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ABSTRACT

Objective: Our primary goal is to investigate the effects of non-

Newtonian blood properties on wall shear stress in microvessels. The

secondary goal is to derive a correction factor for the Poiseuille-

law-based indirect measurements of wall shear stress.

Methods: The flow is assumed to exhibit two distinct, immiscible

and homogeneous fluid layers: an inner region densely packed with

RBCs, and an outer cell-free layer whose thickness depends on

discharge hematocrit. The cell-free layer is assumed to be New-

tonian, while rheology of the RBC-rich core is modeled using the

Quemada constitutive law.

Results: Our model provides a realistic description of experimen-

tally observed blood velocity profiles, tube hematocrit, core

hematocrit, and apparent viscosity over a wide range of vessel radii

and discharge hematocrits.

Conclusions: Our analysis reveals the importance of incorporat-

ing this complex blood rheology into estimates of WSS in

microvessels. The latter is accomplished by specifying a correction

factor, which accounts for the deviation of blood flow from the

Poiseuille law.

KEY WORDS: blood rheology, hematocrit, shear thinning, plasma layer,

apparent viscosity, shear stress

Abbreviations used: CFL, cell-free layer; MRI, magnetic reso-
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INTRODUCTION

Velocity profiles of blood flowing in glass tubes [1,10,18] and

in vivo [3,15,36] are observed to be blunted, rather than

parabolic. Both the CFL [14,18] and non-Newtonian behav-

ior of blood [19,22,26,34] in the microcirculation have been

used to explain the experimentally observed bluntness of

blood velocity profiles in narrow glass tubes [1,10,18] and in

vivo microvessels [3,15,18,36].

Blunting of the velocity profiles observed in microvessels

affects the overall rate of energy dissipation by the flow and

the distribution of shear rates across the vessel cross section.

Of particular physiological significance is the shear stress

developed at the microvessel wall. It modulates the produc-

tion of shear-stress-dependent materials by the endothelium,

a significant effect due to the large endothelial surface of the

microcirculation [2,16,23]. The bluntness of blood velocity

profiles has significant implications on indirect measure-

ments of WSS, which are typically inferred from direct

measurements of centerline velocity and vessel radius by

invoking the Poiseuille law [5,13,28]. The mismatch between

the experimentally observed blunt velocity profiles and their

parabolic counterparts predicted by the Poiseuille law

introduces interpretive errors in WSS measurement [13,28].

A typical CFL thickness is on the order of 1 lm
[14,24,27,35]. It is relatively insensitive to vessel radius,

but decreases significantly with hematocrit [9,29,35].

While plasma in the CFL can be treated as a Newtonian

fluid, the RBC-rich core displays non-Newtonian shear-

thinning properties. In this study, we assume a general

functional dependence of the CFL thickness on hematocrit

and then calculate velocity profiles of blood flow through a

tube, comprising two discrete fluid layers: the non-

Newtonian RBC core and the CFL (which is assumed to

be Newtonian).

Experimental work on blood rheology has demonstrated

the dependence of blood viscosity on shear rate and

hematocrit, showing that the relationship between shear

stress and shear rate for blood is non-linear (and non-

Newtonian), with the shear-thinning properties [7,19,22]

DOI:10.1111/micc.12141

Original Article

628 ª 2014 John Wiley & Sons Ltd



that are enhanced by increasing hematocrit. This shear-

thinning rheology of blood in the RBC core is represented

in our flow model via the Quemada rheological model.

The Quemada model is a three-parameter constitutive

rheological model that accurately describes shear-thinning

blood rheology over a wide range of shear rates and

hematocrit [19,22,26]. Due to this robustness, the Que-

mada model is superior to other blood rheological models

of comparable complexity [19] and was hence utilized in

our flow model.

Previous mathematical models of blood flow in micro-

vessels have typically treated both fluid layers (the CFL and

RBC core) as Newtonian fluids, with the viscosity of the

RBC core being larger than the viscosity of the CFL

[21,31,33]. Our model builds on these previous studies; we

compare results of our non-Newtonian model with those

of the two-layer Newtonian model and demonstrate that

significant differences between the two models exist. We

demonstrate that our model is a significant improvement

over previous Newtonian models, more accurately

predicting CFL thickness, velocity profiles, and apparent

viscosities.

We then leverage our flow model to develop a general

method for correcting the experimental estimation of WSS.

Typically, WSS in a blood vessel is estimated in experi-

mental studies by measuring the centerline velocity

and the vessel radius; with these values, the WSS is

then calculated using the Poiseuille law [5,13,28]. The

problem with this approach is that blood flow in

microvessels does not follow the Poiseuille law (due to

the inhomogeneous and non-Newtonian behaviors dis-

cussed above). This introduces errors in the measurement

of WSS [13,28].

These errors may be avoided by direct measurement of

velocity profiles, using methods such as in [18]. This allows

precise estimation of shear rate at the vessel wall; for a known

plasma viscosity, WSS can then be calculated once wall shear

rate is known. The difficulty with this alternative is that

direct measurement of velocity profiles is a complicated

task; repeatedly measuring velocity profiles every time

WSS estimates are needed is relatively impractical (and

expensive) with current technology and experimental

techniques [13].

