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Abstract. Phreatic flow in heterogeneous aquifers is analyzed by treating hydraulic
conductivity as a random field with known statistics. A set of equations for the first and
second ensemble moments of hydraulic head and phreatic surface is derived. These
equations allow one to predict the behavior of phreatic aquifers, as well as to assess the
uncertainty associated with such predictions. Perturbation analysis in variance of log
hydraulic conductivity is employed to close the moments equations. This leads to a
recursive initial boundary value problem.

1. Introduction

Recognition of the uncertain nature of flow and transport in
natural geologic formations has spurred the development of
stochastic subsurface hydrology. This approach relies on rep-
resenting hydraulic conductivity of an aquifer, K(x), as a ran-
dom field with known statistics. Ensemble averaging of the
stochastic flow equations provides unbiased estimations of lo-
cal hydraulic head and Darcy fluxes by means of their first
ensemble moments. It also provides measures of predictive
uncertainty which are expressed in terms of the corresponding
second ensemble moments. Stochastic analyses of flow through
randomly heterogeneous porous media have been reported by
Shvidler [1964], Matheron [1967], and Freeze [1975]. Their re-
sults have brought about a rapid growth of literature on sto-
chastic subsurface hydrology (a review of the development of
stochastic subsurface hydrology is given by Dagan and Neuman
[1996]).

Despite notable progress in analyzing flows in confined het-
erogeneous aquifers, there are virtually no studies of flow with
phreatic surfaces. While of considerable interest for many
practical applications, “the complexity of the problem z z z has
defied attempts to solve it either by numerical methods or by
approximate analytical ones” [Dagan and Zeitoun, 1998, p.
3191]. This complexity stems from a high degree of nonlinear-
ity caused by the presence of free boundaries. Gelhar [1974]
has studied phreatic aquifers by treating them as the lumped
parameter linear reservoir, the linear Dupuit aquifer, and the
linearized Laplace aquifer. Dagan and Zeitoun [1998] have
analyzed the response of water tables to pumping by employing
the Dupuit approximation and reducing heterogeneity to a
perfect layering. While important as a first step in modeling
heterogeneous phreatic aquifers, the above-mentioned ap-
proaches lack generality. In particular, the lumped parameter
models neglect all spatial variation within a system, while the
Dupuit assumption is applicable under very restrictive condi-
tions [Muskat, 1946, p. 359]. Monte Carlo simulation of water
tables in a heterogeneous dam has been reported by Fenton
and Griffith [1996]. While conceptually straightforward and
versatile, the Monte Carlo approach has a number of draw-
backs (for detailed discussion, see Tartakovsky et al. [1999]).

In this paper, a deterministic alternative to Monte Carlo
simulations is presented. It allows prediction of phreatic flow

in randomly heterogeneous porous media without requiring
any simplifying assumptions about the shape of the phreatic
surface. Such a prediction is given by the solution of a stochas-
tically averaged boundary value problem. To assess the uncer-
tainty associated with this prediction, a set of equations for the
second ensemble moments of the quantities of interest is de-
rived. A closure for our ensemble moment equations is pro-
vided by means of a perturbation analysis in variance sY

2 of log
hydraulic conductivity Y 5 ln K .

2. Statement of the Problem
Consider groundwater flow in an unconfined aquifer. A typ-

ical flow region V can be bounded by Dirichlet segments (pre-
scribed head boundaries and/or seepage faces) GD, Neumann
segments (prescribed flux boundaries) GN, and phreatic sur-
face (water table) GF. Such flow is described by a combination
of Darcy’s law and mass conservation,

q~x , t! 5 2K~x!¹h~x , t! 2¹ z q~x , t! 1 f~x , t! 5 0 (1)

x [ V~t! ,

where x 5 ( x1, x2, x3)T is the coordinate vector ( x3 being the
vertical coordinate positive upward), (unit length (L)); t is
time, (unit time (T)); q(x, t) is the flux (LT21); K(x) is the
hydraulic conductivity (LT21); h(x, t) is the hydraulic head
(L); and V is the flow domain. These equations are subject to
the initial and boundary conditions [e.g., Neuman and Wither-
spoon, 1971]

h~x , 0! 5 h0~x! j~ x1, x2, 0! 5 j0~ x1, x2! (2)

x [ V~t 5 0!

h~x , t! 5 H~x , t! x [ GD (3)

n~x! z q~x , t! 5 Q~x , t! x [ GN (4)

h~x , t! 5 j~ x1, x2, t! 2n~x! z q~x , t! 5 Vn~x , t! (5)

x [ GF.

