) gene.rating'multiple rea!izations of t.he perme-
uncertain k can be conveniently treated as a correlated ran@bility field k(x) with a given correlation structuréj) solv-
dom field[3]. ing Eqg. (1) for each realization ok(x), and (iii) obtaining
Such stochastic partial differential equatiof®DE9 are  the statistics of these solutions. We also explore an alterna-
notorious|y hard to ana|yze due to the non“nearity of thetive closure of the moment equations for the Kirchhoff trans-
spatially correlated multiplicative noise. Linear stochasticform. This closure assumes that the state variable is a Gauss-
PDEs, such as Eq1) with D=D(x), can be successfully ian random fieldor a map of thereof
The prior Kirchhoff mapping was used earlier to analyze
effective properties of gas flow in random mefiis]. Since
*Email address: dmt@lanl.gov the averaged equations are known to be nonldgaH], such
"Email address: alberto.guadagnini@polimi.it effective properties exist only in a few special cases, such as

V-[D(x,p)Vp]=0, D(x,p)=k(x)
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mean uniform flow, where the localization is possible. Thisboundaries,x,=0 and x,=1 are assumed impermeable.
paper describes an approach which is applicable to arbitraryithout loss of generality, we further assume ideal fas
flow scenarios. =const andZ(p)=1], so that u® =p?, and the conditions
The Kirchhoff mapping, on the Dirichlet boundaries beconie=®,=0.5 atx;=0
and ®=®,=0 at x;=1. Note that here and everywhere
B[p(x)]= fp sds @ below we dropu, so that® denotes the renormalized Kirch-
o m(S)Z(s)’ hoff transform.® denotes the Kirchhoff transform normal-
ized by u.
transforms Eq(1) into a linear stochastic PDE, We check the accuracy of the first-order perturbation so-
lutions for the mean{®)y= (D) +(dD)), and variance,

V- [k(x)V®(x)]=0. () [¢2]1, of the Kirchhoff transformé, through the compari-
son with MCS (The superscrifii] denotes the summation of
all terms up toith power ofo$ .) To insure the stability and
accuracy of MCS, we used 4000 realizations of random per-
meability fields with spatial discretization af4. This com-
parison shows an excellent agreement between the two meth-

V-[(K)V(D)—r]=0. @) ods, with maximum discrzepancies of 0.05% for megh)

and 1.74% for variancerg . Note that while our perturba-
First, a closure approximation for the cross-product terntion solutions are formally valid fov$<1, they remain ro-
r(x)=—(k'V®') is obtained through the perturbation ex- bust foroZ=1 used in our example.
pansion ino%, the variance of log permeability=Ink. In- Given the moments of the Kirchhoff transforrp(t])
stead of using the direct interaction approximatithe and[o3]], the first-order approximation of the mean gas
Corrsin-like conjecture[5], we rely on a recursive set of pressure can be obtained @g'!)=(p®)+(p)), where
equations for theth-order terms in the asymptotic series
(P)=(PO)+(DdMD)+0O(a¥) [15]. The superscripti) de- (p(@)2=2(p(®) 6)
notes terms that contain onith powers ofo%. In particular,
the zeroth-order approximatiot (), is found as the solu- gnq
tion of the Laplace equatioN -[kyV(®(®)]=0, wherek,
=exp(Y)) is the geometric mean df The first-order ap-

We use the Reynolds decompositigh=(.A4)+ A’ to repre-
sent a random fieldd as the sum of its mean,4), and a
zero-mean random fluctuationd’. Stochastic averaging of
the transformed flow equation yields

2(PON DM —[o5]H/2

proximation,(®)), is the solution of the Poisson equation (pWy= @
V [kV(dM)]+f=0, where f=V [kyo3/2V(DO)] (2(D(0)))32
+rM] and
Similarly, the first-order approximation of gas pressure vari-
r(l):f kgCyVXV;GVy(CD(O))dy. (5) ~ ancels given by
Q

[0.2 ][1]
Here integration is over the flow domaif, Cy(y,X) [0’2)][1]: s oo 8
=(Y'(y)Y'(x)) is the two-point covariance function o, 2(d()

andG(y,x) is the corresponding zeroth-order mean Green'’s
function. The resulting recursive approximations, together Alternatively, the mixed moment;, in Eq. (4) can be
with a similarly derived equation for the first-order approxi- derived by assuming that the random state variabldés
mation of the Kirchhoff transform covariance, are solved byGaussiarj6]. This posterior linear mapping is a special case
nonlocal finite elementgLé]. of mapping closurefl1], which assume the state variable to
Note that our perturbation solution for the Kirchhoff be a function of a Gaussian variable. However, the mapping
transform (®) does not require the random fieldto be  closures are used in the context of the PDF methods, rather
statistically homogeneous, and allows for an arbitrary spatialhan in the method of moments. Assumidgto be Gaussian,
correlation structure. Unlike closures based on the Corrsieads to the straightforward evaluation of the momentp. of
conjecturg 5], the recursive approximation does not result inThe comparison with MCS shows that the mean and variance
nonlocal, integro-differential equations. Hence, there is n@f p obtained by means of the Gaussian assumption are as
need for localization of EQ(5). accurate (0.05% discrepancy for the mean and 1.26% dis-
By way of example, we consider two-dimensional flow in crepancy for the variangeas their counterparts obtained
a unit square whose permeabilkys a statistically homoge- through the perturbation expansiofthe accuracy of our
neous, log-normally distributed random field with an expo-posterior Gaussian mapping suggests that for nonlinear dif-
nential covariance functionCY(y,x)=a$ exp(—|y—x|/\), fusion considered in Ref12] one should use the log-normal
whereN is the correlation length. The following parameters prior mapping rather than the Gaussian one. Since the two
are used in all subsequent calculations,=1, A\=1/12. mappings are similar for small values of variangd, it
Constant pressure is maintained on the lateral boundariesxplains why the prior Gaussian mapping of Rdf2] was
p=P;=1 at x;,=0 and p=P,=0 at x;=1. Two other accurate for small variances onlydowever, as we demon-
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FIG. 1. Mean gas pressure computed by MG8Iid line), the FIG. 2. Gas pressure variance computed by MESid line)
perturbation expansiofdashed ling the linear posterior mapping and the perturbation expansi¢dashed ling
(dash-dotted ling and the mean-field approximati¢dotted line.
cides with the mean field approximatidthe dotted line in

