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Sriram K, Intaglietta M, Tartakovsky DM. Hematocrit disper-
sion in asymmetrically bifurcating vascular networks. Am J Physiol
Heart Circ Physiol 307: H1576–H1586, 2014. First published Sep-
tember 12, 2014; doi:10.1152/ajpheart.00283.2014.—Quantitative
modeling of physiological processes in vasculatures requires an ac-
curate representation of network topology, including vessel branch-
ing. We propose a new approach for reconstruction of vascular
network, which determines how vessel bifurcations distribute red
blood cells (RBC) in the microcirculation. Our method follows the
foundational premise of Murray’s law in postulating the existence of
functional optimality of such networks. It accounts for the non-
Newtonian behavior of blood by allowing the apparent blood viscosity
to vary with discharge hematocrit and vessel radius. The optimality
criterion adopted in our approach is the physiological cost of supply-
ing oxygen to the tissue surrounding a blood vessel. Bifurcation
asymmetry is expressed in terms of the amount of oxygen consump-
tion associated with the respective tissue volumes being supplied by
each daughter vessel. The vascular networks constructed with our
approach capture a number of physiological characteristics observed
in in vivo studies. These include the nonuniformity of wall shear stress
in the microcirculation, the significant increase in pressure gradients
in the terminal sections of the network, the nonuniformity of both the
hematocrit partitioning at vessel bifurcations and hematocrit across
the capillary bed, and the linear relationship between the RBC flux
fraction and the blood flow fraction at bifurcations.

hematocrit; bifurcation; vascular network; Murray’s law; red blood
cell distribution

QUANTITATIVE MODELING of physiological processes in vascula-
tures requires an accurate representation of network topology,
including vessel branching. The standard conceptualization of
a vascular network assumes both that each blood vessel bifur-
cates at successive levels of the network and that each bifur-
cation follows Murray’s law (34, 35) or its empirical modifi-
cations that are usually based on morphometric data (25, 36,
42). In its general form, Murray’s law states that a parent bl-
ood vessel of radius Rp branches into N daughter vessels of
(possibly different) radii Rdi

(i � 1, . . . , N) such that Rp
3 �

Rd1

3 � . . . � RdN

3 ; bifurcating networks correspond to N � 2. A
fundamental consequence of Murray’s law is the predicted
uniformity of wall shear stress (WSS) throughout the vascula-
ture (25, 38, 45). While Murray’s law generally holds in the
macrocirculation (28, 33), a number of in vivo studies demon-
strate its breakdown in microcirculatory networks.

Of particular physiological significance are observations
(e.g., Refs. 24, 37, 42, among many others) of the WSS
variability between various generations of the blood vessels in
vascular networks. While the WSS remains relatively constant
over much of the vascular network, it increases significantly in

the microcirculation, particularly in the smallest segments of
the precapillary arteriolar network (24, 30, 42). This deviation
from Murray’s law has been attributed to the non-Newtonian
shear-thinning behavior of blood in the vessels of small radii
(1, 45). Murray’s law fails to capture such a behavior, since it
is derived by assuming blood to be a Newtonian fluid, whose
flow within each vessel obeys the Poiseuille law (35). Alter-
native optimality criteria used to describe vascular bifurcations
include the minimum energy hypothesis (24) and generaliza-
tions of Murray’s law that account for the role of muscle tone
(53), alternative blood rheology (1, 45), and turbulent (54) or
pulsatile (37) flow conditions. These and other similar opti-
mality criteria aim to predict the radii of daughter vessels,
relying on empirical closure assumptions to prescribe partition-
ing of suspended red blood cells (RBCs) between daughter
vessels.

Both blood viscosity and its shear-thinning behavior vary
with concentrations of dissolved chemicals, e.g., fibrinogen,
and density of RBCs in the blood column, i.e., hematocrit. Of
direct relevance to the present study are observations suggest-
ing that blood viscosity and shear-thinning behavior increase
with hematocrit (38, 41, 44, 47). This phenomenon was ig-
nored by Revellin et al. (45), who modified Murray’s law by
treating blood as an Ostwald de Waele fluid whose rheology
and apparent viscosity are independent of either hematocrit or
vessel radius. The latter assumptions contradict in vitro (41)
and in vivo (44) observations that revealed the strong depen-
dence of apparent viscosity on both hematocrit and vessel
radius. Alarcon et al. (1) accounted for these effects by em-
ploying the Pries et al. (44) constitutive relation, according to
which apparent blood viscosity varies with vessel radius and
hematocrit. In applying this generalization of Murray’s law to
modeling a network, they assumed that hematocrits in daughter
vessels at bifurcations are given by the ratio of average veloc-
ities in each daughter vessel. This leads to predictions of
hematocrit values in the terminal regions of the network, which
are unrealistically low (1).

