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Abstract. In randomly heterogeneous porous media one cannot predict flow behavior
with certainty. One can, however, render optimum unbiased predictions of such behavior
by means of conditional ensemble mean hydraulic heads and fluxes. We have shown in
paper 1 [Tartakovsky and Neuman, this issue] that under transient flow, these optimum
predictors are governed by nonlocal equations. In particular, the conditional mean flux is
generally nonlocal in space-time and therefore non-Darcian. As such, it cannot be
associated with an effective hydraulic conductivity except in special cases. Here we explore
analytically situations under which localization is possible so that Darcy’s law applies in
real, Laplace, and/or infinite Fourier transformed spaces, approximately or exactly, with or
without conditioning. We show that the corresponding conditional effective hydraulic
conductivity tensor is generally nonsymmetric. An alternative to Darcy’s law in each case,
valid under mean no-flow conditions along Neumann boundaries, is a quasi-Darcian form
that includes only a symmetric tensor which, however, does not constitute a bona fide
effective hydraulic conductivity. Both lack of symmetry and differences between Darcian
and quasi-Darcian forms disappear to first (but not necessarily higher) order of
approximation in the (conditional) variance of natural log hydraulic conductivity. We
adopt such an approximation to investigate analytically the effect of temporal nonlocality
on one- and three-dimensional mean flows in infinite, statistically homogeneous media.
Our results show that temporal nonlocality may manifest itself under either monotonic or
oscillatory time variations in the mean hydraulic gradient. The effect of temporal
nonlocality increases with the variance of log hydraulic conductivity and is more
pronounced in one dimension than in three.

1. Introduction

Here, in paper 2, we again consider the problem defined by
(1)–(13) in paper 1 [Tartakovsky and Neuman, this issue]. The
last of these equations expresses the conditional mean flux as
(see paper 1 for the definition of all symbols)

^q~x , t!&c 5 2^K~x!&c¹^h~x , t!&c 1 rc~x , t! (1)

where rc(x, t) is a residual flux. It was shown that when ^Q& [
0 on GN such that the latter acts as a mean no-flow boundary,
the residual flux is given exactly by the explicit expression

rc~x , t! 5 E
0

t E
V

ac~y , x , t 2 t!¹ yhc~y , t! dy dt (2)

where

ac~y , x , t 2 t! 5 ^K9~y! K9~x!¹x¹ y
TG~y , x , t 2 t!&c (3)

is a symmetric positive-semidefinite dyadic. Regardless of
boundary conditions, one can alternatively express rc implicitly
as

rc~x , t! 5 E
0

t E
V

ac~y , x , t 2 t!¹ y^h~y , t!&c dy dt

1 E
0

t E
V

dc~y , x , t 2 t!rc~y , t! dy dt (4)

where

dc~y , x , t 2 t! 5 ^K9~x!¹x¹ y
TG~y , x , t 2 t!&c (5)

is a nonsymmetric dyadic. It is evident from (2)–(5) that the
residual flux rc(x, t) is nonlocal and non-Darcian in that it
depends on head gradients and residual fluxes at points other
than (x, t). The same is true about the flux predictor ^q(x, t)&c.
The purpose of this paper is to explore situations under which
the flux predictors rc(x, t) and ^q(x, t)&c can be localized and
to investigate analytically the effect of temporal nonlocality on
these quantities.

2. Localization of Conditional Mean Fluxes
Since the flux predictors rc(x, t) and ^q(x, t)&c are generally

nonlocal and non-Darcian, the notion of effective hydraulic
conductivity loses meaning in the context of flow prediction by
means of conditional ensemble mean quantities. There are,
however, a few special situations where localization of the
above flux predictors is possible, as we are about to demon-
strate.
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For an effective hydraulic conductivity to exist in the strict
sense, it is necessary that ¹^h(x, t)&c [ constant and that rc(x,
t) [ constant, which never happens under transient conditions
unless either S [ 0 or t 3 ` . This will become self evident as
we explore below the less restrictive case where ¹^h(x, t)&c

varies slowly enough in space and time (have negligibly small
space and time derivatives) wherever ac(y, x, t 2 t) À 0 and
where rc(x, t) varies slowly enough in space and time wherever
dc(y, x, t 2 t) À 0, so that (4) can be approximated by

rc~x , t! < Ac~x , t!¹^h~x , t!&c 1 Bc~x , t!rc~x , t! (6)

or

rc~x , t! < kc~x , t!¹^h~x , t!&c (7)

where

Ac~x , t! 5 E
0

t E
V

ac~y , x , t 2 t! dy dt (8)

