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Abstract.  Non-linear diffusion and velocity-dependent dispersion problems are under consideration. 
The necessary and sufficient conditions allowing the comparison of solutions to the two dimensional 
convection-dispersion equations with different coefficients are obtained. These conditions provide 
a framework within which solutions to the complex non-linear problems mentioned above can be 
estimated by solutions to the problems possessing analytical solvability. 
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concentration of solute in solution, M L  -3. 

moisture capacity function. 
hydrodynamic dispersion coefficient, a second order tensor, 
L 2 T-1. 
longitudinal hydrodynamic dispersion coefficient, L 2 T  - 1. 

molecular diffusion coefficient, L e T  -1 . 

transverse hydrodynamic coefficient, L 2T  - 1. 

flow domain for the unsaturated flow problem. 
flow domain and complex potential domain, respectively, for 
the hydrodynamic dispersion problem. 
piezometric head, L. 
given mass flux normal to the boundary, M L T  -1 . 
hydraulic conductivity, L T -  1. 
unsaturated hydraulic conductivity, L T -1 . 
continuously differentiable function with respect to all 
arguments 
porosity. 
outer normal vector to the boundary. 
time, T. 
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seepage velocity vector with V - IVl, L T  -1   9 

Cartesian coordinate system. 
horizontal coordinate, L. 
vertical coordinate (elevation), L. 
given functions in initial and boundary conditions (3), (4). 
angle between vectors Vlc and V. 
boundary of the flow domain. 
longitudinal and transverse dispersivities, respectively, L. 
water mass density, M L  -3 .  

components of a unit vector in the direction of the outward 
normal to the boundary. 
velocity potential. 

stream function defined such that w = qo + i~b is the complex 
potential. 

1. Introduction 

The increase of incidents of groundwater pollution in recent years has accelerated 
the development of management models in the field of groundwater quality control. 
Although sophisticated numerical models for contaminant transport are widely 
used, it is obvious that application of analytical methods in solving mass and 
moisture transport problems offers some distinct advantages. They provide general 
physical insight into the transport process. Additionally, they construct a powerful 
tool for the validation and improvement of numerical schemes. They also form the 
basis for rational approximations and simplifications in terms of readily measured 
physical properties. Finally, they are useful for testing various inverse techniques 
used in the estimation of mass transport properties. 

While a number of analytical solutions to the two-dimensional (2-D) convective- 
dispersion transport equation with constant coefficients (the seepage velocity and 
the dispersion coefficients) exist (see, for example, Ogata, 1976; Cleary et  al. ,  
1978; Latinopoulos et  al.,  1988), there is no solution available which permits a 
variable velocity and thus velocity-dependent dispersion coefficients. 

Similar difficulties arise in solving moisture transport problems. Analytical solu- 
tions to the 1-D non-linear diffusion equation governing infiltration phenomenon 
have been obtained either for constant coefficients (soil water diffusivity and unsat- 
urated hydraulic conductivity) (Horton's equation) or for coefficients which permit 
transformation of Richard's equation to the linear form (Gardner et  al.,  1958; Philip, 
1974; Broadbridge et  al.,  1988). 
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While a search for analytical solutions to problems mentioned above is contin- 
uing, non-integrability of transient "essentially" (i.e. non-reducible to 1-D equa- 
tions) 2-D non-linear convection-dispersion equations has been shown (Broad- 
bridge, 1986) and integrable forms of 1-D equation ("the Broadbridge class" of 
dependencies of diffusivity and conductivity on moisture content) have been given 
(Broadbridge, 1988). 

To obtain analytical approximations for a 2-D velocity dependent dispersion 
equation, the methods of velocity averaging are used. These methods are based 
on the assumption that it is possible to average velocity over the whole seepage 
domain (Freeze et al., 1979, p. 395) or along flow streamlines (Dillon, 1989). In 
doing so, initial and boundary conditions undergo similar changes or are chosen 
arbitrarily to permit analytical solutions. The main disadvantage of such a pro- 
cedure is, from our point of view, the unpredictable behavior of the solution to 
hydrodynamic dispersion equation with its coefficients being averaged. In partic- 
ular, it is unclear how concentration at an arbitrary point of seepage domain and 
total contaminant flux are changed by averaging procedures. Therefore, for the 
creation of management models, estimations of the limiting values of contaminant 
concentration or moisture content generally turn out to be more adequate (Freeze 
et al., 1990). These estimations are useful for tackling such questions as whether 
the given quantity of contaminant can exceed the allowable concentration in water, 
or whether the seeping water discharge is sufficient to flood a site. The affirmative 
answers to such questions require more detailed investigations, while the negative 
ones allow us to be satisfied by estimating solutions and to avoid sophisticated 
numerical models. 