The question of how hematocrit is partitioned between the
parent and daughter vessels remains open. In vivo and in vitro
experimental data on hematocrit partitioning at bifurcations
typically relate the flux fraction FRBC, i.e., the fraction of RBCs
flowing from the parent vessel into the larger daughter vessel,
to the flow fraction Fblood, i.e., the fraction of total fluid flow
from the parent vessel that enters the larger daughter vessel
(see Ref. 4 and the references therein). Mathematical models
(2, 3) of hematocrit partitioning at bifurcations are limited to
two-dimensional channel flows. They suggest an approxi-
mately linear dependence of FRBC on Fblood over a wide range
of Fblood. While some experimental studies (12, 16, 26, 50)
observed a linear relation between FRBC and Fblood, others (22,
40, 43) found this relationship to be nonlinear. Even when the
linear behavior is observed, the corresponding slopes and
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intercepts tend to be different. Furthermore, experimental data
indicate that endothelial dysfunction significantly affects the
distribution of hematocrit at arterial bifurcations with impor-
tant implications for the adequacy of tissue perfusion (14, 15).
Thus an analysis of baseline RBC partition at bifurcations
solely dependent on network properties is warranted (17).

We propose a mathematical framework for construction of
vascular networks, which possess both optimal daughter vessel
radii and optimal partition of hematocrit between daughter
vessels. These two goals are achieved by postulating that
healthy vasculatures are constructed in a way that optimizes
oxygen delivery to the surrounding tissue. Our model builds
upon the analysis of Alarcon et al. (1) in the sense that it
generalizes Murray’s law by accounting for both the non-
Newtonian nature of blood flow in microcirculation and the
dependence of blood rheology on hematocrit. Unlike Alarcon
et al. (1), we impose no prior restrictions on the hematocrit
partition between daughter vessels. Instead it is determined by
solving an optimization problem and describes how vessel
bifurcations distribute RBCs in the microcirculation.

The outcome of our model is a vascular network in which
both the bifurcation asymmetry and WSS vary from one
generation of the network to the next. We demonstrate that the
resulting vascular networks satisfy a number of properties of
vascular networks identified from in vivo studies, such as
nonuniform shear stress and capillary hematocrit, branching
exponents, and sharply amplified pressure gradients at the
terminal vessels.

Glossary

Qn, Qn,1, Qn,2 Flow rate in parent vessel and two daugh-
ter vessels

Hn, Hn,1, Hn,2 Discharge hematocrit in parent vessel and
two daughter vessels

Rn, Rn,1, Rn,2 Radii of parent vessel and two daughter
vessels

� Blood viscosity
�p Plasma viscosity

QO2
Oxygen flux

a Flux asymmetry parameter
W Cost function
L Vessel length
� Wall shear stress (WSS)
J Pressure gradient
P Intraluminal pressure

PROBLEM FORMULATION

We consider blood flow in a regular vascular network
composed of branching (bifurcating) vessels. Blood is
treated as a non-Newtonian fluid whose apparent dynamic
viscosity � varies with a vessel radius R and the discharge
hematocrit H in accordance with an empirical rheological
law of Pries et al. (44)

��R, H� � �p�1 � ��0.45 � 1�

�
�1 � H�� � 1

�1 � 0.45�� � 1� 2R

2R � 1.1�2�� 2R

2R � 1.1�2

. (1)

Here �p is the dynamic viscosity of plasma; the dynamic
viscosity of blood at hematocrit H � 0.45 is related to the
vessel radius R by

�0.45�R� � 3.2 � 6e�0.17R � 2.44e�0.06(2R)0.645
(2)

and the exponent � varies with the vessel radius R according to

��R� � �0.8 � e�0.15R���1 �
1

1 � 10�11(2R)12�
�

1

1 � 10�11�2R�12. (3)

The dependence of blood viscosity � on vessel radius R and
hematocrit H is shown in Fig. 1.

Following Ref. 4, we assume flow within each vessel to be
steady, laminar, and fully developed, i.e., to obey a Poiseuille-
like relationship between Q (the volumetric flow rate) and J
(the pressure drop over the vessel’s length L),

Q �
JR4

8���R, H�
. (4)

In the nth generation of the network, a parent vessel of
radius Rn bifurcates into smaller daughter vessels with radii
Rn,1 and Rn,2. The discharge hematocrit Hn in the parent
vessel partitions into the discharge hematocrits Hn,1 and Hn,2

in the corresponding daughter vessels. If the oxygen flux in
a parent vessel is QO2

, then mass conservation requires the
oxygen fluxes in its daughter vessels to be aQO2

and (1 �
a)QO2

, where the flux-asymmetry parameter a is a number
between 0 and 1. In the following sections, we compute the
daughter vessel radii and hematocrits by postulating that
daughter vessels bifurcate in a way that minimizes the total
cost associated with oxygen delivery to the tissue down-
stream of the bifurcation.

