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Abstract. We obtain an analytical solution for two-dimensional steady state mass transport in a
trapezoidal embankment in a spatially varying velocity field through its replacement with a hydro-
logically equivalent rectangular embankment. Application of the Dupuit approximation and conform
transformation allow for computation of the concentration field in the resulting rectangle in the com-
plex potential plane. The latter allows deriving expression for the mass flow rate of contaminants,
which is analogous to the Dupuit–Forchheimer discharge formula for volumetric water flow rate.
Numerical simulation of advection-dispersion in the actual domain compares favorably with these
analytical results, and provides limits of the ratio between transverse and longitudinal dispersivities
within which the Dupuit approximation is applicable to mass transport problems.
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1. Introduction

‘Cooling’ or ‘retention’ ponds constructed for power and chemical plants, can
cause environmental problems when polluted groundwater discharges through pond
embankments into adjacent rivers and lakes. Solution of the convection-dispersion
equation for contaminant transport through pond embankments is complicated by
the presence of a free water-surface and the shape of the boundary. Although
versatile, numerical approaches used to address this kind of problem have well-
known drawbacks such as numerical dispersion (Bear and Verruijt, 1987, p. 323).
Analytical solutions are helpful for rapid preliminary calculations, for verification
of numerical results, and for understanding related physical phenomena.

For one-dimensional (1-D) problems, analytical solutions have been obtained
for varying velocity and dispersivity functions. Among them are solutions to the
convection-dispersion equation with: (i) velocity and dispersion coefficient varying
in space by Serrano (1992); (ii) velocity varying as a function of cell concentration
in an aquifer by Taylor and Jaffe (1991); and (iii) constant velocity but an expo-
nential dispersivity function by Yates (1992). In some special cases, like three-
dimensional (3-D) radial dispersion in a variable velocity flow field, it is possible
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to obtain an exact analytical solution by reducing the dimensionality of the prob-
lem (Yates, 1988). However, to obtain analytical solutions for multi-dimensional
mass transport, the common approach is to assume an average velocity to represent
the convection of the solute (see solutions to the 3-D problem by Ellsworth et al.
(1993), Leij et al. (1991), and solutions to two-dimensional (2-D) problems by
Latinopoulos et al. (1988), Cleary et al. (1978), Ogata (1976)).

A simplified analytical solution is derived here for the 2-D steady-state con-
vection-dispersion equation with velocity and dispersion coefficient varying
in space. To obtain this solution, which describes transport of a conservative
contaminant in a homogeneous, isotropic, trapezoidal embankment, the Dupuit–
Forchheimer approximation has been used. While the impact of, and limits for,
this approximation are well-known when applied to hydraulic problems, it is not
clear how the concentration field and integral characteristics of the mass transport
are influenced by this approach. For example, the classical Dupuit–Forchheimer
discharge formula is an exact expression (Bear, 1972, p. 367) even though it is
obtained by neglecting the seepage face. Due to complexity of the convection-
dispersion equation, the total mass flux through a domain of interest resulting
from the Dupuit approximation cannot be compared readily with the actual flux.
To address this problem, we compare our analytical solution with a numerical one
obtained by using FREESURF 1 (Neuman and Witherspoon, 1970; Neuman, 1976)
to calculate the real flow net and using the solute transport code ST1 (Istok, 1989)
to calculate the actual concentration distribution and the total mass flux.

2. Statement of the Problem

Let us consider the transport of a conservative contaminant through a saturated,
homogeneous, isotropic trapezoidal embankment (of height l1 and upper width
l2) under steady-state flow with the free water-surface boundary AN (Figure 1a).
The embankment rests on impermeable horizontal base FF 0; the water levels are
H (H 6 l1) and h0 (h0 < H) in the upstream pond and downstream river,
respectively; a is the initial pressure loss between the free surface in the pond and
the embankment, and a0 is the length of the seepage face.