In this study, we compute the magnitude of these WSS

estimation errors arising from the use of the Poiseuille law

and demonstrate that these errors are significant. We propose

two methods to eliminate these errors: An iterative numerical

algorithm which leverages our flow model, and the use of a

simple correction factor that can be incorporated into the

Poiseuille law. Given a rheological model of the RBC-rich

core, both approaches allow one to infer WSS from

measurements of vessel radius, centerline velocity, and

discharge hematocrit.

MATHEMATICAL MODEL OF BLOOD FLOW
IN ARTERIOLES

Symbols used

R, r Vessel radius and radial coordinate

lp Plasma viscosity

cc, k0, and k∞ Parameters in the Quemada rheological model

l, leff, lrel Medium, effective medium, and relative

medium viscosity

s, sw Shear stress and WSS

d CFL thickness

Q Flow rate of blood in blood vessel

c Shear rate

H, Hc, Hd, Ht Localized, core, discharge, and tube hematocrit

J Pressure gradient

vz Axial velocity

vmax Centerline (maximum) velocity

φ WSS correction factor

We consider steady-state blood flow in an arteriole of fixed

radius R. The flow is driven by an externally imposed

pressure gradient J, with no-slip boundary conditions

prescribed at the (nondeformable) vessel walls. Blood is

treated as a two-layer inhomogeneous fluid: An RBC-rich

core region near the vessel centerline [31,33] occupies the

cylinder of radius (R � d) and a CFL of thickness d occupies

the rest of the vessel (Figure 1). Plasma in the CFL is

modeled as a Newtonian fluid with constant viscosity lp,
independent of both hematocrit and shear rate c. Hematocrit

distribution in the RBC-rich core is assumed to be uniform.

The Quemada rheological model [19,22,26] is used to

describe the non-Newtonian, shear-thinning behavior of

the RBC-rich core.

The Quemada constitutive law postulates a nonlinear

relationship between shear stress s and shear rate c in the

RBC-rich core,

Figure 1. CFL and RBC-rich core in an arteriole. The CFL is occupied by

plasma, a Newtonian fluid whose viscosity is lower than that of the non-

Newtonian fluid comprising the RBC-rich core.

Non-Newtonian Blood Flow in Arterioles
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s ¼ clp
ð1� kHc=2Þ2

; k ¼ k0 þ k1
ffiffiffiffiffiffiffiffiffi
c=cc

p
1þ ffiffiffiffiffiffiffiffiffi

c=cc
p : (1)

The model parameters cc, k0, and k∞ vary with core

hematocrit Hc (the value of hematocrit H in the RBC-rich

core) [7,22]. We fit the parameter data reported in [22]

with second-degree polynomials in Hc. Figure 2 exhibits

both the data and the fitted curves (with the goodness of

the fit R2 exceeding 0.99 for all three curves). The

Quemada model (Eq. 1) reduces to a linear (Newtonian)

relationship between s and c when either Hc is small or c
is large.

The normalized (dimensionless) effective viscosity leff of
blood is defined from Eq. (1) as

leff ¼
s
clp

¼ 1

ð1� kHc=2Þ2
: (2)

According to this expression, the normalized effective

viscosity leff of blood in the core region decreases with

increases in shear rate c and increases with increases in core

hematocrit Hc (Figure 3). At large values of c (above 200 per
second), the viscosity is approximately constant and the fluid

is essentially Newtonian. Regardless of the fluid properties,

the Cauchy equations of motion for steady (or pseudo-steady

for low Womersley numbers), axisymmetric laminar flow

have the form

0 ¼ �J þ 1

r

@

@r
ðrsÞ: (3)

Integrating this equation across the RBC-rich core (from 0 to

R � d) and across the CFL (from R � d to R) yields,

respectively,

sðrÞ ¼ Jr

2
þ C1

r
; 0� r�R� d (4)

and

sðrÞ ¼ Jr

2
þ C2

r
; R� d� r�R; (5)

where C1 and C2 are constants of integration. As the shear

stress s(r) must remain finite throughout the blood vessel,

including its centerline r = 0, we set C1 = 0. The continuity

of the shear stress at the interface between the two fluids (at

r = R � d) requires C2 = 0. Therefore, the shear stress s(r) is
given by

sðrÞ ¼ Jr

2
; 0� r�R (6)

throughout the blood vessel.

Combining Eqs. (6) and (1) yields an implicit expression

for the radial distribution of shear rate c(r) within the RBC-

rich core,

c ¼ Jr

2lp
1�Hc

2

k0 þ k1
ffiffiffiffiffiffiffiffiffi
c=cc

p
1þ ffiffiffiffiffiffiffiffiffi

c=cc
p

 !2

; 0� r�R� d: (7)

As the CFL is occupied by plasma (a Newtonian fluid with

viscosity lp), s = lpc for R – d ≤ r ≤ R and Eq. (6) yields

c ¼ Jr

2lp
; R� d� r�R: (8)

Equations (7) and (8) are coupled by the continuity of flow

velocity at the interface r = R � d separating the RBC-rich

core and the CFL,

vþz ¼ v�z ; (9)

Figure 2. The data reported in [22] show the dependence of the

Quemada model parameters cc, k0, and k∞ on hematocrit in the RBC core,

Hc. These data are fitted with second-degree polynomials in Hc.