STATE-OF-THE-ART IN VASCULATURE REPRESENTATION

Optimal vessel radius. The starting point of our analysis is
the Murray cost function (34),

Fig. 1. Dependence of the normalized apparent blood viscosity, �/�p, on the
vessel radius R and hematocrit H predicted with the rheological law of Pries et
al. (44).
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W � QJL � 	�R2L (5)

which combines the mechanical work (QJL) necessary to drive
blood through a blood vessel of radius R and length L with the
“metabolic cost” (�	R2L). The latter is linearly proportional to
the vessel’s volume 	R2L with the coefficient of proportion-
ality �. According to Murray’s law, blood vessels have radii
that minimize the cost function W for given flow rate Q and
pressure gradient J, i.e., they satisfy an equation dW/dR � 0.
Combined with Eq. 4, this defines the optimal vessel radius R*
as a solution of

d

dR�8�Q2

�R4 � 	�R2� � 0. (6)

If the blood viscosity � were independent of the vessel radius
R, this equation would yield Murray’s law, according to which
Q is proportional to R3 (34). For the blood viscosity �(R,H)
that varies with the vessel radius R in accordance with Eq. 1,
the optimal radius R* is a solution of Alarcon et al. (1)

Q �
��	

2

R3



, 
�R, H� �	4� � R

d�

dR
. (7)

For small H and large R (larger than 200 �m), the correction
factor 
 is approximately constant (Fig. 2) and Murray’s law is
recovered. For physiological values of hematocrit and vessel
radii typically seen in the microcirculation (less than 100 �m),

 has a strong dependence on R that is not captured by
Murray’s law.

Substituting the optimal Q and R* into Eq. 5 gives the
optimal (minimum) cost of supplying a volume of blood to a
block of tissue,

W* � 	�LR*2�2��R*, H�

2�R*, H�

� 1�. (8)

This analysis enables one to determine the optimal radius of a
single blood vessel, if the discharge hematocrit H and the flow
rate Q are known. Determining the radii of daughter vessels
(and hematocrits) from a bifurcating parent vessel requires
additional assumptions.

Models of vessel bifurcation. The bifurcation of a parent
vessel of radius Rn into daughter vessels with radii Rn,1 and Rn,2

is accompanied by the partitioning of the discharge hematocrit
Hn in the parent vessel into the discharge hematocrits Hn,1 and
Hn,2. The volumetric blood flow rates in the parent (Qn) and
daughter (Qn,1 and Qn,2) vessels satisfy mass conservation,

Qn � Qn,1 � Qn,2. (9)

Mass conservation of red blood cells imposes a constraint on
the discharge hematocrits in the parent parent (Qn) and daugh-
ter (Qn,1 and Qn,2) vessels,

QnHn � Qn,1Hn,1 � Qn,2Hn,2. (10)

The volumetric flow rates in each vessel are given by the
modified Murray’s law (Eq. 7)

Qn �
��	

2

Rn
3


�Rn, Hn�
; Qn,1 �

��	

2

Rn,1
3


�Rn,1, Hn,1�
;

Qn,2 �
��	

2

Rn,2
3


�Rn,2, Hn,2�
. (11)

Substituting Eq. 11 into Eqs. 9 and 10 yields

Rn
3


�Rn, Hn�
�

Rn,1
3


�Rn,1, Hn,1�
�

Rn,2
3


�Rn,2, Hn,2�
(12a)

and

HnRn
3


�Rn, Hn�
�

Hn,1Rn,1
3


�Rn,1, Hn,1�
�

Hn,2Rn,2
3


�Rn,2, Hn,2�
. (12b)

Since these two equations contain four unknowns (Rn,1, Rn,2,
Hn,1, and Hn,2), the determination of the optimal bifurcation
radii requires additional assumptions. For example, one can
postulate that the daughter vessels have identical radii, Rn,1 �
Rn,2 � Rn,d (i.e., Qn,1 � Qn,2 � Qn/2), and assume that the
discharge hematocrit in all the vessels is the same, Hn � Hn,1 �
Hn,2 � H. This model implies that the discharge hematocrit
remains constant throughout the vascular network and relates
the daughter-vessel radius to the radius of its parent by an
implicit relation 2Rn,d

3 / 
(Rn,d,H) � Rn
3/
(Rn,H). Unfortu-

nately symmetrically bifurcating networks are not representa-
tive of typical vasculatures.

The construction of asymmetrically bifurcating vascular
networks relies on Eqs. 12a and 12b, supplemented with the
following two assumptions. First, one assumes the ratio of the
two daughter-vessel radii, Rn,1/Rn,2, to be known (1, 24, 36).
Second, one postulates a constitutive relation that governs the
partition of discharge hematocrit between the two daughter
vessels (1). The shortcomings of the latter assumption are
discussed in the introduction.

BIFURCATIONS OPTIMIZED FOR OXYGEN DELIVERY

We posit that biological vascular networks are structured in
a way that maximizes their ability to deliver oxygen. Specifi-
cally, we postulate that 1) asymmetric bifurcations occur be-
cause the volumes of tissue downstream of each daughter
vessel have different oxygen needs; 2) these needs are quan-
tified by a known constant a (0 � a � 1), which serves to
partition the oxygen flux QO2

in any given parent vessel into
the oxygen fluxes aQO2

and (1 � a)QO2
in its two daughter

Fig. 2. Dependence of the normalized correction factor, 
/��p, in the
modified version (1) of Murray’s law on vessel radius R and hematocrit H. For
vessel radii R � 200 �m and small values of hematocrit H, 
 is approximately
constant and Murray’s law is recovered.
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vessels; 3) an optimal bifurcation is one in which the oxygen
demands of each downstream tissue volume are supplied at a
“minimal total cost”; and 4) the amount of oxygen transported
through a blood vessel is proportional to the number of RBCs
flowing through that vessel (51), i.e., the oxygen flux is given
by QO2

� QnHn, where the constant  denotes the amount of
oxygen transported by a unit volume of RBCs. The value of a
depends on the physiology of the downstream volumes of
tissue supplied by each daughter vessel (symmetric bifurca-
tions imply that these volumes are identical, so that a �
0.5).