Here j( x1, x2, t) is the elevation of the phreatic surface (L);
h0(x) and j0( x1, x2) are the initial head distribution and free
surface elevation, respectively; f(x, t) is the source function
(T21); H(x, t) is the prescribed hydraulic head (L); Q(x, t) is
the prescribed flux (LT21); and n(x) 5 (n1, n2, n3)T is the
unit outward normal to the boundary G 5 GD ø GN ø GF of
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the flow domain V. Normal velocity of the phreatic surface Vn

is given by [Neuman and Witherspoon, 1971]

Vn~x , t! 5 S « 2 Sy

j

tD n3~x , t! , (6)

where «( x1, x2, j , t) is the vertical rate of infiltration at the
free surface (LT21) and Sy(x) is the specific yield.

A high degree of spatial variability in the hydraulic conduc-
tivity K(x) and a lack of detailed information about its spatial
distribution can be conveniently modeled by treating K(x) as a
random field. Additionally, the driving forces «(x, t), f(x, t),
H(x, t), and Q(x, t) are often uncertain, although this source
of uncertainty is not considered here. The specific yield Sy(x)
is assumed to be deterministic. Because of randomness in the
input parameter, (1)–(6) constitute a stochastic initial bound-
ary value problem with free surfaces.

In what follows, it is assumed that available experimental
data allow one to infer the statistics of the random field K(x).
This field does not have to be statistically homogeneous. The
aim is to derive a set of deterministic equations for estimating
mean dynamics of the phreatic surface j# ( x1, x2, t).

To facilitate stochastic averaging, we recast (1)–(6) in the
form of an integral equation,

2 E
V

¹y z @K# ~y!¹yG~y , x!#h~y , t! dy

5 E
V

¹y z @K9~y!¹yh~y , t!#G~y , x! dy

1 E
V

f~y , t!G~y , x! dy

1 E
G

K# ~y!n ? @G~y , x!¹yh~y , t! 2 h~y , t!¹yG~y , x!# dy .

(7)

Here the random field of hydraulic conductivity K is repre-
sented as a sum of its mean K# and zero-mean perturbations K9
about them, K 5 K# 1 K9(K# 9 5 0), and G(y, x) is an arbitrary
function. Defining G(y, x) as the deterministic, time-invariant
Green’s function which satisfies

¹y z @K# ~y!¹yG~y , x!# 1 d~y 2 x! 5 0 y , x [ VT (8)

subject to the boundary conditions

G~y , x! 5 0 y [ GD (9)

n~y! z ¹yG~y , x! 5 0 y [ GN (10)

and applying Green’s formula lead to

h~x , t! 5 2E
V

K9~y!¹yh~y , t! z ¹yG~y , x! dy

1 E
V

f~y , t!G~y , x! dy 2 E
GN

Q~y , t!G~y , x! dy

2 E
GD

H~y , t!K# ~y!n z ¹yG~y , x! dy

1 E
GF

@Vn~y , t!G~y , x!

2 K# ~y!j~y , t!n~y , t! z ¹yG~y , x!# dy . (11)

Since the Green’s function G(y, x) is defined for the entire
domain VT rather than just for the flow domain V, there are
no conditions on G along the phreatic surface GF. Specifying
G for the flow domain V would require recalculating G at each
time as V evolves, which is not computationally expedient. The
definition of VT is not unique, but its boundary must include
those of V. For instance, in a classical problem of phreatic flow
through a rectangular earth dam, VT can be either rectangle
representing the dam or semi-infinite strip of the same width
(Figure 1).

Integral equation (11) serves as a starting point in the sto-
chastic analysis.