The convection-dispersion differential equation governing 2-D steady-state
transport of nonreactive dissolved contaminant in Cartesian coordinates has the
following form (Bear, 1972, p. 617)

r � [D(x; y)rC(x; y)]� V(x; y) � rC(x; y) = 0; (1)

where r = (@=@x; @=@y)T ;C(x; y) is the concentration of a contaminant,
(ML�2); V(x; y) is the seepage velocity vector, equal to (u(x; y); v(x; y))T ;
(LT�1); and D(x; y) is the hydrodynamic dispersion coefficient, second-order
tensor with four nonzero componentsDij ; (L

2T�1).
Additional assumptions are: (1) the contaminant concentration C0 in the pond

is constant; (2) the flow in the river is sufficient to carry away all of the seeping
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Figure 1(a). Domain geometry.

pollutant; (3) there is no mass flux through either the impermeable base of the
embankment,BM , or the free surface,AN . These boundary conditions are stated
as

C(x; y) = C0 along AB; C(x; y) = 0 along N 0M ; (2)

@C(x; y)

@y
= 0 along BM ;

@C(x; y)

@n
= 0 along AN ;

@C(x; y)

@x
= 0 along NN 0; (3)

where n(x; y) is the outward unit normal vector of the free surface.
Under the stated boundary conditions, and particularly the last of (2), the

total amount of contaminant Qc; (MT�1), passing through the lower slope of
the embankment per unit time and width is defined by Fick’s law as follows

Qc = �
Z N

M
DL

@C

@x
dy; (4)

where DL is the longitudinal dispersion coefficient.
The seepage velocity distribution V(x; y) in (1) is determined by solving

Darcy’s equation and continuity equation

V(x; y) = �Krh(x; y) = r'(x; y); r � V(x; y) = 0; (5)

where K is the constant hydraulic conductivity, (LT�1);h(x; y) is the hydraulic
head, (L); and '(x; y) = �Kh(x; y) is the velocity potential function.
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Equations (5) are subject to the following boundary conditions (Polubarinova–
Kochina, 1962, p. 33)

' = �KH along AB; ' = �Kh0 along N 0M; (6)

'(x; y) +Ky = Constant;  = Q along AN; (7)

 = 0 along BM; (8)

'+Ky = Constant along NN 0; (9)

where Q is the total water discharge per unit width through the embankment,
(L2T�1); and  (x; y) is the streamfunction related to ' by the Cauchy–Riemann
equations.

3. Domain Transformation and Hydraulic Approach

Geometry of the domain ABMN in a complex potential domain, w = ' + i ,
makes it impossible to obtain the exact analytical solutions of (5)–(9) and (1)–(3).
To overcome this difficulty, we, following Grishin (1982, p. 87), replace the upper
wedge AB of our trapezoidal embankment by an equivalent (from the seepage
viewpoint) rectangle with the width AA0 = �H and the height H (Figure 1a). By
equivalent rectangle, we imply a rectangle that creates the same pressure loss a at
the pointE as the original upper wedge. The constant� is defined by the following
relationship

� =
m

1 + 2m
; (10)

where m = cot�. The width of the equivalent rectangular embankment (dashed
line in Figure 1a) is defined by S1 = S + �H or

S1 = S +
Hm

1 + 2m
: (11)

Note that geometric parameters (m; l1; l2 and S1) and hydraulic parameters (H and
S) are interrelated via formulae

S = l2 +m(l1 �H); S1 = l2 +ml1 �
2Hm2

1 + 2m
: (12)

Flow in the transformed rectangular domain allows application of the Dupuit
approximation (Bear, 1972, p. 366). This approximation, and the hydraulic approach,
are applicable wherever the length, S1, in the direction of flow is much larg-
er (say > 1:5 � 2) than the thickness of saturated layer (ibid., p. 365). The
hydraulic approach amounts to neglecting the seepage face NN 0. Then the flow
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Figure 1(b). Complex potential domain.

regionGz(B
0A0N 0M) corresponds to the rectangularGw in the complex potential

domain (Figure 1b) and (5)–(8) has the solution known as the Dupuit–Forchheimer
discharge formula (ibid., p. 366)

Q =
K(H2 � h2

0)

2S1
; h2(x) = �2Q

K
x+H2; V = Q=h; (13)

where V = kVk =
p
u2 + v2.

