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Abstract. We consider the problem of upscaling transient real gas ¯ow through
heterogeneous bounded reservoirs. One of the commonly used methods for
deriving effective permeabilities is based on stochastic averaging of nonlinear
¯ow equations. Such an approach, however, would require rather restrictive
assumptions about pressure-dependent coef®cients. Instead, we use Kirchhoff
transformation to linearize the governing stochastic equations prior to their
averaging. The linearized problem is similar to that used in stochastic analysis of
groundwater ¯ow. We discuss the effects of temporal localization of the nonlocal
averaged Darcy's law, as well as boundary effects, on the upscaled gas
permeability. Extension of the results obtained by means of small perturbation
analysis to highly heterogeneous porous formations is also discussed.

List of symbols
a kernel of the integral in Eq. (22)
b time-dependent function
CY covariance function of Y
cg isothermal gas compressibility
D space-dependent function
d dimensionality
f arbitrary function
H Kirchhoff transform of P
K normalized gas permeability de®ned in Eq. (11)
KG geometric mean of K
k gas permeability of the medium
L1; L2; L3 length of the rectangular box in x1; x2; x3 directions
lY correlation length of Y
J mean pseudo-pressure gradient, �J1; J2; J3�T
n unit outward normal to the boundary
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P gas pressure on Dirichlet boundaries CD

p gas pressure
pm low base pressure
p� constant pressure de®ned in Eq. (11)
Q Kirchhoff transform of V
q mass ¯ux vector

Subscripts
D dimensionless
d dimensionality
eff effective
in initial
st steady-state
p pressure-dependence

1
Introduction
Thoroughly conducted ®eld tests and theoretical analyses have revealed that
permeability of natural reservoirs is spatially variable, with values ranging over a
few orders of magnitude. Detailed reviews of the problems associated with real-
istic representation of reservoir heterogeneities and their impacts on current
trends in reservoir simulations are given, among others, by Fayers and Hewett
[1], Wen and GoÂmez-HernaÂndez [2], and Christie [3]. In recent years, upscaling
based on stochastic analysis has become a popular tool. Using this approach, one
can calculate ``an effective (upscaled) permeability'' which can be assigned to
either the whole reservoir or a cell of the numerical grid.

In the sequel, we de®ne the effective permeability tensor, keff , as a coef®cient
that, when multiplied by an averaged (mean) pressure gradient, produces an
averaged (mean) Darcian velocity [4±8]. This de®nition is useful if keff depends
exclusively on the statistical structure of the random ®eld k. It is worthwhile to
note here that thus de®ned effective permeability differs from meanings ascribed
to similar terms by King [9], Desbaratas and Dimitrakopolous [10], Morgan and
BabusÏka [11], and Durlofsky [12]. (For a detailed discussion of different de®ni-
tions of effective or equivalent parameters, see Neuman and Orr [8] and references
therein.) In his recent paper, Christie [3] notes that ``one of the main limitations
of upscaling is that it usually gives an answer with almost no indication of whether
the assumptions made in deriving the answer hold. Limited attempts have been
made to analyze the upscaling process [13], but so far, no good theory exists that
unequivocally states whether an upscaled value provides a good or bad approxi-
mation''. In terms of stochastic analysis of groundwater ¯ow, these assumptions
are (i) ergodicity, i.e. possibility to interchange space and/or time averages by
``expected values'' or ``ensemble averages''; (ii) mild heterogeneity which allows
one to use the perturbation analysis; and (iii) slow space and time variation of the
mean pressure gradient which is necessary for localization of the averaged Darcy's
law [6, 8, 14±16]. Analysis of gas, or multiphase, ¯ow involves averaging of sto-
chastic nonlinear differential equations and requires additional approximations.
Some of these approximations will be discussed later in this paper.

Ergodicity is always required to infer ®eld statistics from spatial measure-
ments; it cannot be proven, only hypothesized, unless falling under the purview
of well established ergodic theorems such as the law of large numbers. Never-
theless, it can be shown that [17] ``in any application, non-ergodicity usually just
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means that the random function concerned is, in fact, an arti®cial union of a
number of distinct ergodic stationary functions''.