Figure 3. Variation in normalized (dimensionless) effective viscosity leff
of blood in the core region, with shear rate c and core hematocrit Hc.
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where vz is the flow velocity, and the superscripts + and �
indicate the core and plasma velocities on either side of the

interface, respectively. The flow velocity is related to the

corresponding shear rate by c = dvz/dr. At the vessel

wall (r = R), we impose a no-slip boundary condition,

vz (R) = 0.

Given a value of the CFL thickness d, both the shear rate

c(r) and the flow velocity vz(r) are calculated by solving

Eqs. (7–9). The data reported in [9,29] suggest that d is

relatively insensitive to the blood vessels radius R, but

decreases appreciably with the discharge hematocrit Hd. The

latter is related to the core hematocrit Hc by mass conser-

vation [33],

Hc

Z R�d

0

vzðrÞrdr ¼ Hd

Z R

0

vzðrÞrdr: (10)

While one can choose any functional relation between d
and Hd, for the sake of concreteness we adopt a polynomial

relationship

d ¼ a2H
2
d þ a1Hd þ a0: (11)

The parameters a0, a1, and a2 are determined by fitting our

model predictions to the measurements of apparent viscosity

[25]. An initial guess for d (a2 = 0, a1 = 0, and a0 = 1 lm,

which gives d = 1 lm) is refined by using the procedure

outlined in section “Model Calibration.”

NUMERICAL ALGORITHM FOR
CALCULATING VELOCITY PROFILES

For given values of the discharge hematocrit Hd and the

pressure gradient J, we use the following algorithm to

compute the shear rate c(r) and the flow velocity vz(r):

1. Make an initial guess for Hc. (In the simulation reported

below, the linear relationship Hc = 0.9797Hd + 0.0404

[33] is used as an initial guess.)

2. Calculate the value of d by using Eq. (11).

3. Compute the shear rate c(r) in the RBC-rich core and the

CFL by using Eqs. (7) and (8), respectively.

4. Compute the flow velocity vzðrÞ ¼
R r
0 cðr0Þdr0.

5. Refine the previous guess for Hc by using Eq. (10).

6. Repeat steps 3–5 until the absolute difference between the

values of Hc obtained from two sequential iterations is

smaller than prescribed tolerance D (in the simulations

reported below we set D = 10�6).

MODEL CALIBRATION

Pries, Neuhaus, and Gaehtgens [25] compiled a number of

measurements of human blood viscosity conducted in tubes

of various radii R for several values of discharge hematocrit

Hd. We use these data to calibrate our model, i.e., to

determine the values of parameters a0, a1, and a2 in Eq. (11).

That is accomplished in three steps as follows.

The first step is to evaluate the relative (dimensionless)

apparent viscosity lrel that is defined as [25]

lrel ¼
pJR4

8Qlp
: (12)

This quantity is routinely inferred from experiments by

measuring Q and invoking the Poiseuille law. Instead, for a

given value of the CFL thickness d, we compute Q from the

flow velocity vz determined in section “Algorithm for

Inference of WSS from Blood Flow Measurements” as

Q ¼ 2p
Z R

0

vzðrÞrdr: (13)

This calculation of Q is then used in Eq. (12) to obtain the

value of lrel associated with an assumed value of d. Figure 4

exhibits the resulting dimensionless apparent viscosity lrel as
a function of vessel radius R for discharge hematocrit

Hd = 0.45 and several values of the CFL thickness d.
The second step is to compare the relative apparent

viscosity curves lrel = lrel(R) in Figure 4 with their coun-

terparts predicted by the data-fitted curve of Pries, Neuhaus,

and Gaehtgens [25], lPr = lPr(R). The latter is given by

lPr ¼ 1þ ðlPr;0:45 � 1Þ ð1�HdÞa � 1

ð1�HdÞa � 1
; (14a)

where lPr,0.45 is the dimensionless apparent viscosity at

reference discharge hematocrit Hd = 0.45 fitted with a curve

lPr;0:45 ¼ 220e�1:3ð2RÞ þ 3:2� 2:44e�0:06ð2RÞ0:064 (14b)

Figure 4. Dependence of relative apparent viscosity lrel on vessel radius

R, for discharge hematocrit Hd = 0.45 and several values of the CFL

thickness d. Also shown is the dimensionless apparent viscosity obtained

with the data-fitted curve (Eq. 14) of Pries, Neuhaus, and Gaehtgens [25].

Non-Newtonian Blood Flow in Arterioles
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and

a ¼ ð0:8þ e�0:075ð2RÞÞ �1þ 1

1þ 10�11ð2RÞ12
" #

þ 1

1þ 10�11ð2RÞ12 : (14c)

In the relations above, R is reported in lm and a is

dimensionless. The value of the CFL thickness d that provides
the best agreement between the two approaches is selected.