3. Averaged Flow Equation

In (11), representing random fields as sums of means and
zero-mean perturbations, h 5 h# 1 h9 , q 5 q# 1 q*, Vn 5
V# n 1 V9n, and n 5 n# 1 n* on GF, and taking the ensemble
mean give

h# ~x , t! 5 E
V

r~y , t! z ¹yG~y , x! dy 1 E
V

f~y , t!G~y , x! dy

2 E
GN

Q~y , t!G~y , x! dy

2 E
GD

H~y , t!K# ~y!n z ¹yG~y , x! dy

1 E
GF

$V# n~y , t!G~y , x! 2 K# ~y!

z @j# ~y , t!n# ~y , t! 1 Cjn~y , y , t!# z ¹yG~y , x!% dy ,

(12)

Figure 1. Schematic representation of phreatic flow through
an earth dam. While geometry of the flow domain V changes
with time, the total domain VT is time-invariant. Here VT can
be either rectangle representing the dam or semi-infinite strip.
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where r(x, t) 5 2K9(x)¹h9(x, t) is the “residual” flux and
Cjn(x, y, t) 5 j9(x, t)n*(y, t). To derive expressions for the
residual flux for flow domains with fixed boundaries, Neuman
and Orr [1993] and Cushman [1997] have used random and
deterministic Green’s functions, respectively.

We show in the appendix that the residual flux r(x, t) is
given implicitly by

r~x , t! 5 E
V

CK~x , y!¹x¹y
TG~y , x!¹yh# ~y , t! dy

1 E
V

¹x¹y
TG~y , x!K9~x! K9~y!¹yh9~y! dy

2 E
GF

$CKV~x , y , t!¹xG~y , x! 2 K# ~y!¹x¹y
TG~y , x!

z @CKj~x , y , t!n# ~y , t! 1 j# ~y , t!CKn~x , y , t!

1 K9~x!j9~y , t!n*~y , t!#% dy . (13)

To complete this system of equations, one needs to
evaluate the cross covariances Cjn(x, y, t), CKV(x, y, t) 5
K9(x)V9n(y, t), CKj(x, y, t) 5 K9(x)j9(y, t), and CKn(x, y, t) 5
K9(x)n*(y, t) and to provide a closure for the third mixed
moments. Such a closure is derived below by means of a
perturbation analysis in the small parameter sY

2 , the vari-
ance of log hydraulic conductivity Y 5 ln K.

Expanding K , h , q, j , G , and n in powers of Y9(x) and
collecting terms of the power sY

2 yields the first-order (in sY
2 )

approximation of the residual flux,

r ~1!~x , t! 5 Kg~x!E
V

Kg~y!CY~x , y!¹x¹y
TG ~0!~y , x!¹yh# ~0!~y , t! dy

2 E
GF

$CKV
~1! ~x , y , t!¹xG ~0!~y , x! 2 Kg~y!¹x¹y

TG ~0!~y , x!

z @CKj
~1!~x , y , t!n# ~0!~y , t! 1 j# ~0!~y , t!CKn

~1!~x , y , t!#% dy . (14)

Here the geometric mean Kg 5 exp (Y# ) is the zeroth-order
approximation of K , and CY is the correlation function of Y .
The zeroth-order approximations, h# (0)(x, t), j# (0)( x1, x2, t),
and n# (0)(x, t) are the solutions of the corresponding phreatic
flow problem in the medium of conductivity Kg. As such, they
can be easily found by standard methods. The same holds for
the zeroth-order approximation of the Green’s function
G(0)(y, x).

It remains to evaluate the first-order approximations of the
cross covariances CKV, Cjn, CKj, and CKn. It follows from (6)
and the derivations in the appendix that

CKV
~1! ~x , y , t! 5 «CKn3~x , y , t!

2 SyF CKj
~1!~x , y , t!

t n# 3
~0!~y , t!

1
j# ~0!~y , t!

t CKn3
~1! ~x , y , t!G (15)

CKn
~1!~x , y , t! 5

¹yCKj
~1!~x , y , t!

u¹y~j# ~0! 2 y3! u

2 n# ~0!(y , t)
n# ~0!~y , t! z ¹yCKj

~1!~x , y , t!
u¹y~j# ~0! 2 y3! u

(16)

CKj
~1!~x , y , t!