The small perturbation analysis has been applied extensively to the study of
¯ow through heterogeneous formations. Although this approach is rigorously
valid when the variance of natural log permeability, Y � ln k, is much smaller
than unity, it was shown [18] to work reasonably well for the variance up to 2.
One can extend the results based on perturbation analysis to larger variances by
means of the Landau±Lifshitz conjecture [4, 5, 8, 9, 19].

Strictly speaking, the averaged ¯ow equation can be localized, and the effective
permeability can be introduced, only under conditions of the uniform mean
pressure gradient. Application of similar results to nonuniform average ¯ow is
possible under assumption that the mean gradient varies slowly in space and
time. Tartakovsky and Neuman [20] have investigated the validity and applica-
bility of this assumption.

Thus stochastic analysis of single phase groundwater or oil ¯ows provides
de®nite answers to the questions of applicability and limitations of stochastically
derived effective permeability. The analysis becomes much more complicated
when applied to real gas ¯ow through heterogeneous porous media, since this
¯ow is described by nonlinear differential equations. To the best of author's
knowledge, no attempts to obtain stochastically derived effective permeability for
gas ¯ow have been made up to date.

In this paper, we use the Kirchhoff transformation [21] to linearize the
governing equations. Subsequent stochastic analysis is similar to that performed
for groundwater ¯ow. We investigate localization and boundary effects on
effective gas permeability.

2
Statement of the problem
Consider laminar and isothermal ¯ow of a real gas of constant composition
through heterogeneous porous media, X. We start with a local scale (the scale of
an in situ experiment), x, (x < X) on which the Darcy law holds

v�x; t� � ÿ k�x�
l�p�rp�x; t� x 2 x �1�

where the volume x is centered about x, v is the macroscopic (Darcian) velocity, k
is the gas permeability of the medium, l is the gas viscosity, and p is the pressure.
Although the gas permeability k is taken to be independent from p, we show later
in the paper that the case of k�x; p� can be handled as well.

The conservation of mass for isothermal ¯ow implies

r � �q�p�v�x; t�� � ÿ/�x� oq�p�
ot

x 2 x �2�

where q is the density, and / is the porosity.
One can formally write Eqs. (1) and (2) for a larger domain X. We consider two

types of boundary conditions for X:

p�x; t� � P�x; t� x 2 CD �3�
ÿq�p�v�x; t� � n�x� � V�x; t� x 2 CN �4�
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supplemented by the initial condition

p�x; 0� � pin�x� x 2 X : �5�
Here P�x; t� and V�x; t� are randomly prescribed head and ¯ux on Dirichlet,
CD, and Neumann, CN, boundary segments whose union forms a boundary
C of the domain X; and n�x� is the unit outward normal to the boundary
C. The random initial pressure distribution is given by pin�x�.

For real gases under isothermal conditions the equation of state has the form
[22]

q�p� � 1

RT

p

Z�p� �6�

where R is the gas constant, T is the constant temperature, and Z�p� is the
compressibility factor.

Since the permeability k�x� can be measured only at selected points inside
X on the scale x, and varies over orders of magnitude within X, it can be treated
as a random variable. As k�x� is scale-dependent and random, so will be the
pressure and ¯uxes. In other words, Eqs. (1)±(6) written for x 2 X constitute a
system of nonlinear stochastic differential equations.

A traditional approach for obtaining effective permeability in the somewhat
similar context of unsaturated ¯ow consists of direct stochastic averaging of
Eqs. (1)±(6). The resulting averaged equations contain ensemble means of some
deterministic functions of random argument, h f �p�i. It is common in stochastic
analyses of unsaturated ¯ow to expand these terms in Taylor series and retain
only the leading term in these expansions, i.e. h f �p�i � f �h pi�. Such an approach
does not seem to be quite satisfactory since it requires a priori knowledge of the p
behavior to guarantee convergence of the Taylor series. Instead, we propose to
linearize the governing equations prior to their averaging.