For discharge hematocrit Hd = 0.45 used in Figure 4, this

value is d = 2.1 lm. The fact that agreement between our

model (Steps 1 and 2) and the Pries, Neuhaus, and

Gaehtgens [25] curves persists over a wide range of vessel

radii R serves to validate our assumption that the CFL

thickness d is a function of discharge hematocrit Hd alone.

The final step consists of repeating the above procedure for

multiple values of discharge hematocrit Hd, tabulating the d
vs. Hd values, and fitting the second-degree polynomial

(Eq. 11) to the resulting dataset. This step results in

d ¼ �2:265H2
d � 1:4377Hd þ 3:2131; (15)

where values of d are in lm. The use of the parameterized

constitutive law (Eq. 15) in our model yields predictions of

apparent viscosity lrel(R) that are in close agreement with

their counterparts based on the Pries, Neuhaus, and Gaeht-

gens [25] calculations over a physiologically relevant range of

discharge hematocrit Hd and microvessel radii R (Figure 5).

MODEL VALIDATION

To validate our model, we compare its predictions of the CFL

width, blood velocity profiles, and tube hematocrit (defined

below) with their experimentally observed counterparts.

These comparisons are carried out on previously published

experimental data that were not used to parameterize our

model.

CFL Thickness
The values of CFL thickness d predicted with the constitutive

law (Eq. 15) fall within a generally accepted range of around

2–3 lm [14,24,27,35]. Figure 6 provides a further confirma-

tion of the ability of our model to predict the CFL thickness

for a wide range of microvessel radii. It compares the

dependence of the relative CFL thickness d/R on vessel radius

R predicted with our model and observed in the experiments

[24,27,35], for discharge hematocrit Hd = 0.45. Our model

qualitatively captures the observed decrease in the relative

CFL thickness d/R with vessel radius R, underestimating the

observed CFL thickness by 13% for R = 15 lm, 20% for

R = 30 lm, and 25% for R = 47 lm. This level of agreement

is significantly better than that achieved with the earlier

models [9,31,33].

Flow Velocity Profiles
We compare the velocity profile vz(r) predicted with our

model with its counterpart constructed from experimental

micro-PIV measurements of velocity profiles of human

blood flow in glass tubes [18]. Figure 7 shows the predicted

and observed velocity profiles for discharge hematocrit

Hd = 0.335, pressure gradient J = 3732 dyn/cm3, and tube

radius R = 27.1 lm used in the experiment [18]. The mean

square root error between the data and predictions is 0.068.

A location of the kink in the experimentally measured

velocity profile (r/R � 0.92 in Figure 7) indicates a position

of the core/CFL interface (r = R � d). Applied to the

experimental data in [18] (see Figure 7), this yields

d � 2.2 lm. This estimate of the CFL thickness d is much

Figure 5. Relative apparent viscosity lrel calculated with our model and

the data-fitted curve of Pries, Neuhaus, and Gaehtgens [25] over

physiologically relevant ranges of microvessel radii R and discharge

hematocrit Hd.

Figure 6. Predicted and experimentally observed values of relative CFL

thickness d/R as a function of vessel radius R for discharge hematocrit

Hd = 0.45. Experimental data are from [24,27,35].

K. Sriram et al.
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closer to that predicted by our model (d = 2.48 lm) than

values for d reported in earlier models [9,31].

Tube Hematocrit
As a final validation test, we investigate the ability of our

model to reproduce measurements of tube hematocrit Ht,

which is defined as the average (over a vessel’s cross section)

hematocrit [31],

Ht � 2

R2

Z R

0

HðrÞrdr: (16)

In the two-layer fluid model under consideration, H(r) = Hc

inside the RBC-rich core (0 ≤ r ≤ R � d) and H(r) = 0

inside the CFL (R – d < r ≤ R). Therefore, this equation

predicts a linear relationship between tube hematocrit Ht and

core hematocrit Hc [31],

Ht � ðR� dÞ2
R2

Hc: (17)

Measurements of tube hematocrit Ht are typically reported

relative to discharge hematocrit Hd, i.e., as the ratio Ht/Hd.

This ratio is observed to be smaller than unity, a phenom-

enon that is referred to as the Fahraeus effect [8]. The

disparity between values of tube hematocrit Ht and discharge

hematocrit Hd is due to the presence of the CFL; the

difference between the three types of hematocrit diminishes,

Ht � Hc � Hd, as d/R ? 0.

Figure 8 shows the observed [9,11,12,24] and computed

dependence of Ht/Hd on vessel radius R for Hd = 0.405.

While the mean RMSE between the data and predictions is

relatively large (RMSE = 0.052), our model captures the key

features of this dependence. The ratio Ht/Hd increases with

vessel radius R, approaching its limiting value of 1 at large R

(d/R? 0). Moreover, the absolute difference between our

calculations and the experimental data does not exceed 11%

and is significantly smaller (less than 4%) for many data

points over a wide range of vessel diameters.

SIMULATION RESULTS

The results presented in this section are for pressure gradient

J = 40,000 dyn/cm3. The latter corresponds to WSS of

40 dyn/cm2 at R = 20 lm, a value consistent with in vivo

WSS measurements [17] typically observed in the microcir-

culation.