5 2Kg~x!E
V

Kg~z!CY~x , z!¹zG ~0!~z , y!¹zh# ~0!~z , t! dz

1 E
GF

$CKV
~1! ~x , z , t!G ~0!~z , y! 2 Kg~z!¹zG ~0!~z , y!

z @CKj
~1!~x , z , t!n# ~0!~z , t! 1 j# ~0!~z , t!CKn

~1!~x , z , t!#% dz

(17)

Cjn
~1!~x , x , t! 5

¹@sj
2~x , t!#~1!

2 u¹~j# ~0! 2 x3! u

2 n# ~0!~x , t!
n# ~0!~x , t! z ¹@sj

2~x , t!#~1!

2 u¹~j# ~0! 2 x3! u
. (18)

In (18), variance sj
2(x, t) 5 j9(x, t)j9(x, t) represents a

measure of uncertainty associated with our estimation of the
mean position of the phreatic surface j#. It can be found by taking
the limits y3 x and t 3 t of front covariance, Cj(x, y, t , t) 5
j9(x, t)j9(y, t),

Cj
~1!~x , y , t , t!

5 2E
V

CKj
~1!~z , y , t!¹zh# ~0!~z , t! z ¹zG ~0!~z , x! dz

1 E
GF

$CVj
~1!~z , y , t , t!G ~0!~z , x!

2 Kg~z!¹zG ~0!~z , x! z @Cj
~1!~z , y , t , t!n# ~0!~z , t!

1 Cjn
~1!~y , z , t , t!j# ~0!~z , t!#% dz , (19)

where the first-order approximation of cross covariance
CVj(x, y, t , t) 5 V9n(x, t)j9(y, t) has the form

CVj
~1!~x , y , t , t! 5 «Cjn3

~1! ~y , x , t , t!

2 SyF Cj
~1!~x , y , t , t!

t n# 3
~0!~x , t!

1
j# ~x , t!

t Cjn3~y , x , t , t!G . (20)

Equations (15)–(20) constitute a closed system of integro-
differential equations.

4. Discussion
A set of deterministic equations for estimating flow in un-

confined aquifers and for assessing the corresponding confi-
dence intervals is derived. While a system of nine integro-
differential equations might seem cumbersome to solve, this
number of equations is much smaller than hundreds or thou-
sands of equations which need to be solved in Monte Carlo
simulations. Moreover, the moment equations can be solved
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on numerical grids which are coarser than those typically re-
quired for Monte Carlo simulations.

The results are preliminary in that numerical implementa-
tion of the proposed approach is far from trivial. At this stage
we only provide a numerical algorithm, while leaving its im-
plementation for future research. The numerical solution of
these equations can proceed in the following steps.

1. Using the geometric mean of hydraulic conductivity Kg

as an input parameter, solve a phreatic flow problem to obtain
zeroth-order estimators of hydraulic head h# (0)(x, t) and
phreatic surface j#(0)(x, t). This step can be accomplished by
standard numerical methods, such as FREESURF II of Neu-
man and Witherspoon [1971].

2. Evaluate the residual flux r(x, t) and the cross covari-
ance Cjn(x, t) in the mean phreatic flow equation through
perturbation expansions in variance sY

2 of log hydraulic con-
ductivity Y 5 ln K . Their first-order approximations, r(1)(x, t)
and Cjn

(1)(x, t), are given by (14) and (18), respectively. The
coefficients in (14), CKV

(1), CKn
(1), and CKj

(1), are the solutions of a
system of triple integro-differential equations (15)–(17). Like-
wise, the coefficients in (18), Cj

(1) and CjV
(1), are the solutions

of the coupled integro-differential equations (19) and (20).
3. Solve the mean phreatic flow equation with the residual

flux r(x, t) (or, more precisely, ¹ z r(1)) serving as a distributed
source and with the cross covariance Cjn(x, t) serving as
accretion on the phreatic surface. Again, FREESURF II can
be readily employed at this step. Alternatively, one can use an
integral form of the mean flow equation (12) to evaluate j#.
This can be accomplished by using the front-tracking numeri-
cal scheme of Kessler et al. [1984].