In this paper, to obtain such estimations, we suggest using the estimating 
boundary-value problems which possess analytical solutions. To construct these 
estimating problems, we will use constant coefficients for 2-D non-linear dispersion 
problems and coefficients from the Broadbridge class for 1-D problems. Despite 
the fact that the estimations thus obtained are, in some cases, not precise, they may 
be considered the best ones, as has been noted above. 

It is worthwhile to emphasize here that integrability of a differential equation 
itself does not imply solvability of the corresponding boundary-value problem. 
Initial and boundary conditions together with a domain's geometry are also of the 
utmost importance. Throughout this paper we will assume diffusion domains to per- 
mit analytical solution and will select appropriate initial and boundary conditions 
for the estimating problems. 

Application of the comparison method of solutions to boundary-value problems 
for parabolic equations of the form (Galactionov et al., 1979) 

Oc/Ot = Z(x ,  c, IWl, Ac) (1) 

(where x = x, y; Ac = V2c; and L(x, p, q, r) is a continuously differentiable 
function with respect to all arguments such that OL/Or  > 0, i.e. (1) is parabolic) 
gives necessary and sufficient conditions wherein similar estimations occur. 
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As Richard's equation can be readily represented in the form (1), we will use 
this equation to demonstrate the statement of the theorem. The theorem will be 
further extended to cover a more general class of equations of the form Oe/Ot = 
L(x, c, Vc, Ac) which includes the convective-dispersion equation. 

2. Estimations of Solution to the Unsaturated Flow Problem 

Isothermal flow of water in unsaturated soils is governed by a nonlinear diffusion 
equation. In terms of the piezometric head h defined as y + p /pg  (where y is the 
elevation; p the pressure in the water with respect to atmospheric pressure, p the 
water mass density, g the gravitational acceleration) this equation for homogeneous 
isotropic soils takes the form 

C Oh = V ( K V h )  (2) 

where K ( h )  and C = d 0 / d h  are the hydraulic conductivity of the soil and the 
moisture capacity, respectively; 0 is the volumetric water content. 

Initial and boundary conditions of (2) are assumed to be 

h(x, 0 ) = a ( x ) ,  x(x, y, z) e G  (3) 

h(x, t )= /~(x ,  t), x e F ,  (4) 

where a and fl are the experimentally determined functions. 
In conjunction with the problem P, (2)-(4), let us consider the problem P* 

01~ = V(K*Vh*) (5) C* 

h*(x, 0) = a*(x), x(x, y, z) E G (6) 

h*(x, t) = t),  x  9 r .  (7) 

Equations (2) and (5) can be easily represented in the form (1) as 

Oh K A h  + Kc~(h)Ivhl2 , g ' ( h )  = OK 
Ot - C Oh" (8) 

It follows from the comparison theorem (Appendix A) that the inequality 

h(x, t ) ~ < h , ( x ,  t), x E G  (9) 

takes place subject to the following conditions (Galactionov et al., 1979): 

K* K 
C* <~-C' x  9  (10) 
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(I;*/K)' 
C*C 

) O, x C G (11) 

x c a (12) 

Z*(x, t) t), x c r.  (13) 

Thus, in the 1-D case, solution to the vertical infiltration problem P can be 
estimated by solution to the corresponding problem P*. Additionally, if functions 
K* and C* belong to the Broadbridge class, and the functions o~* and/~* are chosen 
so that they provide analytical solution, this estimation is analytical. 

3. Estimations of Solution to the Hydrodynamic Dispersion Problem 

Consider a homogeneous isotropic plane aquifer under steady-state saturated 
flow with seepage velocity being variable in space. Suppose the velocity field 
V(u(x, y), v(x, y)) was determined by solving a boundary value problem for the 
Darcy and conservation equations 

V = - k V h = V q o  V . V = 0  (14) 

where k is the hydraulic conductivity; h the piezometric head defined as above for 
the vertical plane and as p/pg for the horizontal plane; F the velocity potential. 

Assume V(x, y) to be a limited function (V = IVl < oc) on the boundary F2 
of the seepage domain Gz. As the seepage velocity vector V is a potential vector, 
that assumption implies that V < c~ over the whole domain Gz. 

Under these conditions, transport of a conservative solute can be described by 
the 2-D advective-dispersive differential equation in Cartesian coordinates system 
(Bear, 1972, p. 617) 

0c 
0--t- = V(DVc) - VVc, (15) 

where c is the concentration of solute in solution, equal to c(x, y, t); t time; 
Vc = (Oc/cgx, Oc/Oy); x, y are Cartesian coordinates; and D the hydrodynamic 
dispersion coefficient, a second-order tensor. 