Flow Velocity Profiles
The velocity profiles vz(r) computed with our model are

blunted, rather than parabolic (Figure 9). Each profile is

normalized with the corresponding maximum (centerline)

velocity vmax. In a blood vessel of radius R = 20 lm,

vmax = 14.9, 11.0 and 7.4 mm/sec for discharge hematocrit

Hd = 0.35, 0.45 and 0.55, respectively. In a blood vessel of

radius R = 40 lm, these increase to vmax = 25.1, 39.0, and

55.0 mm/sec for the respective values of discharge hemat-

ocrit Hd. Figure 9 also shows the parabolic velocity

profiles that arise from the Poiseuille solution for pipe

flow.

The bluntness of the velocity profiles increases with the

discharge hematocrit Hd due to two reasons. First, the non-

Newtonian behavior of blood becomes more pronounced

as hematocrit increases. Second, higher levels of hematocrit

lead to higher viscosities of the RBC-rich core, increasing

the contrast between the viscosities of the core and the

CFL.

Figure 9 also reveals that the non-Newtonian behavior of

blood is less pronounced, i.e., the deviation from the

Poiseuille’s parabolic velocity profile is less significant, in

larger vessels. This observation is in line with the standard

modeling practice of modeling blood in large vessels as a

Newtonian fluid.

Figure 7. Predicted and observed velocity profiles, plotted against

normalized radial distance from centerline r = R, for discharge hematocrit

Hd = 0.335, pressure gradient J = 3732 dyn/cm3, and tube radius

R = 27.1 lm used in [18].

Figure 8. Calculated and measured values of Ht/Hd as a function of

vessel radius R, for Hd = 0.405. Data are from [9,11,12,24].

Non-Newtonian Blood Flow in Arterioles
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Relationship Between Core and Discharge
Hematocrits
Mass conservation of RBCs, as expressed by Eq. (24),

establishes a linear relationship between the core (Hc) and

discharge (Hd) hematocrits (see also, [33]). In addition, it

defines the (nonlinear) dependence of the hematocrit ratio

Hc/Hd on the blood vessel radius R. This dependence,

computed with the algorithm of section “Algorithm for

Inference of WSS from Blood Flow Measurements”, is

displayed in Figure 10 for several values of the discharge

hematocrit Hd. As vessel radii become larger, the difference

between the core and discharge hematocrits becomes less

significant, i.e., the ratio Hc/Hd ?1.

Comparison with the Two-Layer Newtonian Model
Several previous studies, e.g., [21, 31, 33], treated blood as a

two-phase fluid (as we do), but assumed that both the RBC-

rich core and the CFL exhibit Newtonian behavior. Com-

parison of these models with ours sheds light on the impact

of the non-Newtonian effects on predictions of both the flow

velocity vz and the relative apparent viscosity lrel.
Figure 11 shows the velocity profiles vz(r) in a vessel of

radius R = 20 lm, computed with the two-phase Newtonian

model [21,31,33] (see Appendix) and our two-layer Que-

mada model. Each of these velocity profiles is normalized

with its maximum (centerline) velocity vmax (=1.845 and

1.286 mm/sec for the Newtonian and Quemada and models,

respectively). Both profiles differ significantly from the

parabolic profile predicted by the Poiseuille law. The

Newtonian assumption significantly overestimates flow

velocity (vmax by about 50%) and underestimates the degree

of bluntness of the velocity profile. This is despite the fact

that the CFL thickness d predicted with our model is smaller

than that suggested in [31]. It is worthwhile emphasizing that

the values of d predicted with our model fall within the

experimentally observed range (1.5–3.0 lm), whereas the

estimates of d in [31] (3.5–4.0 lm) do not.

Figure 12 exhibits the dependence of relative apparent

viscosity lrel on vessel radius R predicted with the two-phase

Figure 9. Velocity profiles vz(r/R), normalized with corresponding maximum (centerline) velocities vmax, for vessel radii R = 20 lm (left) and 40 lm (right)

and several values of discharge hematocrit Hd. Also shown is the (normalized) parabolic velocity profile predicted by the Poiseuille law.

Figure 10. Hematocrit ratio Hc/Hd as a function of blood vessel radius R

for several values of discharge hematocrit Hd.

Figure 11. Normalized velocity profiles computed with the two-phase

Newtonian model [21,31,33], our two-layer Quemada model, and the

Poiseuille law. Each velocity vz(r/R) is normalized with its maximum

(centerline) velocities vmax. The vessel radius is R = 20 lm and discharge

hematocrit is Hd = 0.45.
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Newtonian model [21,31,33], our two-phase Quemada

model, and the data-fitted curve (Eq. 14) of Pries, Neuhaus,

and Gaehtgens [25]. The Newtonian model [21,31,33]

underestimates the apparent viscosity, as compared to both

our Quemada model and the experimental data in [25]. This

demonstrates the importance of accounting for non-Newto-

nian shear-thinning behavior of the RBC-rich core.