Written in the principal coordinates' and  , the dispersion coefficient tensor D
takes the form of a diagonal matrix whose main diagonal consists of longitudinal
and transverse dispersion coefficients DL and DT , respectively. Then (1)–(3) can
be rewritten for the complex potential domain as (Bear, 1972, p. 620)

@

@'

�
DL

@C

@'

�
+

@

@ 

�
DT

@C

@ 

�
� @C

@'
= 0; (14)

C(�KH; ) = C0; C(�Kh0;  ) = 0; (15)

@C

@ 
('; 0) = 0;

@C

@ 
(';Q) = 0; (16)

where DL and DT are defined as

DL = Dm + �LV ; DT = Dm + �TV: (17)

Here Dm is the coefficient of molecular diffusion, (L2T�1); and �L and �T are
the longitudinal and transverse dispersivity constants, respectively, (L).

4. Analytical Solution

For the sake of simplicity let us assume molecular diffusion to be negligible
compared to convective dispersion and, therefore, setDm = 0 in (17). Substituting
the expression for V from (13) into (14) yields

tipm1216.tex; 28/05/1997; 13:32; v.7; p.5



90 DANIEL M. TARTAKOVSKY AND VITTORIO DI FEDERICO

�L
Q

K2

@

@h

�
1
h

@C

@h

�
+ �T

Q

h

@2C

@ 2 +
1
K

@C

@h
= 0: (18)

The form of the Equation (18) and the boundary conditions (16) indicate that the
solution to the Equation (18) subject to the boundary conditions (15) and (16)
depends on  only as a parameter and, therefore, @C=@ = 0 over the whole
region Gw. Then, change of the variable z = h2 such that

@C

@h
=
@C

@z

@z

@h
= 2h

@C

@z
; (19)

transforms (18) into an ordinary differential equation

d2C

dz2 +
K

2Q�L

dC
dz

= 0; (20)

subject to the boundary conditions

C=C0 = 1; z = H2; C=C0 = 0; z = h2
0: (21)

The solution to the problem (20)–(21) is given by (Nikolaevskij, 1990, p. 438)

C

C0
=

exp
�
� Kh2

2Q�L

�
� exp

�
� Kh2

0
2Q�L

�

exp
�
� KH2

2Q�L

�
� exp

�
� Kh2

o

2Q�L

� ; (22)

and describes 1-D distribution of a conservative contaminant as a function of
piezometric head h in the domain transformed by the Dupuit approximation.

As noted by Bear (1972, p. 366), ‘the discrepancy between the flow curves
predicted by the exact theory of the phreatic surface boundary and by the Dupuit
approximation is negligible except in the vicinity of the outflow boundary’. The
same must hold for the concentration curves.

For most practical purposes, a detailed analysis of the concentration field is not
always required and it may be enough to evaluate only major integral characteristics
such as the total flux of contaminant through the embankment. It follows from (4)
that the amount of contaminant seeping per unit time and width into the downstream
reservoir can be calculated as

Qc = �
Z Q

0
DL

@C(' = �Kh0;  )

@'
d 

= �Q�LV
@C(' = �Kh0;  )

@'
:

(23)

Substitution of (22) into (23) yields

Qc = C0V h0

"
1� exp

 
�KH2 � h2

0

2Q�L

!#
�1

; (24)
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or, taking into account (13)

Qc =
K(H2 � h2

0)C0

2S1(1� e�S1=�L)
=

C0Q

1� e�S1=�L
: (25)

Expression (25) relates the total flux of contaminant with the total water flux
through an embankment. In particular, for purely advective transport (�L = 0) it
leads to the well-known result Qc = C0Q. Impact of the dispersion phenomena is
manifested through the exponential term in (25). It follows from (25) that disper-
sion (�L > 0) enhances transport process, i.e. it increases the contaminant flux. In
many practical situation, this impact may be negligibly small considering the
magnitude of the ratio S1=�L. Rewriting (25) in terms of the dimensionless
quantities

H� =
H

S
; h�0 =

h0

S
; ��L =

�L

S
; Q�

c =
Qc

C0KS
; (26)

yields, considering (11)

Q�

c =
(H�2 � h�2

0 )

2
�

1 + H�m
1+2m

�
"

1� exp

 
�

1 + H�m
1+2m

��L

!#
�1

: (27)

Figures 2(a) and 2(b) show how dimensionless contaminant flux Q�

c through
rectangle (m = 0), and trapezoid (m = 1), vary with dimensionless water level
in the upstream pond H�, for h�0 = 0, and ��L = 0:0; 0:1; 0:3; 0:5. It can be seen
that, when dimensionless longitudinal dispersivity ��L 6 0:1, total dimensionless
contaminant flux Q�

c can be modeled by pure advection only. For larger ��L, dis-
persion manifests itself by increasing Q�

c . Comparing Figures 2(a) and 2(b) shows
that dispersion is more significant in rectangular embankment than in trapezoidal
embankment.