The initial concentration co is assumed to be an arbitrary function 

c(x, y, O) = co(x, y), (x, y) E Gz. (16) 

The conditions along the boundaries of a flow domain Gz throughout which 
hydrodynamic dispersion occurs are based on the requirement that for any point of 
the boundary surface, the solute's mass flux normal to the boundary must be equal 
on both sides of a stationary boundary (Bear, 1972, p. 623) 

0c m v i ( - D i j - -  +Vic) : In, (17) 
Oxj 
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where I,~ is a given mass flux (mass per unit length of the boundary) normal to a 
boundary P~; m is the porosity; and vi denote components of a unit vector in the 
direction of the outward normal to the boundary. 

In the orthogonalcurvilinear coordinate system ff~, ~/, the problem P,  (15)-(17), 
is written as (Bear, 1972, p. 620) 

o-7 = ~ D c ~ - ~  + b-~ D T ~ -  - ~-~ (18) 
\ 

c( r  ~ ,  0) = co(~, q/), (% ~b)  9 G~ (19) 

v -vcDL~-~ - v ,  D T - ~  + c = I~, (~, r  9 a~, (20) 

where  9 = 99/m;  9 = e l m ;  r is a stream function; G~o the complex potential 
domain with boundary F~o; w = 9~ + i~b the complex potential plain; vr and v~, the 
components of a unit vector in the direction of the outward normal to the boundary 
Pw. 

The longitudinal and transverse hydrodynamic dispersion coefficients, DL and 
D:r, are further expressed as 

D L = D.~ + ,'~LV, DT = Dm +/~TV (21) 

where ,~L and )~Z are the longitudinal and transverse dispersivities; D m  the molec- 
ular diffusion coefficient. 

Along the line of Section 2 let us introduce the estimating boundary value 
problem P* defined as follows 

(22) 

v~O:~-+~* =• ( ~ , ~ ) e a ~  __V~DL._~ - . OC . (23) 

(24) 

D* L = D.~ + ~LV*, D~ = D m +  ~T V* (25) 

where V* is a constant over the whole domain (or along any streamline ~b = const) 
coefficient defined as 

V* = IV*I = max IV(q~ , r (V~ = maxlV(qa , ~ = const)l); 
V*IIV, (~, r e a~, (26) 
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and, thus, D~ and D~ are constants. 
Then, taking into account that DL and DT are positive functions, the inequali- 

ty 

c(q).,qt, t)<~c,(O, ~, t) ,  (qo, ~b) EGw (27) 

is valid subject to the following conditions (see Appendix B) 

c~(q), ~) />co(O,  gt), (~, ~b) EGw; I ~ / n ,  (% ~b) EFw (28) 

&*(~, ~, t) 
Ot >>.0, (% ~b) E Gw (29) 

cos ,~7(~, ~) 
V.2v,"~ 

+[(AL OV~--~-- 1 ) c o s  OZl(~ , lit) 

A~AOV 1 + v',XLA:vg~- sin ~1('~, '~)] V'2(~, ~) "< O, (30) 

where a7 and a l are angles between vectors Vie* and V*, V lC and V respectively; 

By these means, the problem P* solution can serve as an estimation of the 
problem P solution subject to the conditions (28)-(30). 

Inequality (29), being the definition of a "critical" solution to a boundary value 
problem, is equivalent to the conditions (Galactionov et al., 1979) 

D* 02c~ -* 02c~ Oc~ 
rb--~ + ~ 0~ > 0, (~, r E G~; 

oi  g 
ot > o, (~, ~) E r~. (29' 

Conditions (28) compare both known initial concentration distribution over 
G~ and known concentration flux through its boundary F~ with ones providing 
analytical solution. Thus, in conjunction with conditions (29'), they outline the 
class of initial and boundary conditions to the problem P*. 