3
Linearization
Substituting Eqs. (1) and (6) into Eq. (2) gives

r � k�x� p�x; t�
l�p�Z�p�rp�x; t�

� �
� /�x� o

ot

p�x; t�
Z�p�

� �
: �7�

Applying the Kirchhoff transformation [21],

W�x; t� �
Zp

pm

s

l�s�Z�s� ds �8�

where pm is the low base pressure, yields

r � k�x�rW�x; t�� � � /�x�l�p�cg�p� oW�x; t�
ot

: �9�

Here cg�p� is the isothermal gas compressibility de®ned as
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cg�p� � 1

q�p�
oq�p�
op

: �10�

A similar treatment of the real gas ¯ow equation has been ®rst carried out by
Al-Hussainy et al. [23] who have called the quantity 2W a real gas pseudo-
pressure; Goggin et al. [24] have named the same term a pseudo-potential. For
isothermal ¯ow of an ideal gas, Z�p� � 1, l is constant, and one has for the
pseudo-pressure: 2W � p2.

While quasi-linear Eq. (9) is rigorously valid for arbitrary pressure gradients
and variations of l�p�cg�p�, its further linearization requires additional
assumptions. For a constant rate of gas production, Aronofsky and Jenkins [25]
(for ideal gas) and Al-Hussainy et al. [23] (for real gas) have demonstrated that
the solution of Eq. (9) with the coef®cient on the right hand side evaluated at
initial pressure pin, is in a good agreement with experiments. For other ®eld
scenarios, Al-Hussainy et al. noted that evaluating l�p�cg�p� ``about half way
between the extremes might be quite good''. We therefore feel comfortable using a
linearized version of Eq. (9) with l�p�cg�p� evaluated at some pressure p�:

r � K�x�rW�x; t�� � � S�x� oW�x; t�
ot

; �11�

where K�x� � k�x�=RT, S�x� � /�x�l�p��cg�p��=RT, and p� is either one of the
extreme pressures (initial or ®nal) or their average. We leave the question of how
this approximation in¯uences the behavior of effective gas permeability for future
studies.

In terms of the pseudo-pressure, a mass ¯ux q�x; t� � q�p�v�x; t� can be
expressed as

q�x; t� � ÿK�x�rW�x; t� : �12�
By the same token the boundary and initial conditions (3)±(5) take the form

W�x; t� � H�x; t� x 2 CD �13�
ÿq�x; t� � n�x� � Q�x; t� x 2 CN �14�
W�x; 0� � Win�x� x 2 X �15�
where the random functions H�x; t�, Q�x; t�, and Win�x� are the Kirchhoff
transforms of P�x; t�, q�p�V�x; t�, and pin, respectively.

Thus the nonlinear problem of gas ¯ow reduces to the linear problem of
groundwater ¯ow. It is worthwhile to emphasize here that such a linearization is
not new; it is its application to the problem of upscaling which is novel.

4
Stochastic averaging of the linearized problem
In a context of groundwater ¯ow a problem similar to Eqs. (11)±(15) was con-
sidered by Tartakovsky and Neuman [26]. Decomposing the random functions
into their ensemble means and zero-mean ¯uctuations about these means yields

K�x� � hKi � K 0�x� hK 0�x�i � 0 ; �16�
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W�x; t� � hW�x; t�i �W0�x; t� hW0�x; t�i � 0 ; �17�
q�x; t� � hq�x; t�i � q0�x; t� hq0�x; t�i � 0 : �18�
Substituting Eqs. (16)±(18) into Eq. (12) and taking the ensemble mean give the
averaged Darcy's law,

hq�x; t�i � ÿhKiJ�x; t� � r�x; t� : �19�
Here J�x; t� � rhW�x; t�i is the mean pseudo-pressure gradient, and
r�x; t� � ÿhK 0�x�rW0�x; t�i is a so-called ``residual'' ¯ux [8]. Numerous studies of
groundwater ¯ow have demonstrated that r�x; t� is not necessarily small and
therefore cannot be neglected. Hence hKi does not act as an upscaled perme-
ability. Moreover, it has been demonstrated that the residual ¯ux is generally non-
local in time and space. In terms of our analysis this means that r�x; t� is given by
integrals containing pseudo-pressure gradients at points other than x and times
other than t (see Appendix A for more details). The kernels of these integrals
re¯ect a permeability correlation structure and a shape of the domain X. As a
result, a general effective permeability that depends only on the properties of the
medium cannot be de®ned. Then one can solve numerically a set of recursive
approximations [26] for nonlocal Eq. (19). The advantage of using this procedure
is that the averaged quantities involved are relatively smooth functions de®ned on
a coarse grid X. This makes it possible to use standard numerical techniques,
such as ®nite element methods, more ef®ciently.