CONSEQUENCES FOR WSS
MEASUREMENTS IN BLOOD VESSELS

Measurements of WSS in arterioles are typically done (e.g.,

[13,28]) by employing the Poiseuille law, Q = pJR4/(8l), to
express WSS sw = s(R) in terms of observable quantities

such as flow rate Q, average flow velocity vave = Q/

(pR2) = JR2/(8l), or centerline velocity vmax = 2vave. This

is accomplished by combining Eq. (6) with s = lc, the

Newtonian relationship between shear stress s and shear rate

c = dvz/dr. As for a Poiseuille flow the shear rate at the wall is

given by cw = c(R) = 2vmax/R, one obtains

sw;p ¼
2lpvmax

R
: (18)

Although Eq. (18) is routinely used to estimate the WSS sw
from experiments [13,28], it is important to recognize that it is

based on the assumption that blood can be treated as a

homogeneous Newtonian fluid. Many theoretical and exper-

imental studies, including our analysis in section “Simulation

Results”, demonstrate the importance of accounting for the

non-Newtonian behavior of blood flow in microvessels.

Experimental techniques, such as microparticle image veloc-

imetry [18], enable one to obviate the need for this assumption

by inferring the WSS sw from measurements of the entire

velocity profile vz(r). However, they are expensive and oper-

ationally challenging, which hinders their in vivo use [13,28].

We propose an efficient alternative that utilizes standard

experimental procedures to determine the discharge hemato-

critHd and a flow characteristic (Q, vave, or vmax), relies on the

modelingalgorithm in section“Algorithm for InferenceofWSS

from Blood Flow Measurements” to compute the wall shear

rate cw = c(R), andmakes use of the Quemada constitutive law

(Eq. 1) to relate the wall shear rate cw to the WSS sw.

Algorithm for Inference of WSS from Blood Flow
Measurements
Given measurements of the vessel radius R, centerline

velocity vmax, and discharge hematocrit Hd, we employ the

following algorithm to determine the WSS sw:
1. Set the counter to n = 0, the algorithm tolerance to

e = 10�4, and the iteration factor to k = 0.9.

2. Compute an initial guess for the WSS sw
(n) by using the

Poiseuille relation (Eq. 18).

3. Compute the corresponding values of the pressure

gradient J(n) = 2 sw
(n)/R from Eq. (6).

4. Calculate the velocity profile v(n)(r) by using the algorithm

in section Numerical Algorithm for Calculating Velocity

Profiles with given J(n).

5. Compare the resulting centerline velocity v(n)max with its

measured value vmax. If

vmax � v
ðnÞ
max

vmax

�����
������ e;

then go to Step 7. Otherwise, modify the value of the pressure

gradient according to

Jðnþ1Þ ¼ 1þ j
vmax � v

ðnÞ
max

vmax

" #
JðnÞ:

6. Set n = n + 1. Go to Step 4.

7. Compute the WSS sw = J(n)R/2 from Eq. (6).

For k = 0.90 and e = 0.0001, this algorithm converged in

fewer than 20 iterations in all the cases we examined.

We use the relative error eWSS = (sw � sw,P)/sw to quantify
the errors introduced by relying on the Poiseuille relation

(Eq. 18) to infer the WSS (sw,P), i.e., by ignoring the

inhomogeneity and non-Newtonian properties of blood flow

in microvessels. Figure 13 reveals that the error eWSS is

significant over wide ranges of the discharge hematocrit Hd

and the blood vessel radius R. This demonstrates that the

Poiseuille law-based experimental inference of the WSS

systematically underestimates the WSS in microcirculatory

flows. The bias increases with the discharge hematocritHd and

decreases with the vessel radius R. Both phenomena are to be

expected, as they amplify the non-Newtonian behavior of the

blood flow in the microcirculation (see section “Simulation

Results”).

Figure 12. Dependence of relative apparent viscosity lrel on vessel radius

R, computed with the two-phase Newtonian model [21,31,33], our two-

layer Quemada model, and the data-fitted curve of Pries, Neuhaus, and

Gaehtgens [25]. Discharge hematocrit is Hd = 0.45.
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Empirical WSS Correction Factor
The numerical algorithm described in section “Algorithm for

Inference of WSS from Blood Flow Measurements” provides

a rigorous means for inferring the WSS from measurements

of R, Hd, and vmax. Here, we use it to precompute a

correction factor /(R, Hd), which would allow us to

determine the WSS without resorting to numerical simula-

tions. This correction factor enables one to determine the

actual WSS sw from its Poiseuille law estimate sw,P given by

Eq. (18) by simple multiplication, sw = /(R, Hd) sw,P, i.e.,

sw ¼ 2lpvmax

R
/ðR;HdÞ: (19)

The correction factor /(R, Hd) = sw/sw,P is calculated as

follows. First, we employ the iterative algorithm of section

“Algorithm for Inference of WSS from Blood Flow Mea-

surements” to compute the WSS sw(R, Hd) for multiple

values of R 2 [15, 70 lm] and discharge hematocrit Hd 2
[0.25, 0.55]. Then, for each of these computed values of the

WSS, we obtain the correction factor as /(R, Hd) = sw/sw,P.
Finally, we interpolate this / = /(R, Hd) dataset with the

curve (with the goodness of the fit exceeding 0.99)

/ðR;HdÞ ¼ c1 lnRþ c0 where c1 ¼ 0:0515e4:732Hd ;

c0 ¼ 0:6134Hd þ 1:0548: ð20Þ
Figure 14 exhibits the dependence of the WSS correction

factor / on the vessel radius R and discharge hematocrit Hd.