In general, (12) must be solved numerically. However, sim-
ple one-dimensional cases might be amenable to analytical
treatment. In this case, the normal vector to the phreatic sur-
face, n, is deterministic and constant in space and time. In fact,
it does not enter the picture at all. Consequently, all covari-
ances which include n disappear. Moreover, the boundary in-
tegrals over GF are replaced with just a point j. An analytical
solution for this problem in the absence of gravity was obtained
by D. M. Tartakovsky and C. L. Winter (Stochastic analysis of
free surfaces in randomly heterogeneous porous media, sub-
mitted to SIAM Journal on Applied Mathematics, 1999.)

Appendix
Subtracting (12) from (11) gives an integral equation for the

perturbations h9(x, t),

h9~x , t! 5 2E
V

@K9~y!¹yh~y , t! 1 r~y , t!# z ¹yG~y , x! dy

1 E
GF

$V9n~y!G~y , x! 2 K# ~y!¹yG~y , x! z @j9~y , t!n*~y , t!

1 j9~y , t!n# ~y , t! 1 j# ~y , t!n*~y , t! 2 Cjn~y , y , t!#% dy .

(A1)

Operating on (A1) with K9(x)¹x and taking the ensemble
mean lead to (13). Evaluating (A1) at y [ GF, multiplying with
K9(x), and taking the mean yield

CKj~x , y , t! 5 2E
V

CK~x , z!¹zG~z , y! z ¹zh# ~z , t! dz

2 E
V

¹zG~z , y! z K9~x! K9~z!¹zh9~z! dz

1 E
GF

$CKV~x , z , t!G~z , y! 2 K# ~z!¹zG~z , y!

z @CKj~x , z , t!n# ~z , t! 1 j# ~z , t!CKn~x , z , t!

1 K9~x!j9~z , t!n*~z , t!#% dz . (A2)

By the same token, evaluating (A1) at x [ GF, multiplying
with j9(y, t), and taking the mean yield

Cj~x , y , t , t! 5 2E
V

@CKj~z , y , t!¹zh# ~z , t!

1 j9~y , t! K9~z!¹zh9~z , t!# z ¹zG~z , x! dz

1 E
GF

$CVj~z , y , t , t!G~z , x! 2 K# ~z!¹zG~z , x!

z @j9~z , t!j9~y , t!n*~z , t! 1 Cj~z , y , t , t!n# ~z , t!

1 Cjn~y , z , t , t!j# ~z , t!#% dz . (A3)

The first-order (in sY
2 ) approximations of (A2) and (A3) are

given by (17) and (19), respectively.
Normal unit vector n to the phreatic surface GF can be found

as

n~x , t! 5
¹@j~ x1, x2, t! 2 x3#

u¹@j~ x1, x2, t! 2 x3# u 5
¹~j 2 x3!

Î@¹~j# 2 x3! 1 ¹j9#2

5 S n# 1
¹j9

u¹~j# 2 x3! uD 1

Î1 1
2¹~j# 2 x3! z ¹j9 1 @¹j9#2

@¹~j# 2 x3!#
2

.

(A4)

A power series expansion yields [Gradshteyn and Ryzhik, 1994,
equation (1.112(4))]

n~x , t! 5 S n# 1
¹j9

u¹~j# 2 x3! uD
z S 12

2¹~j# 2 x3! z ¹j9 1 @¹j9#2

2@¹~j# 2 x3!#
2 1 · · ·D . (A5)

Cross covariances C jn(x, x, t) 5 j 9(x, t)n(x, t) and
CKn(x, y, t) 5 K9(x)n(y, t) are now readily expressed as

Cjn~x , x , t! 5
¹sj

2

2 u¹~j# 2 x3! u
2 n#

n# z ¹sj
2

2 u¹~j# 2 x3! u
1 · · · (A6)

CKn~x, y, t! 5
¹yCKj~x, y, t!
u¹y~j# 2 y3!u

2 n#~y!
n#~y! z ¹yCKj~x, y, t!

u¹y~j# 2 y3!u
1 · · · (A7)

First-order (in sY
2 ) approximations of (A6) and (A7) are given

by (18) and (16), respectively.
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