Bc~x , t! 5 E
0

t E
V

dc~y , x , t 2 t! dy dt (9)

kc~x , t! 5 @I 2 Bc~x , t!#21Ac~x , t! (10)

and I is the identity tensor. Here kc(x, t) is a nonsymmetric
dyadic unless Bc(x, t) [ 0 in which case it becomes symmetric
positive-semidefinite. Substituting (7) into (1) yields an ap-
proximate form of Darcy’s law for the conditional mean flux,

^q~x , t!&c < 2Kc, eff~x , t!¹^h~x , t!&c (11)

where

Kc, eff~x , t! 5 ^K~x!&cI 2 kc~x , t! . (12)

Here Kc , eff(x, t) is a space-time varying conditional effective
hydraulic conductivity tensor which can be symmetric positive-
definite or nonsymmetric, depending on whether kc(x, t) is
symmetric or nonsymmetric.

An alternative to (6) and (7) which does not require any a
priori restrictions on rc(x, t) but does require specifying zero
mean flux conditions on Neumann boundaries is obtained by
approximating (2) as

rc~x , t! < Ac~x , t!¹hc~x , t! (13)

and (1) in the quasi-Darcian form

^q~x , t!&c < 2^K~x!&c¹^h~x , t!&c 1 Ac~x , t!¹hc~x , t! (14)

where the first coefficient is a scalar and the second is a sym-
metric positive-semidefinite dyadic.

Consider next the case, where ¹^h(x, t)&c varies slowly in
space but not in time wherever ac(y, x, t 2 t) À 0, and rc(x,
t) varies slowly in space but not in time wherever dc(y, x, t 2
t) À 0, so as to allow approximating (4) by

rc~x , t! < E
0

t

ac~x , t 2 t!¹^h~x , t!&c dt

1 E
0

t

bc~x , t 2 t!rc~x , t! dt (15)

where

ac~x , t 2 t! 5 E
V

ac~y , x , t 2 t! dy (16)

bc~x , t 2 t! 5 E
V

dc~y , x , t 2 t! dy . (17)

Taking the Laplace transform of (15) yields local residual flux
expressions of the form

r̃c~x , l! < ãc~x , l!¹^h̃~x , l!&c 1 b̃c~x , l! r̃c~x , l! (18)

or

r̃c~x , l! < k# c~x , l!¹^h̃~x , l!&c (19)

where the tilde overscript represents Laplace transform, l is
the corresponding transform parameter, and

k# c~x , l! 5 @I 2 b̃c~x , l!#21ãc~x , l! . (20)

As before, k̄c(x, l) is a nonsymmetric dyadic unless b̃c(x, l) [
0, in which case it becomes symmetric positive semidefinite.
Note that k̄c(x, l) is not the Laplace transform of kc(x, t) in
(10). Taking the Laplace transform of (1) and substituting (19)
yields an approximate form of Darcy’s law for the transformed
conditional mean flux,

^q̃~x , l!&c < 2K̄c, eff~x , l!¹^h̃~x , l!&c (21)

where

K̄c, eff~x , l! 5 ^K~x!&cI 2 k# c~x , l! (22)

is a spatially varying conditional effective hydraulic conductiv-
ity tensor in the Laplace domain. The latter can be symmetric
positive definite or nonsymmetric, depending on whether k̄c(x,
l) is symmetric or nonsymmetric. Note that K̄c , eff(x, l) is not
the Laplace transform of Kc , eff(x, t) in (12). Taking the in-
verse Laplace transform of (21) yields a time-convolution in-
tegral for the conditional mean flux,

^q~x , t!&c < 2E
0

t

K*c, eff~x , t 2 t!¹^h~x , t!&c dt (23)

where K*c , eff(x, t) is the inverse Laplace transform of K̄c , eff(x,
l) in (22).

An alternative to (18) and (19) that does not require any a
priori restrictions on rc(x, t), but does require specifying zero
mean flux conditions on Neumann boundaries, is obtained by
approximating (2) as

r̃c~x , l! < ãc~x , l!¹h̃c~x , l! (24)

and (1) in the quasi-Darcian form

^q̃~x , l!&c < 2^K~x!&c¹^h̃~x , l!&c 1 ãc~x, l!¹h̃c~x, l! (25)

where the first coefficient is a scalar and the second is a sym-
metric positive-semidefinite dyadic.

