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Technical Note

Some aspects of head-variance evaluation
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We compare two methods of evaluating head covariance for two-dimensional steady-state
flow in mildly heterogeneous bounded rectangular aquifers. The quasi-analytical approach,
widely used in stochastic subsurface hydrology, is based on the Green’s function repre-
sentation, and involves numerical four-fold integration. We compare this approach with a
numerical solution of the two-dimensional boundary-value problem for head covariance. We
show that the finite differences integration of this problem is computationally less expensive
than numerical four-fold integration of slowly-convergent infinite series.
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Stochastic analysis has emerged as a powerful tool for coping with uncertainties
associated with flow through heterogeneous formations. While first ensemble mo-
ments of system states predict the average behavior of a system, the corresponding
second moments quantify the errors introduced by such predictions. A deterministic
alternative to computationally demanding Monte Carlo simulations allows predicting
flow through randomly heterogeneous porous media without having to generate ran-
dom fields of permeability or hydraulic conductivity. For such an alternative to be
viable, it must be efficient. In order to find an optimal way for evaluating hydraulic
head variance, we consider two methods. The first method utilizes Green’s func-
tions and involves many-fold numerical integration. The second method solves the
two-dimensional (2D) boundary-value problem for head-covariance by finite differ-
ences.

We consider steady-state saturated flow in a rectangular domain Ω. Flow is
driven by a uniform mean hydraulic head gradient J induced by the presence of two
constant head boundaries and two no-flow boundaries. The hydraulic head distribution
h(x1,x2) is described by

∇ ·
[
K(x)∇h(x)

]
= 0, x ∈ Ω, (1)

subject to boundary conditions
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h(x1 = 0,x2) = H1, h(x1 = a,x2) = H2, H1 > H2, (2)

∂h(x1,x2 = 0)
∂x2

=
∂h(x1,x2 = b)

∂x2
= 0, (3)

where H1 and H2 are prescribed constant heads such that J = (H2 −H1)/a.
Let 〈K(x)〉 be a relatively smooth and unbiased estimate of K(x) obtained from

the available data. Then the unknown K(x) differs from the known (deterministic)
〈K(x)〉 by a random error K ′(x), such that K ′(x) = K(x)− 〈K(x)〉 and 〈K ′(x)〉 ≡ 0.
It is customary in subsurface hydrology to assume that the K-field is second-order
stationary and log-normally distributed, i.e., Y = lnK has constant mean 〈Y 〉 and
variance σ2

Y , and its covariance function CY (x, y) = 〈Y ′(x)Y ′(y)〉 = CY (r), where
r = |x− y|, has an exponential form,

CY (r) = σ2
Y exp

(
− r

lY

)
, r =

√
(x1 − y1)2 + (x2 − y2)2, (4)

where lY is the correlation length of Y .
Under given conditions, the mean head distribution can be easily obtained [2]

as 〈h(x1)〉 = Jx1 +H1. Thus, one can concentrate on determining a prediction error
σ2
h(x) = 〈h′(x)h′(x)〉, where h′(x) is a deviation of an “actual” random hydraulic head
h(x) from its predicted value 〈h(x)〉. A first-order (in σ2

Y ) approximation of σ2
h(x) is

given by [1,3,7]

σ2
h(x)
J2 = K2

G

∫
Ω

∫
Ω
CY
(
|ξ − ζ|

)∂G(x, ξ)
∂ξ1

∂G(y, ζ)
∂ζ1

dξ dζ , (5)

where KG = exp(〈Y 〉) is the geometric mean of K, and G(x, y) is the Green’s function
associated with the problem (1)–(3) wherein K(x) is replaced by KG. This Green’s
function has the form [4]

G(x, y) =
2

πKG

∞∑
n=1

γn(x2, y2)
n

sin(nπx1/a) sin(nπy1/a)
sinh(nπε)

, (6)

where ε = b/a and

γn(x2, y2) =

{
cosh(nπ[y2 − b]/a) cosh(nπx2/b), 0 6 x2 6 y2,
cosh(nπy2/b) cosh(nπ[x2 − b]/a), y2 6 x2 6 1.

(7)

To facilitate analytical integrability of (5), a separated exponential function CY (x, y) =
σ2
Y exp [−(|x1−y1|+ |x2−y2|)/lY ] is often used in place of (4) [4–7]. To justify this

substitution, references [5,6] state that the difference between the two correlation func-
tions has a negligible effect upon the statistical moments of h(x). Figure 1 shows that,
although using the separated exponential function instead of the exponential covariance
function captures correctly the qualitative behavior of σ2

h(x), it can underestimate head
variance by as much as 41%. Thus for 2D domains, a numerical evaluation of the
four-fold integrals in (5) is required.
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Figure 1. Head variance (normalized by J2l2Y σ
2
Y ) for exponential and separated exponential covariance

functions of log hydraulic conductivity. a – horizontal direction; b – vertical direction.

An alternative approach is to find numerically the head-variance σ2
h(x) as the

solution to a boundary-value problem

KG∇2
xCh(x, y) = −J ∂CKh(x, y)

∂x1
, x, y ∈ Ω, (8)

Ch(x, y) = 0, x1 = 0, a,
∂Ch(x, y)
∂x2

= 0, x2 = 0, b, (9)

where Ch(x, y) and CKh(x, y) are the first-order approximations of the head covariance
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〈h′(x)h′(y)〉 and cross-covariance 〈K ′(x)h′(y)〉, respectively. The latter is found as the
solution to

∇2
yCKh(x, y) = −JKG

∂CY (x, y)
∂y1

, y, x ∈ Ω, (10)

CKh(x, y) = 0, y1 = 0, a,
∂CKh(x, y)

∂y2
= 0, y2 = 0, b. (11)

The variance σ2
h(x) can be found by taking the limit y→ x in Ch(x, y).

Four-fold numerical integration in (5) was performed by using an adaptive grid
integration of the NAG numerical library. While for the domain size of 1 correlation
length it typically takes 5 terms for the series (6) to converge, for the domain size
of 15 correlation lengths the convergence requires about 100 terms. This gives rise to
an enormous increase in computational time.

The boundary-value problems (8)–(9) and (10)–(11) were solved numerically by
finite differences [8]. It is clear that the two methods yield identical results. How-
ever, an exceedingly small convergence criterion for the direct numerical integration
of (5) must be chosen to obtain non-oscillatory results. This makes the latter approach
substantially time and memory consuming. Typically the numerical solution of the
boundary-value problems took 1.5–2 times less CPU time than the numerical integra-
tion of (5). In conclusion, we would like to point out the importance of the proper
choice of a correlation function as well as an optimal numerical algorithm.
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