Condition (30) states an obvious fact that the concentration variation degree 
depends on the angle between the flow velocity vector and the direction of con- 
centration gradient in a flow domain. That dependence, however, is not trivial and 
testing condition (30) is of great difficulty since prior knowledge of solutions to 
both P and P* problems is needed. Nevertheless, for a vast class of problems it is 
enough to know only the variation interval of the angle a l ,  which can be obtained 
from field tests without solving the problem. 
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3.1. MASS TRANSPORT WITH DT = 0 
In the case of the large distance traveled, the following simplification can be gained 
by assuming that transverse hydrodynamic dispersivity is neglected (DT -- 0). 
Then (5) is reduced to 

0---~= ~ DL-o-~ --~-~ . (31) 

If it is known (from field experiment) that Oc/Or <. 0 (Oc/Or O) along any 
streamline  9 = constant for the time under consideration, equation (17) can be 
represented in the form (1): 

Oc = V2(O~, q~) [ D L - ~ -  (+) AL- -~-  1 
Ot (32) 

Under these assumptions solution to the velocity dependent dispersion problem 
(31), (19), (20) can be estimated by solution to the equation 

o c .  : r , O2c  9 0c.] 
ot [D~?-~ + (-)0r (33) 

subject to initial and boundary conditions (23), (24). 
Here V* should be selected to satisfy the following inequalities 

v* >~ v(r  ~), (~, r  9 c~; 

--(-t-)~-~LL -- (+) ()~L~-~-~ -- I )  ~<0, (qo , r  (30') 

For mass transport with negligible transverse dispersivity all of the necessary 
and sufficient conditions (28), (29), (30 I) of existence of the majorizing estimation 
(27) can be verified a-priory. As an example, in the case of the steady flow, the 
known analytical solution to the estimating problem (Polubarinova-Kochina, 1962, 
p. 356) can be used as such an estimation. 

In a similar manner, it can be shown that the diffusion equation (V = 0, D = 
Din) solution subject to corresponding initial and boundary conditions is the 
minorizing estimation of the problem P. 

4. Conclusion 

In this paper, the necessary and sufficient conditions of existence of the estimations 
to the linear velocity dependent dispersion problem and the non-linear diffusion 
problem have been obtained. In doing so, solutions of the estimating equations 
are used. The Broadbridge class of hydraulic conductivity and moisture capacity 
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functions is wide enough to cover many practical problems. Choice of initial and 
boundary conditions satisfying inequalities (12), (13) allows analytical estimation 
of infiltration parameters (time to ponding, depth of wetting front, etc.) for arbitrary 
rainfall event and soil water parameters from the Broadbridge class. In the case of 
2-D dispersion, accuracy of estimation (27) is obviously a function of the seepage 
velocity variability over the domain. The greater the velocity change along a 
streamline, the more approximate is the estimation obtained, but, let us stress it 
again, it is best one. 

Some multi-dimensional transport problems with variable coefficients (transport 
by radial flow, for example) allow reduction to 1-D convection-dispersion equation 
(Yates, 1988) and, thus, analytical solvability. These solutions can be used as 
estimations to the corresponding classes of transport problems, and necessary and 
sufficient conditions, wherein these estimations occur, can be found using procedure 
outlined in this paper. 

Appendix A 

Statement of the direct comparison theorem 
As material used as a reference in this paper is hardly accessible for non-Russian 
speaking readers, we reproduce here the relevant theorems of the direct comparison 
method (as they are stated by Samarskii et al., 1989, p. 289). 

Let f~ be an arbitrary domain (not necessary finite) in R N with a smooth 
boundary DfL For non-linear parabolic equation 

cOu/cOt = L(u, IVul, ~u )  (A1) 

consider the boundary value problem with initial and boundary conditions 

u(x, 0 ) = u 0 ( x ) ) 0 ,  xE~2 (A2) 

u(x, t) = Ul(X, >t 0, x 0f . (A3) 

It is assumed that u0(x) --+ 0, Ul(X, t) --+ 0 with JxJ--+ oc and u(x, t) ~ 0 with 
Ixl ~ oc for any t. Function L(p, q, r) in (A1) is defined and once continuously 
differentiable function with respect to all arguments. Moreover, OL/Or > 0 in 
R+ x R+ x R that means parabolicity of equation (A1). 

It is also assumed that there is a real function r = l(p, q, Y)  such that 

L(p, q, l(p, q, Y))  = Y, (p, q, Y)  E R+ x R+ x R (A4) 

and lo(p, q )= l(p, q, 0). 

DEFINITION. Problem (A1)-(A3) and its solution u(x, t) is called the critical 
ones if for any t and x E 9t the inequalities 

u(x, t) >>. O, Ou/Ot >. 0 (A5) 
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hold true. 

THEOREM 1. 
are necessary and sufficient: 

L(uo, IVuol, Auo) >/0, x E 

Oul(x, t)lOt >1 O, x e O~. 