The case where either ¹^h(x, t)&c or rc(x, t) vary rapidly in
space does not generally lend itself to localization unless one
avoids boundary effects and restricts the analysis to statistically
homogeneous K(x) fields. We therefore limit consideration
here to the special case of unconditional flow in an infinite
domain V` (where rapid variations in mean gradient and flux
may still be caused by mean internal sources) within a homo-
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geneous K(x) field. This case has been studied by Indelman
[1996] using a different approach than we do. It renders both
a(y, x, t 2 t) [ a(y 2 x, t 2 t) and d(y, x, t 2 t) [ d(y 2
x, t 2 t) independent of location, so that d is now symmetric,
and hence (4) can be written in terms of standard space-time
convolution integrals as

r~x , t! 5 E
0

t E
V`

a~y 2 x , t 2 t!¹^h~x , t!& dy dt

1 E
0

t E
V`

d~y 2 x , t 2 t!r~x , t! dy dt . (26)

The fact that d is independent of location and is symmetric
follows from (5) upon recognizing that K9(x) now has the same
statistical properties as K9(y). Equation (26) lends itself to
double Laplace and infinite Fourier transformation and yields
the following exact local expressions for residual flux in
Laplace-Fourier space:

r̂̃ ~j , l! 5 ẫ(j , l)¹^ ĥ̃~j , l!& 1 d̂̃~j , l! r̂̃ ~j , l! (27)

or

r̂̃ ~j , l! 5 k% ~j , l!¹^ ĥ̃~j , l!& (28)

where the combination of circumflex and tilde accents repre-
sents double transform, j is a wave number vector (represent-
ing spatial frequencies), and

k% ~j , l! 5 @I 2 d̂̃~j , l!#21ẫ~j , l! . (29)

Here k% (j, l) is a symmetric dyadic which, however, does not
constitute a double transform of k(x, t) in (10). Taking the
double transform of (1) and substituting (28) yields the follow-
ing exact form of Darcy’s law for the double transformed
unconditional mean flux:

^ q̂̃~j , l!& 5 2K% eff~j , l!¹^ ĥ̃~j , l!& (30)

where

K% eff~j , l! 5 ^K&I 2 k% ~j , l! (31)

is a symmetric effective hydraulic conductivity tensor in
Laplace-Fourier space. The latter is not the Laplace-Fourier
transform of Keff(x, t) in (12). Taking the inverse double
transform of (30) yields a space-time convolution integral for
the unconditional mean flux,

^q~x , t!& 5 2E
0

t E
V`

K**eff ~x 2 x , t 2 t!¹^h~x , t!& dx dt

(32)

where K*e*f f(x, t) is the inverse Laplace-Fourier transform of
K% eff(j, l) in (31). Our (30)–(32) are analogous, respectively, to
(18)–(19) and (21) of Indelman [1996]. However, our method
of derivation is different, and therefore our (29) looks different
than Indelman’s (19), though the two expressions must be
identical in principle.

An alternative to (28)–(30) which does not require any a
priori restrictions on r(x, t) is obtained exactly from (2) as

r̂̃ ~j , l! 5 ẫ~j , l!¹ ĥ̃~j , l! (33)

so that (1) takes the exact quasi-Darcian form

^ q̂̃~j , l!& 5 2^K&¹^ ĥ̃~j , l!& 1 ẫ~j , l!¹ ĥ̃ c~j , l!
(34)

where the first coefficient is a scalar constant and the second is
a symmetric positive-semidefinite dyadic.

3. First-Order Approximations
To render the above formal mean flow expressions work-

able, we expand them below in a small parameter sY repre-
senting a measure of the standard deviation of Y9(x) 5
Y(x) 2 ^Y(x)&c where Y(x) 5 ln K(x); this nominally limits
our approximation either to mildly heterogeneous media or to
well-conditioned strongly heterogeneous, media with sY , 1.
It has been shown in part 1 [Tartakovsky and Neuman, this
issue] that to zeroth and first orders in sY, the residual flux is
identically equal to zero. To second order in sY (first order in
sY