Equation (20) and its graphical representation in Figure 14

show that the correction factor / (and, hence, the errors

introduced by the reliance on the Poiseuille law) grows

exponentially with the discharge hematocrit Hd. Its depen-

dence on the vessel radius R becomes more pronounced as

the discharge hematocrit Hd increases. Substituting Eq. (20)

into Eq. (19) yields the modified equation for WSS estima-

tion as a function of centerline velocity (vmax), vessel radius

(R), plasma viscosity (lp), and discharge hematocrit (Hd):

sw ¼ 2lpvmax

R
m1e

m2Hd lnRþm3Hd þm4

� �
(21)

with m1 = 0.0515, m2 = 4.732, m3 = 0.6134, and m4 =
1.0548.

We compared the WSS values computed with Eq. (19),

the iterative algorithm of section “Algorithm for Inference of

WSS from Blood Flow Measurements” and the correction

factor in Eq. (20) for a physiologically relevant ranges of R

and Hd. This comparison reveals that the iterative algorithm

and the correction factor yield the nearly identical (within

3%) estimates of WSS. Both sets of estimates are significantly

higher than their counterparts predicted with the Poiseuille

relation (Eq. 18).

The results presented in this study are obtained for

parameter values typical of human blood. Therefore, they are

applicable both for in vitro experiments in glass tubes [18]

and tissue cultures [20], and for in vivo observations such as

retinal [30] or MRI [6] studies. For experiments that involve

blood from other species, the approach used in this study

may be replicated with suitable rheological data for the type

of blood under consideration as an input. This would require

the measurements of the dependence of the CFL thickness d
on Hd and R, and blood rheology data (which is readily

available in the literature for a number of species).

DISCUSSION

We presented a two-layer blood flow model that accounts for

a non-Newtonian RBC core layer and a Newtonian CFL near

the vessel wall. The rheology of the RBC core was modeled

using the Quemada model [19,22,26] which accurately

Figure 13. Relative error eWSS = (sw � sw,P)/sw in estimation of the WSS

sw introduced by relying on the Poiseuille relation (Eq. 18) to infer the

WSS (sw,P), for several values of vessel radius R.

Figure 14. WSS correction factor / as a function of vessel radius R, for

several values of discharge hematocrit Hd.
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describes the shear-thinning properties of blood over a large

range of shear rates and hematocrits. Each fluid layer was

assumed homogeneous and immiscible, with the resulting

flow assumed to be laminar and axisymmetric.

To calculate velocity profiles using this model, we assumed

a general functional form of the CFL thickness d as a function
of discharge hematocrit Hd. We then used Eqs. (7–11) to

calculate flow velocities, flow rates, and relative apparent

viscosity lrel. We calibrated our expression for d, given by

Eq. (11), so that our predictions for apparent viscosity at

different hematocrits and radii were in agreement with the

work of Pries, Neuhaus, and Gaehtgens [25]. Figure 5 shows

that our model was able to match the predictions of Pries,

Neuhaus, and Gaehtgens [25] providing validation to the

assumption that d is an almost linear function of discharge

hematocrit and is independent of tube radius.

We were further able to validate our model by comparing

(i) the predicted velocity profiles with experimental data

[18], (ii) the predicted hematocrit ratio Ht/Hd vs values

reported in the literature (both experimental data and

numerical models), and (iii) d/R values with those estimated

in experimental studies [24,27,35].

Agreement between our calculated and measured velocity

profiles [18] is shown in Figure 7. The calculated values of

velocity, shape of velocity profile, and CFL thickness are in

reasonable agreement with experiments (see section “Model

Validation”). Furthermore, our predictions for Ht/Hd fall

within the broad range of values suggested in the literature

(Figure 8). The scatter in the range of values reported is

unfortunately rather large, with very few experiments carried

out in recent years with modern experimental techniques.

New experiments to measure tube vs discharge hematocrit

would help better calibrate flow models of blood flow in

microvessels.

Our predictions of CFL thickness d also seem to be in

reasonable agreement with experiments [14,24,27,35]. Our

estimates of d are closer to the experimentally observed

values than those reported in other theoretical studies

[9,31,33]. The range of d predicted for physiological levels

of hematocrit (in the vicinity of 0.45) falls between 1.5 and

3 lm in most experimental studies. Our predictions of d in

the range 2.5–1.8 lm over a range of hematocrits from 0.35

to 0.55 are within this range of experimentally measured

values. Figure 6 shows that our estimates of d/R vs R for

Hd = 0.45 are in general agreement with the experimental

observations [24,27,35].

We demonstrated the resulting dependence of core

hematocrit Hc on discharge hematocrit Hd in small- to

intermediate-sized arterioles, as shown in Figure 10. As the

vessel size increases, the importance of the Fahraeus effect [8]

reduces and core and systemic hematocrit become essentially

indistinguishable, due to the fact that the width of the cell-

depleted layer becomes negligible compared to vessel radius.