If the oxygen flux in the nth vessel is QO2
, then the oxygen

fluxes in the two daughter vessels are aQO2
� Qn,1Hn,1 and

(1 � a)QO2
� Qn,2Hn,2. It follows from Eq. 11 that the oxygen

flux in the nth vessel,

Qo2 �
��	

2
�

HnRn
3


�Rn, Hn�
, (13)

partitions into the oxygen fluxes in its two daughter vessels,
aQO2

and (1 � a)QO2
, according to

aQo2 �
��	

2
�

Hn,1Rn,1
3


�Rn,1, Hn,1�
and �1 � a�Qo2

�
��	

2
�

Hn,2Rn,2
3


�Rn,2, Hn,2�
. (14)

A constraint on the hematocrit partitioning between the two
daughter vessels is obtained by substituting Qn � QO2

/(Hn),
Qn,1 � aQO2

/(Hn,1), and Qn,2 � (1 � a)QO2
/(Hn,2) into Eq. 9,

which yields

1

Hn
�

a

Hn,1
�

1 � a

Hn,2
. (15)

Three Eqs. 14 and 15 contain four unknowns (Rn,1, Rn,2,
Hn,1, Hn,2). The fourth equation needed to close this system is
obtained by assuming that vascular networks are formed in a
way that minimizes the work necessary to distribute oxygen
throughout the vasculature. The cumulative work of forcing the
blood through the two daughter vessels of the nth parent vessel
is computed from Eq. 5 as W � (Qn,1Jn,1Ln,1 � �	Rn,1

2 Ln,1) �
(Qn,2Jn,2Ln,2 � �	Rn,2

2 Ln,2) where Ln,1 and Ln,2 are the (yet
unknown) lengths of the daughter vessels. By analogy with Eq.
8, for any given partitioning of the hematocrit the minimum
Murray’s work has the form

W* � 	�Ln,1Rn,1
2 �2��Rn,1, Hn,1�


2�Rn,1, Hn,1�
� 1�

� 	�Ln,2Rn,2
2 �2��Rn,2, Hn,2�


2�Rn,2, Hn,2�
� 1�. (16)

The optimal hematocrit partitioning minimizes the total work
in Eq. 16, giving rise to a fourth equation,

dW*

dHn,1
� 0, (17)

where Eq. 15 is used to express Hn,2 in terms of Hn,1.
The system of Eqs. 14, 15, and 17 remains unclosed due to

the presence of two additional unknowns: the daughter vessel
lengths Ln,1 and Ln,2. These are often related to the correspond-

ing vessel radii Rn,1 and Rn,2, e.g., by assuming the radius-to-
length ratio Rn,1/Ln,1 � Rn,2/Ln,2 to be constant throughout the
vascular network (i.e., for any n) (10, 11, 24, 36). This
assumption is supported by in vivo morphological studies of
arterial trees (19, 32). Rather than forcing the radius-to-length
ratio to be constant, we supplement the four postulates listed
above with the following hypothesis: 5) a blood vessel’s
volume, 	R2L, is linearly proportional to the volume of tissue
it oxygenates.

We show in the APPENDIX that this assumption leads to a
radius-to-length relationship,

L �
HR


�R, H�
(18)

where � is a constant model parameter. Setting � � 650��p
in Eq. 18 results in the L/R ratios between 50 and 100
depending on the value of discharge hematocrit H (Fig. 3),
which falls within the range of the reported length-to-radius
ratios (10, 19, 24, 36). Figure 3 reveals that in blood vessels
with R � 150 �m, the length-radius ratios do become constant,
with their value decreasing with hematocrit H. This leads us to
conclude that the length-to-radius ratio (L/R) may be assumed
constant over the bulk of a vascular tree, with deviations from
its constant value occurring in small, precapillary arterioles.

Given values of the discharge hematocrit Hn and the oxygen
flux QO2

in the parent vessel n and its radius Rn, the radii (Rn,1

and Rn,2) and lengths (Ln,1 and Ln,2) of, and the hematocrits
(Hn,1 and Hn,2) in, the bifurcating daughter vessels are uniquely
determined by the system of nonlinear Eqs. 14, 15, 17, and 18.

The radii of the daughter vessels, Rn,1 and Rn,2, predicted
with our model are reported in Fig. 4 in terms of their ratio
Rn,1/Rn,2. The symmetric bifurcation (Rn,1 � Rn,2) occurs when
the bifurcation parameter a � 0.5. The values 0.5 � a � 1.0
result in Rn,1 � Rn,2, while values 0 � a � 0.5 (not shown in
Fig. 4) yield Rn,1 � Rn,2. The bifurcation asymmetry increases
with the parent vessel’s radius Rn, as long as Rn � 80 �m.
After that threshold the ratio Rn,1/Rn,2 is independent of Rn, so
that the curves Rn,1/Rn,2 vs. a overlap with that for Rn � 80 �m.