2 ) it is given uniquely, regardless of boundary conditions, by

rc
~2!~x , t! 5 E

0

t E
V

ac
~2!~y , x , t 2 t!¹ yhc

~0!~y , t! dy dt

(35)

where (i) denotes terms that contain only ith powers of sY,

ac
~2!~y , x , t 2 t! 5 KG~x! KG~y!^Y9~x!Y9~y!&c

¹x¹ y
TGc

~0!~y , x , t 2 t! (36)

KG(x) 5 exp ^Y(x)&c is the conditional geometric mean of
Y(x), and Gc

(0) is a zeroth-order conditional Green’s function.
Hence to second (but not necessarily higher) order in sY, the
nonsymmetric kernel dc drops out from the residual flux in (4)
and the latter equation is identical to (2), which in turn is now
valid for arbitrary boundary conditions. Likewise, there is no
difference between hc

(0)(y, t) and ^h(0)(y, t)&c, both of which
satisfy

S~x!
hc

~0!~x , t!
t 5 2¹ z qc

~0!~x , t! 1 ^f~x , t!&

qc
~0!~x , t! 5 2KG~x!¹hc

~0!~x , t!

(37)

subject to the original mean initial and boundary conditions

hc
~0!~x , 0! 5 ^H0~x!& x [ V (38)

hc
~0!~x , t! 5 ^H~x , t!& x [ GD (39)

2qc
~0!~x , t! z n~x! 5 ^Q~x , t!& x [ GN (40)

On the other hand, ^h(x, t)&c
(1) [ 0, ^q(x, t)&c

(1) [ 0, and
^h(x, t)&c

(2) satisfies

S~x!
^h ~2!~x , t!&c

t 5 ¹ z ^q ~2!~x , t!&c (41)

subject to homogeneous mean initial and boundary conditions
with flux given by

^q ~2!~x , t!&c 5 2KG~x!F¹^h ~2!~x , t!&c 1
sY

2~x!

2 ¹hc
~0!~x , t!G

1 rc
~2!~x , t! (42)

where sY
2 (x) 5 ^Y92(x)&c.
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Let [2] denote the sum of all terms containing sY raised up
to second power. It then follows from (35), (36), (37), and (42)
that when conditional mean gradient and flux vary slowly in
both space and time, (6)–(14) reduce to

rc
@2#~x , t! < kc

@2#~x , t!¹^h ~0!~x , t!&c (43)

where

kc
@2#~x , t! 5 KG~x!E

0

t E
V

KG~y!Cc~y , x!

¹x¹ y
TG ~0!~y , x , t 2 t! dy dt (44)

is now symmetric positive semidefinite and Cc(y, x) 5
^Y9(x)Y9(y)&c is the conditional spatial autocovariance of Y ,
and

^q @2#~x , t!&c < 2KG~x!¹^h ~2!~x , t!&c 2 Kc, eff
@2# ~x , t!¹hc

~0!~x , t!

(45)

where

Kc, eff
@2# ~x , t! 5 KG~x!S 1 1

sY
2~x!

2 D I 2 kc
@2#~x , t! (46)

is symmetric positive definite.
By the same token, when conditional mean gradient and flux

vary slowly in space but not in time, (19)–(22) and (23)–(25)
reduce to

r̃c
@2#~x , l! < k# c

@2#~x , l!¹^h̃ ~0!~x , l!&c (47)

where

k# c
@2#~x , l! 5 KG~x!E

V

KG~y!Cc~y , x!¹x¹ y
TG̃c

~0!~y , x , l! dy

(48)

is symmetric positive semidefinite and

^q̃ @2#~x , l!&c < 2KG~x!¹^h̃ ~2!~x , l!&c 2 K# c, eff
@2# ~x , l!¹h̃c

~0!~x , l!

(49)

where

K# c, eff
@2# ~x , l! 5 KG~x!S 1 1

sY
2~x!

2 D I 2 k# c
@2#~x , l! (50)

is symmetric positive definite.
When mean gradient and flux vary rapidly in both space and

time, localization is restricted to unconditional flow in an in-
finite domain (where rapid variations in mean gradient and
flux may now be caused by mean internal sorces) within which
K(x) is statistically homogeneous. Then (28)–(31) and (33) and
(34) reduce to

r̂̃ @2#~j , l! 5 k% @2#~j , l!¹^ ĥ̃ ~0!~j , l!& (51)

where

k% @2#~j , l! 5 ẫ @2#~j , l! (52)

is symmetric positive semidefinite and

^q̂̃@2#~j, l!& 5 2KG¹^h̃̂~2!~j, l!& 2 K% eff
@2#~j, l!¹h̃̂~0!~j, l! (53)

where

K% eff
@2#~j , l! 5 KGS 1 1

sY
2

2 D I 2 k% @2#~j , l! (54)

is symmetric positive definite.