Hence, we expect core hematocrit to be almost the same as

discharge hematocrit in large blood vessels (where the core is

essentially the entirety of the vessel cross section), but in

smaller blood vessels the core hematocrit should be signif-

icantly elevated over systemic (or discharge) hematocrit.

We examined whether our model makes predictions that

are different from the Newtonian model of blood flow used

previously in [21,31,33]. Figure 11 provides a comparison of

our predictions of the velocity profiles with those computed

with the two-layer Newtonian model, for the vessel radius

R = 20 lm and the pressure gradient J = 40,000 dyn/cm3.

Our two-layer non-Newtonian model predicts significantly

smaller axial velocities and blunter velocity profiles than the

two-layer Newtonian model does. Sharply blunted velocity

profiles are commonly reported in the experimental litera-

ture [1,3,10,15,18,36].

We also analyzed the dependence of the relative apparent

viscosity on the vessel radius (see Figure 12, for Hd = 0.45).

The Newtonian model significantly underestimates the

relative apparent viscosities both predicted with our model

and observed experimentally (see the data in [25]). As with a

single optimized set of parameters our model is able to

simultaneously predict realistic values of apparent viscosity,

CFL thickness, tube hematocrit, and velocity profiles that are

in broad agreement with the experimental literature, we

submit that our model is a significant improvement over

prior Newtonian flow models.

The blunting of velocity profiles discussed in this study has

a number of consequences. Typical in vivo measurements of

WSS in the microcirculation are based on the Poiseuille

relation (Eq. 18), which assumes the Newtonian behavior

and results in parabolic velocity profiles [13,28]. The errors

introduced by this assumption lead to a significant under-

estimation of WSS. Specifically, as shown in Figure 13, the

relative error in using the Poiseuille relation (Eq. 18)

increases with increasing values of discharge hematocrit Hd

(as increasing Hd greatly amplifies the non-Newtonian

nature of the flow); for Hd = 0.45, the use of the Poiseuille

relation underestimates WSS by approximately 60–65%,

across a broad range of vessel radii. Even at a smaller, but

physiologically relevant Hd = 0.30, WSS was found to be

underestimated by over 45% when applying the Poiseuille

relation.

We proposed two methods to eliminate these errors: An

iterative numerical algorithm which leverages our flow

model, and the use of a simple correction factor that can

be incorporated into the Poiseuille law. Given a rheological

model of the RBC-rich core, both approaches allow the

inference of WSS from measurements of vessel radius,

centerline velocity, and discharge hematocrit. As the WSS

values calculated with these two methods differ by approx-

imately 3%, one can rely on the correction factor without

sacrificing the measurement accuracy. This correction factor
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varies with the discharge hematocrit Hd and vessel radius R,

as shown in Figure 14. The proposed approach is also useful

in models where WSS is an input for calculations of

quantities, such as shear-induced NO production [32,33].

This analysis and the proposed correction factors should

aid in evaluating the changes in shears stress induced by the

changes in the composition of blood due to the application

of plasma expanders that affect the blood’s shear-thinning

properties [32]. The effects of this type of transfusional

intervention appear to be significantly dependent on the

rheological changes induced in diluted blood and are

becoming the focus of research and development in design-

ing new transfusion strategies [4].

PERSPECTIVE

The mathematical model of blood flow in microvessels

presented in this study allows for prediction of velocity

profiles and CFL thicknesses that were validated against

previously published experimental data. The blunted

velocity profiles occur due to both the non-Newtonian

and nonhomogeneous nature of blood flow in microvessels;

both factors are accounted for in our model. Typically, the

estimation of WSS in experimental studies is achieved

through measurement of vessel centerline velocity and

radius, followed by the application of the Hagen–Poiseuille
law. Due to the non-Newtonian and nonhomogeneous

nature of blood, using the Hagen–Poiseuille law introduces

significant errors in WSS estimation. Using the flow

model presented in this study, a correction factor to

the Hagen–Poiseuille law was derived to eliminate these

errors; allowing for accurate estimation of WSS in

experiments.
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APPENDIX

Two-phase Newtonian model for flow velocity

According to the two-phase Newtonian model of blood flow [31,33], the velocity distribution in a microvessel of radius R is

given by

vzðnÞ ¼ JR2

4lp

1� k2 þ lp
lc
ðk2 � n2Þ for 0� n� k

1� n2 for k\n� 1

(
(22)

where lc is the viscosity of the RBC-rich core, ξ = r/R and k = 1�d/R. When expressed in lm, the CFL width d is given

by [33]

d ¼ �7:55Hd þ 6:91: (23)

For human blood, lc is calculated as [31]

lcðHcÞ
lp

¼ 1þ 2:2
ð1�HcÞ�0:8 � 1

ð1� 0:45Þ�0:8 � 1
: (24)

Finally, the core hematocrit Hc is related to the discharge hematocrit Hd by [31,33]

Hc

Z 1�k

0

vzðnÞndn ¼ Hd

Z 1

0

vzðnÞndn: (25)

The resulting set of equations is solved by following the procedure described in [33].
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