Figure 5 shows the partitioning of hematocrit Hn � 0.45 in
the parent vessel into hematocrits Hn,1 and Hn,2 in the daughter
vessels for several values of the parent vessel radius Rn and the

Fig. 3. Variation of length-to-radius ratio L/R with vessel radius R, for several
values of discharge hematocrit H. The length-to-radius ratio L/R may be
assumed constant over the bulk of a vascular tree, with deviations from its
constant value occurring in small, precapillary arterioles.
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bifurcation parameter a. While hematocrit in the larger daugh-
ter vessel (Hn,1) is nearly the same as hematocrit in the parent
vessel (Hn), hematocrit in the smaller daughter vessel (Hn,2) is
significantly different from Hn. This is consistent with the
observations reported in Refs. 12, 16, and 22 and supports the
idea that discharge hematocrit at the bifurcation partitions in a
way that minimizes the work necessary to induce blood flow in
microcirculation.

Dependence of the hematocrit ratio Hn,1/Hn,2 on the parent
vessel radius Rn is elucidated further in Fig. 6. Bifurcations of
parent vessels with Rn � 40 �m result in the hematocrit ratios
Hn,1/Hn,2 � 1, i.e., hematocrit in the larger daughter vessel
exceeds hematocrit in the smaller daughter vessel. The situa-
tion is reversed in parent vessels with Rn � 40 �m, which yield
Hn,1/Hn,2 � 1. As Rn increases, the hematocrit ratio Hn,1/Hn,2

asymptotically tends to 1. The inflection point of the Hn,1/Hn,2

vs. Rn curves corresponds to the inflection point in the rela-
tionship between the apparent viscosity and vessel radius in
Fig. 1.

Experimental data on flow behavior at vessel bifurcations
are typically reported in terms of the RBC flux fraction FRBC

and the blood flow fraction Fblood (12, 16, 40, 50). These are
defined as

FRBC �
Qn,1Hn,1

QnHn
, Fblood �

Qn,1

Qn
. (19)

Our model predicts the RBC flux fraction FRBC to vary linearly
with the flow fraction Fblood (Fig. 7), in agreement with the
results reported in Refs. 12, 16, 50 but disputed by others (22,
40, 43). Our model also indicates that the relationship between
FRBC and Fblood is relatively insensitive to Rn and Hn. More-
over, Fig. 7 suggests that FRBC � Fblood for all cases which,
combined with Eq. 19, implies that Hn,1 is within a few percent
of Hn (see also Figs. 5 and 6). However, the analysis in the
section below demonstrates that these small differences in
hematocrit cannot be neglected since they accumulate from one
generation of vessels to the next, resulting in large intravessel
variability of hematocrit in terminal sections of the vascular
network.

RESULTS

Comparison with Murray’s law. The radii of the daughter
vessels are but one metric by which to compare the vascular
networks predicted with our model and that given by Murray’s
law; while the former requires one to solve a system of
nonlinear Eqs. 14, 15, 17, and 18 in order to obtain these radii,

Fig. 4. Ratio Rn,1/Rn,2 of the radii of the two daughter vessels as a function of
the bifurcation parameter a for several values of the parent vessel radius Rn and
hematocrit Hn � 0.45. The symmetric bifurcation (Rn,1 � Rn,2) occurs when
the bifurcation parameter a � 0.5.

Fig. 5. Partitioning of hematocrit Hn � 0.45 in the parent vessel into hematocrits Hn,1 and Hn,2 in the daughter vessels as a function of the bifurcation parameter
a, for the parent vessel radius Rn � 20 �m (A), Rn � 40 �m (B), and Rn � 80 �m (C). The symmetric bifurcation (a � 0.5) results in the uniform hematocrit
in all three vessels, Hn � Hn,1 � Hn,2 � 0.45.

Fig. 6. Ratio Hn,1/Hn,2 of the hematocrits the two daughter vessels as a function
of the parent vessel radius Rn for several values of the bifurcation parameter a
and hematocrit Hn � 0.45. Bifurcations of large vessels (Rn � 200 �m)
preserves the hematocrit Hn, i.e., Hn � Hn,1 � Hn,2.
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the latter is given by a closed-form relation Rn
3 � Rn,1

3 � Rn,2
3 .

Other metrics include the distributions of pressure P and WSS
� throughout the vascular network.

According to our model, the WSS �n � JnRn/2 in an nth
generation vessel is computed from Eqs. 4 and 7 as

�n � 2�2�	
��Rn, Hn�

�Rn, Hn�

. (20)

Since J � �P/L, it follows from Eqs. 4, 7, and 18 that the
pressure drop �P across a vessel of length L is given by �P �
4�	2��H�/
2. Let us suppose that a vascular network con-
sists of N generations of vessels, and ends in the capillary bed
where the blood pressure is Pcap. Then intraluminal pressure Pn

at the start of an nth generation vessel is

Pn � Pcap � 

i�0

n�1

�PN�i, �Pm � 4�2�	
Hm��Rm, Hn�

�Rm, Hm�2 .