4. Effective Hydraulic Conductivity in
Laplace Space

Since time localization is always possible in Laplace space, it
is of general interest to derive analytical expressions for effec-
tive hydraulic conductivity in this space. We do so to first order
in sY

2 for the relatively simple cases of one- and three-
dimensional unconditional flows in infinite, statistically homo-
geneous hydraulic conductivity fields under a spatially uniform
but time-varying mean hydraulic gradient J(t). Then ^h(2)(x,
t)& [ 0 and (47)–(50) simplify to

r̃ @2#~l! < k# @2#~l!J~l! (55)

where

k# @2#~l! 5 KG E
V`

C~y 2 x!

¹x¹ y
TG̃K

~0!~y 2 x , l! dy x arbitrary (56)

GK
(0) 5 KGG(0), and

^q̃ @2#~l!& 5 2K# eff
@2#J̃~l! (57)

where

K# eff
@2#~l! 5 KGS 1 1

sY
2

2 D I 2 k# @2#~l! . (58)

The inverse Laplace transform of (57) and (58) is

Figure 1. Normalized nonlocal and localized (circles) mean
flux in one dimension versus dimensionless time for J(tD) 5
1 1 atD and two values of a when sY

2 5 1.

TARTAKOVSKY AND NEUMAN: TRANSIENT FLOW, 216



^q @2#~t!& 5 2KGS 1 1
sY

2

2 D J~t! 1 E
0

t

k* @2#~t 2 t!J~t! dt

(59)

where

k* @2#~t! 5 KGE
V

C~y 2 x!

¹x¹ y
TGK

~0!~y 2 x , t! dy x arbitrary (60)

is the inverse Laplace transform of (56).
For comparison purposes we also consider the special case

where J(t) varies slowly in time.
Then (59) simplifies to

^q @2#~t!& < 2Keff
@2#~t!J~t! (61)

where

Keff
@2#~t! 5 KGS 1 1

sY
2

2 D I 2 E
0

t

k* @2#~t! dt (62)

and thus

k* @2#~t! 5 2
dKeff

@2#~t!
dt . (63)

To explore the effect of temporal nonlocality on mean flow
behavior we consider below the special case where S is con-
stant and where Y(x) is homogeneous Gaussian with constant
mean KG, variance sY

2 , integral scale I , and isotropic expo-
nential spatial autocovariance. The case where J(t) varies
slowly in time has been analyzed by Dagan [1982]. His corre-
sponding expressions for one and three dimensions read, re-
spectively,

^q @2#~tD!&

KG
5 H 1 1 sY

2F2
1
2 1 etDerfc ÎtDG J J~tD! (64)

^q @2#~tD!&

KG
5 H 1 1

sY
2

3 F 1
2 2 2 ÎtD

p

1 ~1 1 2tD!etDerfc ÎtDG J J~tD! (65)

Figure 2. Normalized nonlocal and localized (circles) mean flux in one dimension versus dimensionless time
for J(tD) 5 1 1 sin (atD) and two values of a when sY

2 5 1.
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where tD 5 KGt/SI2 is dimensionless time and J(tD) 5
i2J(tD)i is the magnitude (Euclidean norm) of the negative
mean hydraulic gradient. By applying (63) followed by (59) to
(64) and (65), we obtain the following corresponding expres-
sions for the case where J(t) varies arbitrarily with time:

^q @2#~tD!&

KG
5 S 1 1

sY
2

2 D J~tD! 2 sY
2E

0

tD F 1

Îp~tD 2 tD!

2 etD2tD erfc ÎtD 2 tDG J~tD! dtD (66)

in one dimension and

^q @2#~tD!&

KG
5 S 1 1

sY
2

2 D J~tD!

2
sY

2

Îp E
0

tD H 2

3 Î~tD 2 tD!
1

2 ÎtD 2 tD

3

2 ÎpF 1 1
2~tD 2 tD!