Another feature of the solution (27) is that the Dupuit approximation, when
applied to the given mass transport problem, eliminates the dependance of total
mass flux (and concentration distribution field) on the transverse component of
dispersion. That is, however, due to particularly specified boundary conditions and
does not necessarily hold true for other situations.

5. Numerical Simulations

Variable substitution which we used to derive the analytical solution reduces partial
differential Equation (18) into ordinary differential Equation (20). It should enable
one to look at stability of the idealized solution and the impact of numerical
dispersion and grid orientation on the numerical approximation by employing the
analysis of Fanchi (1983). While recognizing the importance of such analysis, we
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Figure 2(a). Dimensionless contaminant flux,Q�

c , through rectangular embankment (m = 0)
as a function of dimensionless upstream head, H�, for h�0 = 0 and different values of ��L.

leave it out of the scope of the present investigation. Instead, we concentrate on
analyzing the simplifying assumptions which lead to our solution: (i) applying
the hydraulic approach (neglecting the seepage face); and (ii) replacing the real
trapezoidal domain with hydraulically equivalent rectangle.

Answers to these questions provide limits of applicability of our solution in
terms of mass flux, i.e. limits of the hydraulic gradient and/or ratio �T =�L within
which the Dupuit approximation is applicable to mass transport phenomena. To
obtain these answers, we solve numerically 2-D convection-dispersion equation in
the original domain, considering, when not negligible, the presence of a seepage
face.

The code FREESURF I (Neuman and Witherspoon, 1970; Neuman, 1976) is
used to solve the flow problem. FREESURF I is designed to solve problems of
steady seepage in the presence of free surfaces through discretization of the domain
in movable, linear quadrilateral finite elements. Here, it is used to construct the
flow net and to calculate water fluxes in each element. In all simulation runs, the
grid was made progressively finer until no difference in downstream seepage face
was observed.
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Figure 2(b). Dimensionless contaminant flux, Q�

c , through trapezoidal embankment (m = 1)
as a function of dimensionless upstream head, H�, for h�0 = 0 and different values of ��L.

The flow results are subsequently used as an input file to the finite element
transport code ST1 (Istok, 1989, p. 283) to evaluate the actual concentration field
and the total mass flux. ST1 offers a choice of element types; we adopt the linear,
quadrilateral ones. The code is allowed to run until steady-state conditions are
attained. A no-flow boundary condition, @c=@x = 0, is assumed along the seepage
face; in all cases, an upstream constant concentration c0 = 1 kg=m3 is assumed.

We perform several numerical experiments in order to isolate the impact of
each of the approximations mentioned above. In our first set of simulations, we
consider a rectangular domain (l1 = 4 m; l2 = 6 m;m = 0), thereby eliminating
the need for constructing the equivalent rectangle. Repeated runs of FREESURF
I allow us to determine the parameters for which the downstream seepage face
was practically negligible. The latter case corresponds, for example, to water levels
H = 2 m; h0 = 1 m, implying an average hydraulic gradient equal to 0.1667.
Such a choice of parameters eliminates the potential impact of the seepage face
on transport, allowing us to isolate the effect of transverse dispersivity. Figure 3(a)
shows how dimensionless contaminant flux Q�

c varies with dimensionless longitu-
dinal dispersivity ��L, for H� = 0:5; h�0 = 0:25, and m = 0. It can be seen from
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Figure 3. Dimensionless contaminant flux from numerical simulations for (a) rectangular
domain without seepage face (H� = 0:5; h�0 = 0:25; m = 0).

Figure 3(a) that when �T =�L 6 0:1, the analytical solution is in good agree-
ment with numerical results; for greater values of �T =�L, the analytical solution
introduces a slight underestimation of mass flux.

In a second set of simulations, we allow for the presence of a visible seepage
face, by setting, for the same domain,H = 3 m; h0 = 1 m (i.e., an average hydraulic
gradient of 0.3333). Under these conditions, FREESURF I yields a seepage face
with a0 = 0:20 m (Figure 1(a)). Running a second set of transport simulations
for different values of longitudinal and transverse dispersivity produces the results
illustrated in Figure 3(b). Comparison with Figure 3(a) shows that considering or
neglecting the seepage face has no significant impact on results for contaminant
flux; the effect of an increasing transverse dispersivity is still evident, as in the
previous case.