(21)

A vascular network that obeys Murray’s law has the constant
length-to-radius ratio ε � Ln/Rn and the bifurcation relation
Rn

3 � Rn,1
3 � Rn,2

3 for all n � N. Murray (34, 35) and subsequent
studies (49) treat the viscosity of blood, �M, flowing through
such a network as constant. Under these assumptions, Eqs. 4
and 7 predict the WSS �M that is constant throughout the
vasculature,

�M � �2�	�M, (22)

and the intraluminal pressure Pn
M in an nth generation vessel

that is given by

Pn
M � Pcap � 2n�2 � �	�M�N � n � 1�. (23)

In the simulations reported in Fig. 8, we consider a symmet-
rically bifurcating network (a � 0.5 or Rn,1 � Rn,2 for all n �
N) that consists of N � 22 generations, terminating with
capillaries of radius RN � 3.0 �m. The capillary pressure is set
to Pcap � 30.0 mmHg (9). To facilitate the comparison
between the two models, we chose the value of the constant
blood viscosity �M in the Murray model to coincide with the
asymptotic value of �(R,H), which corresponds to large
vessel radii. Setting H � 0.45 and R � 1,000.0 �m, this
gives �M � 3.198 cP.

The vessel radii of the vascular networks reconstructed with
the two models are shown in Fig. 8B. The difference between
the two predictions exceeds 20% for the larger vessels (early
generations of the network). The predicted distributions of the
WSS � (Fig. 8A) highlight the physiological differences between
the two models. While Murray’s law implies a constant WSS �M

across the entire network (37), our model captures the experimen-
tally observed variability in the WSS � between the vessels of
different generations. Specifically, it predicts the amplification of
the WSS in the microcirculation (vessel radii R � 25 �m),
wherein the WSS appreciably increases as the vessel radii R
become smaller (the vessel generation n becomes larger), reach-
ing its maximum in the terminal, precapillary arterioles. This
behavior is in agreement with the observed amplification of
WSS in the microcirculation (24, 30, 31, 42). In larger vessels
(R � 25 �m), the WSS increases by a small amount with R,
reaching a constant value in large arterioles. This is in general
agreement with the observations reported in Refs. 42 and 52.

Both models predict that the intraluminal blood pressure P
increases with vessel radius R, with the bulk of the pressure
drop occurring in the smaller vessels (Fig. 8A). As R ap-
proaches the values typical of large arterioles and small arter-

Fig. 7. Dependence of the red blood cell
(RBC) flux fraction FRBC on the blood flow
fraction Fblood, for several values of the par-
ent vessel radius Rn (with Hn � 0.45) and
several values of parent vessel hematocrit Hn

(with Rn � 20 �m).

Fig. 8. Distributions of vessel radii R (B) and intraluminal pressure P and WSS � (A) predicted with our model and the model based on Murray’s law.
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ies, blood pressure in these vessels becomes almost equal to
systemic arterial pressure. This indicates that the smaller arte-
rioles contribute most to vascular resistance. These small
vessels are often referred to as “resistance vessels.” The pre-
dicted dependence of intraluminal pressure P vessel radius R is
in qualitative agreement with the observations (9, 30, 42).

Impact of branching asymmetry. The results presented in
Fig. 8 are obtained for a symmetric vascular network (the
bifurcation parameter a � 0.5). Figure 9 demonstrates the
effect of network asymmetry on the distributions of vessel radii
and hematocrit throughout the networks with a � 0.7 and a �
0.9. The largest vessel in these simulations has radius R1 �
500.0 �m and hematocrit H1 � 0.45. Each branch of the
network is assumed to terminate once daughter vessel radius
reaches R � 3.0 �m, corresponding to termination of the
arteriolar network, which feeds the capillary bed. The network
asymmetry (a � 0.5) causes the number of vessels in each
branch to vary. This implies that asymmetric vascular networks
defy idealized fractal descriptions, which is in line with several
in vivo studies (20, 24, 26, 36, 39). Only the first seven
generations of the vessels (i.e., before any branch reaches the
R � 3.0 �m threshold) are shown in Fig. 9, with each circle
representing a blood vessel with the radius R or hematocrit H
at a given vessel generation n. Note that the number of
bifurcating vessels in each generation increases as 2n�1, which

might not be apparent in Fig. 9 since many of the data points
overlap.

Our model predicts a large variability of hematocrit values
across the vessels of the same generation (Fig. 9), including at
the terminal regions of the network and in the capillary beds
supplied by these terminal branches. This finding is supported
by the in vivo measurements in capillary beds (20, 26, 39) that
show large variations of observed hematocrit values across
capillary beds, even among vessels of similar diameters. Our
model accounts for this effect by allowing for the asymmetric
partitioning of hematocrit at every bifurcating vessel.