5
Effective permeability
For the sake of simplicity we, following Tartakovsky and Neuman [27], take X to
be a box-shaped rectangular grid-block with lateral mean no-¯ow boundaries
separated by distances equal to L2 and L3, and two constant head boundaries a
distance L1 apart. A spatially uniform mean pseudo-pressure gradient
J�t� � rhWi of magnitude J1 � �H2�t� ÿ H1�t��=L1 acts between the Dirichlet
boundaries parallel to the x1-coordinate. The permeability ®eld is assumed to be
log-normally distributed and statistically homogeneous with an exponential
covariance function

CY�x; y� � r2
Y exp ÿ jxÿ yj

lY

� �
�20�

where r2
Y and lY are the variance and the correlation length of the log-perme-

ability Y � ln K.
As shown in Appendix A, a ®rst-order (in r2

Y) approximation of Eq. (19) is
given by

q
�1�
1 �x; t� � ÿKG 1� r2

Y

2

� �
J1�t� � r

�1�
1 �x; t� �21�

where

r
�1�
1 �x; t� �

Z t

0

a�x; t ÿ s�J1�s�ds ; �22�
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and the kernel a is given by Eq. (41). To introduce an effective permeability keff ,
a further localization is necessary. Assuming slow time variation of the mean
uniform pseudo-pressure gradient, i.e. J1�s� � J1�t�, gives

q
�1�
1 �x; t� � ÿk

�1�
eff�x; t�J1�t� �23�

where

k
�1�
eff�x; t� � KG 1� r2

Y

2

� �
ÿ j�x; t� �24�

and

j�x; t� �
Z t

0

a�x; t ÿ s�ds : �25�

It follows from Eq. (24) that thus introduced effective permeability is space and
time dependent. As we show below, the space dependence results from boundary
effects, while the time dependence is a re¯ection of transient nature of the gas
¯ow.

5.1
Effective permeability for an infinite domain
When boundaries of X are situated far away from the point of interest, one can
approximate the domain as being in®nite. We start by considering steady-state
gas ¯ow in an in®nite domain. A corresponding expression for keff is obtained by
taking the limits of Eq. (24) as t !1 and L1; L2; L3 !1. Tartakovsky and
Neuman [27] have demonstrated that at these limits Eq. (25) gives (in d
dimensions) j � KGr2

Y=d, and Eq. (24) leads to a well known expression [6±8]

k
�1�
eff

KG
� 1� r2

Y

1

2
ÿ 1

d

� �
: �26�

Under conditions of transient ¯ow, the effective permeability becomes time-
dependent and Eqs. (24) and (25) yield [27, 14]

k
�1�
eff�tD�
KG

� 1� r2
Y

1

2
ÿ 1

d
� 1

d
bd�tD�

� �
�27�

where tD � tKG=SlY is the dimensionless time, and the behavior of bd�tD� is
shown in Fig. 1. One can see that the dimensionless relaxation time tr, required
for transient effects to dissipate, is signi®cantly smaller for three-dimensional
¯ow than for one-dimensional ¯ow. Hence under real reservoir conditions, it
might be possible to disregard time-dependence of the effective permeability.

5.2
Effect of temporal localization
To investigate the possibility of temporal localization, we compare the ¯uxes
computed via the nonlocal Darcy's law (21) and its localized version (23) for
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one- and three-dimensional ¯ows. Tartakovsky and Neuman [20] have evaluated
Eqs. (21) and (23) for several functional dependencies J1�tD�. The authors found
that for mildly heterogeneous formations, when r2

Y � 0:1, there is very little
difference between localized and time-nonlocal behaviors. Figure 2 compares
mean ¯uxes, normalized by the geometric mean KG, computed with r2

Y � 1 and

0 5 10 15 20 25 30 35 40
Dimensionless time, tD

0.0

0.2

0.4

0.6

0.8

1.0
b d(

t D
)

d = 1
d = 2
d = 3

Fig. 1. Time-dependence of
the effective permeability for
statistically isotropic one-,
two-, and three-dimensional
heterogeneous media (after
Dagan �14�)
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Fig. 2. Normalized nonlocal
and localized mean ¯uxes.
(a) One-dimensional ¯ow.
(b) Three-dimensional ¯ow.
(after Tartakovsky and
Neuman �20�)
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J1�tD� � 1� sin�tD�. This comparison shows that the difference between local and
nonlocal behaviors is more pronounced in one dimension then in three. It also
suggests that even for relatively large variances, time-localization of the averaged
three-dimensional ¯ow (introduction of the effective permeability) gives satis-
factory results.