DANIEL M. TARTAKOVSKY 

For the problem (A1)-(A3) to be critical, the following conditions 

(A6) 

(A7) 

Consider boundary problems for two different parabolic equations (i = 1, 2): 

Ou (1)/Ot = L (i)(u (i), I Vu(;)l, An (i)) (A8) 

u(i)(x, t) = u~i)(x) >/0, x E ~ (A9) 

u(i)(x, t) = u]i)(x, t), x E 0~/. (A10) 

THEOREM 2. Let u (2) >/u0) on the boundary, i.e. 

u~2)(x) >~ u~l)(x), x E ~,  u~2)(x, t) >~ u~l)(x, t), x E Of/. (Al l )  

Moreover, let the solution to the problem (A8)-(AlO) for i = 2 be critical and for 
all (p, q, r) E R+ • R+ • R the following conditions hold true: 

O[L(Z)(p, q, r ) -  q, r)]/> (h12) L(1)(p, 0 

LO)(p, q, l~2)(p, q)) <~ 0. (A13) 

Then u (2) /> u (1) in the whole domain (x E f/, t > 0). 
Furthermore, it is pointed out that these theorems are valid for more general 

boundary conditioins in the form 

- O n / O n T u = u l ( x , t ) ,  x E 0 f / .  (A3') 

Appendix B 
Derivation of the conditions (28)-(30) 
Assuming the contribution of molecular diffusion to contaminant transport process 
to be small, in derivation of conditions (28)-(30) we put D,~ = 0. Then equations 
(18) and (22) can be written as 

Oc V3 ~ 02c V3~ 02c OV Oc OV Oc Oc 
- -  + /~T o k  0 69112 Va2"~ (BI) 
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OC* *3 02C* Oq2C * 0r 
Ot = V AL--~ff + V*3AT o----g - V~ o ~ (B2) 

where (ai) are "physical components" of a vector a defined for the given coordinate 
system ff - ~ as (ai) -- V(al). 

It follows from (B1) and (B2) that 

OC v3 A 02c 3 02c ot L-g--~ + v ),T-b- ~ + }qllVcl cos/3 - tVllVcl cos (B3) 

0C* *3 02C* 02r 
ot - v ALb- ~ + V*3A:r -0,~2 - IV*llVc*l cos a*, (B4) 

where q = AL(OV/O~)~ + AT(OV/O~)e~; V = (Vv)e~, (Vr = V; er and 
eq, are unit vectors directed along the normals to the coordinate curves ~o = const 
and ~b = const, respectively; a,  /3, a* are angles between vectors V and Vc, q 
and Vc, V* and Vc*, respectively. 

To bring equations (B3) and (B4) to the form (1), we introduce new coordinates 
~1 ----- ('~L) 1/2~, II/1 = ("~T) 1/2lIt. Then equations (B3) and (B4) are 

Oc V 
= V3A1C-~- IVlV}Cos /31[VlC I - ~ cos O!llVlC I (B5) 

0---~ VAL 

Oc* V 3 
0t  : V*3Alc* - ~ - L  COS ~ ; ,  (B6) 

where V1 = ( 0 /0~ 1 ,  0 / 0 ~ 1 ) ;  a l ,  /31, a~ are angles corresponding to angles 
a l ,  /31, aT in the new coordinate system. Then, according to the comparison 
theorem, inequality 

c ~< c* (B7) 

holds true subject to the following conditions 

C;(r I111) /> C0(~I, III1) , (~O, ~)) E Gw (B8) 

I : ( ~ : ,  ~ l )  <. I . ( ~ : ,  ~l ) ,  (~,, r  ~ r~  (B9) 

Oc*(~l, ~1, t) 
Ot 

> o, (~0, r  ~ a,,, (B10) 

cos ~ + IVlVI cos/~1 - v cos , ~ l / V ~  
v . 2 v / ~  v3 ~< o, (% g,) c G~, (BID 
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Fig. 1. To derivation of the formula 0312). The isotropic ffl - q/l coordinate system is 
defined by heterogeneous transformation of the equipotential-streamline coordinate system as 
r = (),1)1/2ff, ~ l  = (),T) 1/2~. Vector to is an image of the vector q in the new coordinate 
system, c~1, ill, and 7 are the angles between vectors V and Vlc, w and Vlc,  V and w, 
respectively, in the At - q/x plain. 

Taking into account the following relationships (see Figure 1): 

cos 3x = cos(a1 - 7) = cos a l  cos 3' + sin O~ 1 sin 7 

(OVlO ,,) (OVlO ,  
= arccos \ =  rcsin \ j 

inequality (B 11) finally yields 

cos o~ (ALOV/O~I - 1) cos o~1 + ~ sin oqOV/O~l  - - +  
V . 2  V 2 

~< 0. (B12) 
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