A measure of the deviation of vascular network from Mur-
ray’s law is provided by a network branching exponent �
defined such that



i�1

2n�1

Ri
�� 


i�1

2n�1

�Ri,1
� � Ri,2

� �. (24)

Murray’s law states that the sum of powers of all the vessel
radii in the nth generation must equal to the sum of the powers
of all the vessel radii in the (n � 1)-th generation, and sets � �
3. Reported values of � range from 2.7 to 3 (10, 27, 28, 33, 36,
46), which suggests small but meaningful deviations from
Murray’s law. For the networks presented in Fig. 9, Eq. 24
holds across all generations with � � 2.96 for a � 0.7 and � �

Fig. 9. Variation of vessel radii R and discharge hematocrit H within the first n � 7 generations of asymmetric vascular networks with bifurcation parameters
a � 0.7 and a � 0.9.
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2.97 for a � 0.9. These values are within 1% of the values
reported in Refs. 27 and 33.

Model validation. The vascular networks constructed with
using our model exhibit the following characteristics observed
in a number of in vivo and in vitro studies. 1) RBC flux fraction
FRBC at bifurcations varies approximately linearly with the
blood flow fraction Fblood over a broad range of hematocrits
and vessel radii. This is in agreement with the data reported in
Refs. 3, 12, 16, and 50. 2) The asymmetry in discharge
hematocrit at asymmetric bifurcations increases with the de-
gree of asymmetry. This is in agreement with the data reported
in Refs. 12, 16, and 22. 3) WSS is nonuniform in the micro-
circulation, significantly increasing in the terminal sections of
the network. This is in agreement with the data reported in
Refs. 24, 30, 31, 37, and 42. 4) Pressure gradients increase
sharply in the terminal sections of the network. This is in
agreement with the data reported in Refs. 9 and 30. 5) Both the
hematocrit partitioning at vessel bifurcations and hematocrit
across the capillary bed in asymmetric networks is nonuni-
form. This is in agreement with the data reported in Refs.
20, 26, and 39. 6) Microvascular discharge hematocrit is
comparable (within 10 –20%) to the macrocirculatory sys-
temic hematocrit (see Fig. 9 for a � 0.7). This is in
qualitative agreement with the direct measurements of dis-
charge hematocrit (13) that observed analogous results,
albeit with a significant amount of scatter. 7) Predicted
values of the branching exponent � fall within the range of
their measured counterparts (27, 28, 33, 46).

Inverse modeling of vascular networks. The modeling
framework described above treated the bifurcation parameter a
as an input in order to construct a vascular network, e.g., to
identify the ratio of the radii of daughter vessels Rn,1/Rn,2. A
problem with such “forward modeling” is that the model
parameter a, which determines the hematocrit partitioning at
bifurcations, is harder to measure than the model output Rn,1/
Rn,2, which is more readily measured in morphometric studies
(10, 21, 24, 32, 33, 36). The goal of “inverse modeling” is to
infer the bifurcation parameter a from measurements of the
parent vessel radius Rn, the ratio of the daughter vessel radii
Rn,1/Rn,2 and the hematocrit Hn in the nth parent vessel.

This goal is facilitated by the one-to-one relationship be-
tween the bifurcation parameter a and the daughter vessel radii
Rn,1/Rn,2, for any given value of Rn and Hn (Fig. 10). This

figure is constructed by running our forward model for multiple
values of a, while keeping the values of Rn and Hn fixed. The
four curves in Fig. 10 correspond to Hn � 0.45 and four values
of the parent vessel radius Rn. We found these curves to be
essentially independent of Hn over a physiologically relevant
range of its values. The dependence of a on the radii ratio
Rn,1/Rn,2 in Fig. 10 is fitted with a second-degree polynomial

a � ca2�Rn,1

Rn,2
�2

� ca1

Rn,1

Rn,2
� ca0

(25a)

The fitting coefficients ca0
, ca1

, and ca2
vary with the parent

vessel radius Rn, such that

ca0
� �0.58, ca1

� 1.43, ca2
� �0.36, for Rn � 50�m

(25b)

and

ca0
� �3.1 � 10�4Rn

2 � 0.03Rn � 1.31, ca1
� 4.9 � 10�4Rn

2

� 0.05Rn � 2.55, ca2
� �1.7 � 10�4Rn

2 � 0.02Rn

� 0.74, for Rn � 50�m. (25c)

Figure 10 enables one to infer a value of the bifurcation
parameter a from a measurement (or the average of multiple
measurements) of the ratio of daughter vessel radii Rn,1/Rn,2.
Then one can use our model to reconstruct the whole vascular
network. Examples of such reconstructions are shown in Fig.
11. Large degrees of asymmetry imply large spreads of dis-
charge hematocrits and vessel radii across a given generation
of vessels.

DISCUSSION AND CONCLUSIONS

We proposed a new approach for simulation of vascular
networks. Our method follows the foundation premise of
Murray’s law (34) in postulating the existence of functional
optimality of such networks. The optimality criterion adopted
in our approach is the physiological cost of supplying oxygen
to the tissue surrounding a blood vessel. Bifurcation asymme-
try is expressed in terms of the amount of oxygen consumption
associated with the respective tissue volumes being supplied by
each daughter vessel. Similar to Ref. 1, our approach accounts
for the non-Newtonian behavior of blood by allowing the
apparent blood viscosity to vary with discharge hematocrit and
vessel radius in accordance with Ref. 44.