strate below, the validity and accuracy of the Gaussian ad-19- 1. MRE for the mean field approximation is about 6%.

sumption are highly sensitive to the flow scenario and cannot ‘A Similar comparison for gas pressure variance is shown
be assessed priori. in Figs. 2 and 3. While the perturbation solution remains

To demonstrate this point, we consider a more compli-n?l."’lt'\/e'y .robust, the Ilnear posterior mapping Iea_ds_ 10 a sig-
. o nificant discrepancy with the MCS standard deviation. This
cated flow structure. We modify our original example by

C o - . discrepancy persists over the whole flow domain. MRE for
injecting gas(at the specific ratg=1) through the opening the perturbation solution is about 20% in the immediate vi-

(of width 1/3) located at the _center Qf the imperm_eablecinity of the injection interval, and decreases rapidly to 5%
boundar_yx2=1. Zero pressure is prescribed at the Dlr!chlet(,iw(,iy from it. On the other hand, MRE for the linear poste-
boundariesx, =0 andx, =1. The bottom boundary,=0iS  yior mapping decays gradually from about 20% in the vicin-
impermeable. Such a flow scenario may serve as an |deal|z§§ of the injection interval to about 15% in the interior part

model for the subsurface GGsequestration used to reduce ot e fiow domain. In the neighborhood of the constant pres-
global warming.

The first-order approximations of the mean Kirchhoff 10
transform,(®d), is in excellent agreement with MCS, with
the maximum discrepancs 1%. The first-order approxima-
tion of the Kirchhoff transform varianceaﬁ,, differs by
about 25% in the immediate vicinity of the injection area.
This discrepancy dissipates rapidly with the distance from
the injection interval, where the maximum discrepancy is
about 5%. Overall o3 ]!*) captures correctly the qualitative 0.6
behavior of the Kirchhoff transform variance. It is worth-
while to remember tha[toé,][” represents the lowest-order *2
approximation of gas pressure varianoé,. We expect that 0.4 -
evaluating higher-order approximations will improve the ac-
curacy.

Figure 1 compares the mean gas pressug, calculated 0.2 -
from (i) MCS, (ii) first-order approximations, andii) the
linear posterior mapping. This comparison shows that both
approximations are accurate. The maximum relative error
(MRE) between MCS and the perturbation solution is about %0
0.5%. Once again, this is so despite the fact that the pertur-
bation parameter is relatively highZ=1. MRE for the lin-
ear posterior mapping is about 1.2%. In the absence of FIG. 3. Gas pressure variance computed by ME&lid line)
sources, zeroth-order approximation of mean pressure coirnd the linear posterior mappiridash-dotted ling
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sure boundaries, MRE exceeds 50%. The relative failure o$tochastic PDEs, are a useful tool for the moment analysis of
the posterior linear mapping suggests that it might be necesuch systems. Stochastic averaging of the resulting linear
sary to employ nonlinear transformatio$ which map a stochastic PDEs with spatially correlated multiplicative noise
Gaussian random fielX(x) onto the random field of state can be carried out by means of either perturbation expan-
variable, i.e.,p(x) =7 X(x)]. sions or posterior mapping closures. Since Gaussian map-
We used the Kolomogorov test to assess Gaussianity gfing closures are sensitive to a flow configuratias speci-

the empirical distribution of the Kirchhoff transform com- fied, for example, by initial, boundary and source functions
puted from MCS. The Gaussian hypothesis is rejected at sighe reliance on perturbation expansions seems to be more
nificance levels of 1%, 5%, and 10% fbr=4000 Monte  appealing. This is especially so, since such expansions often

Carlo realizations. The difference between the empiricalemain robust for relatively large variances of the underlying
(MCS) and Gaussian distribution exceeds the critical Kol-ytiplicative noise.

mogorov statistiqfor a given significance leveto a differ-

ent degree throughout the flow domain. Thus, it seems nec- This work was performed under the auspices of the U.S.

essary to introduce the space dependency into the posteriDepartment of EnergyDOE), DOE/BES(Bureau of Energy

mapping closurep(x) =7[x,X(x)]. Sciences Program in the Applied Mathematical Sciences
The analysis in this paper leads us to the following majorContract No. KC-07-01-01 and LDRD-ER-2000047. The au-

conclusions. The prior Kirchhoff mappings, which transformthors would like to acknowledge partial support from the

stochastic nonlinear equations similar to Et). into linear Italian CNR Short-Term Mobility Program, year 2000.
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