5.3
Boundary effects
In the regions close to the boundaries of the rectangular box, boundary effects
cannot be neglected, and the resulting effective permeability (24) becomes space
and time dependent,

k
�1�
eff�tD�
KG

� 1� r2
Y

1

2
ÿ Dst�v� � b�v; tD�

� �
�28�

where v is a coordinate vector with dimensionless components vi � xi=Li, Dst

represents the steady-state component of keff , and b its transient component. The
following analysis is due to Tartakovsky and Neuman [27].

In the region suf®ciently away from the boundaries, Dst�v� � 1=3,
b�v; tD� � b3�tD�=3, and Eq. (28) reduces to Eq. (27). The behavior of the up-
scaled gas permeability in the boundary layer of the cube L1 � L2 � L3 � L is
shown in Figs. 3 and 4. Figure 3 illustrates the dependence of the steady-state
component of keff on a dimensionless cube of size 2q � L=lY . One can see that Dst

reaches 90% of its asymptotic value of 1=3 at a distance of 10 correlation scales
away from the boundaries. Figure 4 shows the behavior of b as function of
dimensionless time for several dimensionless sizes of the cube. Note that the
presence of the boundaries diminishes the transient component of the upscaled
permeability. Similar to the steady-state component, the transient component of
the effective permeability reaches its asymptotic value when the box is larger than
10 correlation scales.

6
Generalization to strongly heterogeneous media
The results of the previous section were derived by means of the small pertur-
bation analysis under assumption of mildly heterogeneous porous media, i.e.

0 5 10 15 20
dimensionless cube size, 2ρ

0.0

0.1

0.2

0.3

0.4

D
st
(ρ

) infinite domain

Fig. 3. Dependence of the
steady-state component Dst of
the upscaled gas conductivity
keff on dimensionless box size
2q � L=lY (after Tartakovsky
and Neuman �27�)
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r2
Y � 1. These results can be generalized for the case of strongly heterogeneous

media by employing a conjecture that became known in stochastic subsurface
hydrology as the Landau±Lifshitz conjecture (LLC) [4, 5, 8, 9, 19]. According to
this conjecture, Eqs. (26)±(28) are treated as a Taylor expansion of the corre-
sponding exponents. In particular, Eq. (26) can be thought of as a ®rst-order
approximation of the effective gas permeability,

k
�1�
eff

KG
� exp r2

Y

1

2
ÿ 1

d

� �� �
: �29�

It was proven that LLC is rigorously valid under one-dimensional ¯ow in log-
normal ®elds [28, 29]. It is also rigorously valid under two-dimensional ¯ow in
log-normal, statistically isotropic permeability ®elds [5, 8]. Attempts to prove LLC
rigorously for three dimensional ¯ow were reported [9, 19], but De Wit [30] was
able to demonstrate that LLC is not rigorously valid for three-dimensional
Gaussian isotropic media. Nevertheless, numerical Monte Carlo simulations [31]
showed that, for isotropic Gaussian Y with exponential covariance, LLC holds at
least up to r2

Y � 7.

7
Conclusions
We considered transient ¯ow of real gases through bounded heterogeneous
porous media. To obtain an effective gas permeability, stochastic analysis of
nonlinear differential equations that describe this ¯ow was employed. Standard
stochastic averaging was preceded by the linearization based on the Kirchhoff
transformation. The linearized stochastic differential equations are similar to
those used to describe groundwater ¯ow in heterogeneous formations. Thus, an
upscaled gas permeability has the same qualities as an upscaled hydraulic
conductivity. In particular,

1. The averaged Darcy's law for gas ¯ow is generally nonlocal, and mean gas
permeability hki does not represent an upscaled permeability keff .

2. Localization of the averaged Darcy's equation requires an assumption of slow
space-time variation of the mean pseudo-pressure gradient. For three-
dimensional ¯ow, time-localization performs reasonably well.