Our approach to network reconstruction offers significant
advantages over Murray’s law. Chief among them is its ability
to capture the observed variability of WSS in the microcircu-
lation. Our model predicts the sharp amplification of WSS in
the smallest vessels of a network (R � 50.0 �m), which is
consistent with in vivo observations (25, 30, 38, 42). WSS in
intermediate vessels gradually increases with vessel radius,
before reaching a constant value at large vessel radii (R �
200.0 �m). This WSS variability is absent in networks recon-
structed with Murray’s law, which exhibit constant WSS
throughout the vasculature.

The proposed approach captures both the asymmetric parti-
tioning of hematocrit at vessel bifurcations and its effects on
hematocrit variability in the terminal vessels of vascular net-
works. It provides theoretical support for the experimentally
observed linear relationship between the RBC flux fraction and
the blood flow fraction (3, 12, 16, 50), and for the in vivo

Fig. 10. Variation of the bifurcation parameter a with the ratio of daughter
vessel radii Rn,1/Rn,2 for several values of the parent vessel radius Rn.
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observations of pronounced variability of hematocrit in capil-
lary beds (20, 26, 39). The high-precision measurements re-
ported in Ref. 48 suggest that this linear relationship is a result
of averaging over multiple observations. To account for the
scatter in the observed RBC distributions at various vessel
bifurcations, one can treat the bifurcation parameter a as a
random (e.g., Gaussian) variable whose realizations are as-
signed either to every bifurcation in the network or to all
bifurcations of the same level.

Microvascular dispersion of hematocrit due to the asymmet-
ric branching has important physiological implications. The
variability of discharge hematocrit at bifurcation is cumulative,
leading to the presence of capillaries with hematocrits higher
than systemic, while the average capillary hematocrit is gen-
erally half of the systemic value (29). The literature refers to
these high-hematocrit vessels as shunts or thoroughfare chan-
nels; they were proposed to arise from the distribution of RBCs
at capillary bifurcations where they concentrate in the branch
with the greater velocity (18, 23). Our analysis provides an
alternative explanation: the location of these red blood cell
shunts is determined by the nature of the preceding bifurca-
tions. Therefore the microcirculation appears to be designed so
that the asymmetry of bifurcations generates capillary vessels
that act as RBC shunts between the arterial and venous circu-
latory compartments.

If the presence of shunts is indeed a consequence of prop-
erties of the capillary network, then their functional properties
are difficult to control extrinsically since the mechanisms that
control capillary flow within the capillary network are limited.

Conversely, if the function of these shunts is regulated already
at the arteriolar level, it can be controlled by the many inter-
ventions that influence arteriolar function. These findings may
help in designing treatment strategies in clinical conditions of
organ hypoxia and capillary ischemia wherein local blood flow
is normal or even increased related to the malfunction of
microvascular regulation (7, 8, 14, 15).

APPENDIX

The premise of Murray’s law is that a blood vessel’s volume is
determined by a compromise between minimizing the vessel’s resis-
tance to blood flow and minimizing the total volume of blood needed
to serve the body’s metabolic needs (5, 49, 56). The latter condition
is equivalent to positing that a blood vessel supplying a given oxygen
flux QO2 � QH (i.e., blood flow rate Q at a constant hematocrit H) to
the surrounding tissue has an optimal volume at which this compro-
mise between minimizing resistance to flow and minimizing vessel
volume is met. This implies an “optimal” vessel volume (and since the
vessel is filled with blood, an optimal volume of blood) for a given
tissue volume. (The existence of an optimal blood volume has been
suggested in Refs. 6 and 51.) In other words, the volume of the tissue
oxygenated by a vessel is related to both the vessel volume 	R2L and
the oxygen flux QH supplied by the vessel. We assume the linear
relationships, V � 	R2L and V � QH, which gives

�R2L � QH (26)

Substituting the flow rate Q predicted by the modified Murray’s law
in Eq. 7, we obtain R2L � R3H/
. This is equivalent to L
/(HR) � �,
where � is a constant of proportionality, which leads to Eq. 18.

As an aside, we note that V � 	R2L implies that the ratio of the
vessel volume and the volume of the surrounding tissue it oxygenates

Fig. 11. Variation of vessel radii and discharge hematocrit from one generation to the next for Rn,1/Rn,2 � 1.5 (top panels) and Rn,1/Rn,2 � 2.0 (bottom panels).
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are constant throughout a vascular network. Since the oxygen flux
QO2 � QH is conserved from one vessel generation to the next (due
to conservation of mass), the assumption that V � 	R2L � QH for
each generation of vessels implies that the vascular network is volume
preserving (i.e., each successive generation of blood vessels has the
same total volume as the preceding generation). This implies that any
given tissue volume at any length scale (larger than the length of a
capillary) will have a fixed volume fraction that is occupied by blood
vessels. The assumption of a volume preserving network has previ-
ously been used in studies on scaling in biological systems (55).
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