In a third set of simulations, we consider a trapezoidal domain with l1 =
4 m; l2 = 4 m;m = 1 (� = 45�), and boundary conditions identical to the previous
set of simulations (H = 3 m; h0 = 1 m). In this case, FREESURF I yields a seepage
face with a0 = 0:12 m (Figure 1(a)). These geometric parameters give, by means
of (12), S1 = 6 m. Thus the equivalent rectangle for this trapezoidal domain is
identical to the rectangle considered in the first two sets of simulations, allowing
a meaningful comparison between them. Results of the transport simulations in
terms of contaminant flux are shown in Figure 3(c). They are slightly larger than
their counterparts in the second set of simulations, indicating that the influence of
the trapezoidal shape is not entirely negligible in this case. This effect, however,
is due to the particular choice of values for the geometric parameters in this case,
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i.e., l2 = l1. In a more elongated domain with l2 = 2l1 or larger, the influence of
the tranformation from trapezoidal shape to rectangular is negligible.

We conclude this section with a brief discussion on the accuracy of numerical
simulations. It is well known that numerical solutions of the advection-dispersion
equation are affected by numerical dispersion: for the one-dimensional problem,
the ST1 transport code adopted by us compares favorably with an analytical solu-
tion (Istok, 1989, p. 292). Accuracy analysis in multi-dimensional problems is less
standard since multi-dimensional numerical dispersion can also induce grid orien-
tation errors, as shown by Fanchi (1983) for various finite difference techniques.
Fanchi presents explicit expressions for the components of the numerical disper-
sion tensor, as growing functions of the magnitude of velocity components, time
step and, for some solution techniques, grid size. Likewise, his analysis shows how
the rotation of the principal flow axes induced by multi-dimensional numerical
dispersion depends crucially on discretization in time. In general, both effects can
be minimized by suitably reducing the time step.

We followed this criterion in designing and conducting our numerical simula-
tions, although no exact counterpart to Fanchi’s results is available for finite element
schemes. Furthermore, the grid Péclet number was kept smaller than two in both
directions for all simulations and elements, thereby extending the well-known one-
dimensional constraint (Fletcher, 1988). Results of a mass balance calculation for
different simulation domains indicated a maximum mass balance error inferior to
2 percent.

6. Conclusions

We consider 2-D steady-state contaminant transport in a variable velocity field.
The latter and presence of a free surface greatly complicate a solution to the
problem, as well as numerical simulations. We use a domain transformation and
the hydraulic approach, to derive a compact, closed form expression relating mass
flux of contaminant with the total water flux and the dispersive properties of
media. Numerical simulations performed allow us to establish criteria for validity
of this expression. The magnitude of the transverse dispersivity has the greatest
impact on results: the ratio of transverse to longitudinal dispersivity has to be less
than or equal to 0.1 for the numerical results to reliably reproduce the analytical
solution. For larger ratios, our expression moderately underestimates the mass
flux. The latter constraint is somewhat analogous to the condition of applicability
of the Dupuit–Forchheimer theory to flow problems, i.e., j2 � 1, where j is the
slope of the phreatic surface in isotropic porous media (Bear, 1972, p. 363). For the
transport problem, on the contrary, the presence of the seepage face has little impact
on the value of resulting contaminant flux; the effect of an increasing transverse
dispersivity is still evident, as in the previous case. For a trapezoidal embankment,
the impact of the domain tranformation to an equivalent rectangle is visible only
when the ratio between the longitudinal dimension and the transversal one is close

tipm1216.tex; 28/05/1997; 13:32; v.7; p.11



96 DANIEL M. TARTAKOVSKY AND VITTORIO DI FEDERICO

to one. In this case, our analytical formula slightly underestimates the contaminant
flux. For larger values of this ratio, the approximation introduced by the domain
transformation is negligible.

Finally, we note that, although our solution was derived to describe the mass
transport through an embankment, it is clearly applicable to a transport phenomena
in any domain bounded by a pair of streamlines and a couple of equipotentials, e.g.
contaminant transport between two wells, as modeled by Fry et al. (1993).
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