0 2 5 8 10
dimensionless time, tD

0.0

0.1

0.2

0.3

b(
t D

)

2ρ = 1
2ρ = 2
2ρ = 5
2ρ = 7
2ρ = 10

Fig. 4. Time-dependence of
the effective permeability for
several dimensionless cube
sizes
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3. For steady-state gas ¯ow away from the boundaries, the upscaled gas
permeability is given by the expression identical to that for the effective
conductivity for groundwater ¯ow.

4. Transient ¯ow introduces time-dependence of the upscaled gas permeability.
However, under real three-dimensional reservoir conditions, it might be
possible to use its steady-state counterpart.

5. Presence of boundaries introduces spatial dependence of keff . The upscaled
gas permeability increases with the size of the domain until it reaches its
asymptotic value corresponding to a d-dimensional in®nite domain. In
box-shaped domains with no-¯ow and constant head boundaries, boundary
effects cease to exist at a distance of 10 correlation scales away from the
boundaries.

While this paper dealt with upscaling of the pressure independent gas perme-
ability, the incorporation of pressure-dependence can be handled easily. This
formally extends our results to wet condensate gas ¯ow where the effects of
Klinkenberg's gas slippage are important. To account for this phenomenon,
the pressure-dependent permeability for gas is taken in the form kp�x; p� �
k�x�f �p� where f �p� is the deterministic pressure-dependent correction. This
correction can be easily incorporated in the Kirchhoff transformation (8), and
thus all results obtained for upscaling of k�x� hold.

Appendix A: Residual flux
Considering transient groundwater ¯ow through heterogeneous formations,
Tartakovsky and Neuman [26] have shown that the residual ¯ux r�x; t� can be
formally written as the solution of the integral equation

r�x; t� �
Z t

0

Z
X

A�y; x; t ÿ s�J�y; s�dyds�
Z t

0

Z
X

B�y; x; t ÿ s�r�y; s�dyds : �30�

The kernels A and B are a quadratic form with respect to space variables and a
nonsymmetric tensor, respectively. To evaluate these kernels exactly would
require calculating the random Green's function for the boundary-value problem
(8)±(12). An approximation can be obtained by means of a perturbation analysis.
In particular, a ®rst-order (in variance r2

Y � hY 0�x�Y 0�x�i of log-permeability
Y � ln K) approximation of Eq. (30) yields [26]

r�1��x; t� �
Z t

0

Z
X

A�1��x; y; t ÿ s�J�0��y; s�dyds �31�

where J�0� is the zeroth-order approximation of J, and A�1� is the ®rst-order
approximation of A given by

A�1� � KGCY�x; y�rxrT
y GK�x; y; t ÿ s� �32�

Here KG � exp�hYi� is the geometric mean of K, CY � hY 0�x�Y 0�y�i is the
covariance function of Y , and the Green's function GK�x; y; t ÿ s� is the solution
of an equation
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r2
xGK � d�xÿ y�d�t ÿ s� � S�x� oGK

ot
�33�

subject to boundary and initial conditions

GK�x; y; t ÿ s� � 0 x 2 CD �34�
rxGK�x; y; t ÿ s� � n�x� � 0 x 2 CN �35�
GK�x; y; 0� � 0 x 2 X : �36�
Expanding hqi, hKi, and J in Eq. (19) in power series of Y 0�x� � Y�x� ÿ hYi, and
neglecting the terms of order higher than r2

Y in these expansions, yields

hq�1��x; t�i � q�0��x; t� � hq�1��x; t�i �37�
where

q�0��x; t� � ÿKGJ�0��x; t� �38�
and

hq�1��x; t�i � ÿKG J�1��x; t� � r2
Y

2
J�0��x; t�

� �
� r�1��x; t� : �39�

For the mean spatially uniform ¯ow, J�x; t� � J�t� � J�0��t�. Assuming that
the mean ¯ow is parallel to the x1-direction, i.e. J � �J1; 0; 0�T, leads directly to
Eq. (21). It follows from Eq. (31) that

r
�1�
1 �x; t� �

Z t

0

a�x; t ÿ s�J�y; s�ds �40�

where

a�x; t ÿ s� �
Z
X

A
�1�
11 �x; y; t ÿ s�dy �41�

and

A
�1�
11 � KGCY�x; y� o

2GK�x; y; t ÿ s�
ox1oy1

: �42�
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