3 G etD2tD

erfc ÎtD 2 tDJ J~tD! dtD (67)

in three dimensions.
We evaluated (64)–(67) with J(tD) 5 1 1 atD, J(tD) 5 1

1 sin (atD) and J(tD) 5 1 1 exp (2atD) for several values of
a and sY

2 . We found that when sY
2 5 0.1, there is very little

difference between localized and time-nonlocal behaviors as
given, respectively, by (64) and (65), and (66) and (67). To
illustrate the nonlocality effects, we recall from Hsu and Neu-
man [1997, p. 633] that although perturbation expansions are
not guaranteed to work for sY

2 $ 1, they often do work quite

well for 1 # sY
2 # 2. Since nonlocality effects are more easily

discernible within this latter range than when sY
2 , 1, we elect

to illustrate them for sY
2 5 1. Figures 1–3 show how mean flux

(normalized by KG) varies with tD and a for each of the above
three J(tD) functions in one dimension when sY

2 5 1, and
Figures 4–6 show the same in three dimensions. The differ-
ence between time-nonlocal and time-localized behaviors is
now evident and is seen to be more pronounced in one dimen-
sion than in three. We also see that temporal nonlocality man-
ifests itself not only when the mean hydraulic gradient oscil-
lates, but also when it increases or decreases monotonically,
with time.

5. Conclusions
We are thus led to the following conclusions:
1. In randomly heterogeneous porous media one cannot

predict flow behavior with certainty. One can, however, render
optimum unbiased predictions of such behavior by means of
conditional ensemble mean hydraulic heads and fluxes. Under
transient flow these optimum predictors are governed by non-
local (integrodifferential) equations. In particular, the condi-
tional mean flux is generally nonlocal in space-time and there-
fore non-Darcian. As such, it cannot be associated with an
effective hydraulic conductivity except in special cases. We
have explored analytically situations under which localization
of mean transient flow is possible so that Darcy’s law applies in
real, Laplace, and/or infinite Fourier transformed spaces, ap-
proximately or exactly, with or without conditioning.

2. When the conditional mean hydraulic gradient and flux
vary slowly in both space and time, approximate localization is
possible in real space-time. When these quantities vary slowly
in space but not in time, such localization is possible in Laplace
space. Localization is not possible when the conditional mean
gradient and flux vary rapidly in space. However, it becomes
possible exactly in Laplace-Fourier space when one restricts

Figure 3. Normalized nonlocal and localized (circles) mean
flux in one dimension versus dimensionless time for J(tD) 5
1 1 exp (2atD) and two values of a when sY

2 5 1.

Figure 4. Normalized nonlocal and localized (circles) mean
flux in three dimensions versus dimensionless time for J(tD) 5
1 1 atD and two values of a when sY

2 5 1.

TARTAKOVSKY AND NEUMAN: TRANSIENT FLOW, 218



consideration to unconditional flow in infinite domains within
which the hydraulic conductivity is statistically homogeneous.
The latter unconditional case has been the focus of an earlier
study by Indelman [1996].

3. Regardless of whether localization is accomplished in
real or transformed space, the corresponding conditional ef-
fective hydraulic conductivity tensor is generally nonsymmet-
ric. It becomes symmetric positive definite in the unconditional
case where flow takes place in an infinite domain and the
hydraulic conductivity is statistically homogeneous. An alter-
native to Darcy’s law in each space, valid under mean no-flow
conditions along Neumann boundaries, is a quasi-Darcian
form that includes only a symmetric tensor which, however,
does not constitute a bona fide effective hydraulic conductivity.

4. Both lack of symmetry and differences between Darcian
and quasi-Darcian forms disappear to first (but not necessarily
higher) order of approximation in the conditional variance of
natural log hydraulic conductivity. Such a first-order approxi-
mation is valid either in mildly heterogeneous or in well-
conditioned strongly heterogeneous media.

5. We adopted a first-order approximation to investigate
analytically the effect of temporal nonlocality on one- and
three-dimensional mean flows in infinite, statistically homoge-
neous media. Our results have shown that temporal nonlocality

Figure 5. Normalized nonlocal and localized (circles) mean flux in three dimensions versus dimensionless
time for J(tD) 5 1 1 sin (atD) and two values of a when sY

2 5 1.

Figure 6. Normalized nonlocal and localized (circles) mean
flux in three dimensions versus dimensionless time for J(tD) 5
1 1 exp (2atD) and two values of a when sY

2 5 1.
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may manifest itself under either monotonic or oscillatory time
variations in the mean hydraulic gradient. Its effect increases
with the variance of log hydraulic conductivity and is more
pronounced in one dimension than in three.
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