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a b s t r a c t

Derivations of continuum nonlocal models of non-Fickian (anomalous) transport require
assumptions that might limit their applicability. We present a particle-based algorithm,
which obviates the need for many of these assumptions by allowing stochastic processes
that represent spatial and temporal random increments to be correlated in space and time,
be stationary or non-stationary, and to have arbitrary distributions. The approach treats a
particle trajectory as a subordinated stochastic process that is described by a set of Lange-
vin equations, which represent a continuous time random walk (CTRW). Convolution-
based particle tracking (CBPT) is used to increase the computational efficiency and accu-
racy of these particle-based simulations. The combined CTRW–CBPT approach enables
one to convert any particle tracking legacy code into a simulator capable of handling
non-Fickian transport.

! 2010 Elsevier Inc. All rights reserved.

1. Introduction

Many physical, biological, and biochemical phenomena (e.g., [1–4]) involve a combination of three passive transport
mechanisms: advection, molecular diffusion, and hydrodynamic dispersion. Standard mathematical descriptions of such
phenomena rely on an advection–dispersion equation (ADE),
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¼ r " ðDrcÞ %r " ðvcÞ; ð1Þ

where c is the volumetric concentration of a substance (e.g., solute), v is the (macroscopic) advection velocity, and
D ¼ DmIþ Dd is the dispersion coefficient tensor defined as the sum of the molecular diffusion coefficient Dm (I being the
unit tensor) and the dispersivity tensor Dd ¼ DdðvÞ. Although the ADE proved to be indispensable in describing many trans-
port processes, it has a number of drawbacks and limitations that are both computational and conceptual in nature.

Numerical solutions of the ADE (1) introduce ‘‘numerical dispersion”, which manifests itself in excessive smearing of con-
centration profiles at large Péclet numbers. This problem is exacerbated by high degrees of anisotropy that often characterize
hydrodynamic dispersion. For example, transport in natural porous media typically exhibit longitudinal dispersivities that
are two orders of magnitude higher than their transverse counterparts [5]. Numerical dispersion can be controlled by
employing Eulerian–Lagrangian [6,7] and other [8] algorithms, many of which are computationally expensive.
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A more fundamental shortcoming of the macroscale ADE (1) is its inability to capture anomalous or non-Fickian transport
behavior, which is often observed in heterogeneous environments [9–14]. This failure can be attributed to subgrid scale het-
erogeneity that is not resolved at the support scale on which the parameters of the ADE are defined. If it is possible to resolve
the heterogeneity structure on all scales, the corresponding ADE reflects the related anomalous transport behavior (e.g.,
[15]). This is not very realistic for many practical applications.

This shortcoming of the macroscale ADE can be effectively overcome by replacing the ADE (1) with its counterparts that
are nonlocal in space and/or time. Derivations of nonlocal transport equations rely on a number of assumptions. For example,
stochastic derivations of nonlocal mean transport equations often require velocity fluctuations to be either small [16] or
Gaussian [17]; and standard derivations of both fractional ADEs (fADEs) [18,19] and effective equations of continuous time
randomwalk (CTRW) models [20–24] are based on the assumption that subgrid scale fluctuations are space–time stationary.
Particle-based simulations provide a computationally efficient framework for solving both local and nonlocal effective trans-
port equations. Particle tracking algorithms (PTAs) are used routinely to control numerical dispersion in solutions of the ADE
(1) [25–29] and, more recently, to solve nonlocal effective transport equations based on CTRW [30–33], fADE [34], and mult-
irate mass transfer [35,36]. Advantages and disadvantages of using PTAs to solve the ADE (1), e.g., the challenges posed by
local mass conservation and a large number of particles that are needed to obtain smooth concentration profiles, are dis-
cussed in [37]. Solving nonlocal effective models with PTAs does not relax the assumptions that are required for their
derivation.

We introduce a particle-based approach for modeling non-Fickian (anomalous) transport in heterogeneous environments
that requires no assumptions about statistical properties of the model parameters. To increase the computational efficiency
and accuracy of the particle-based simulations, we employ the convolution-based particle tracking (CBPT) method [38]. An
added benefit of the proposed approach lies in its ability to convert any existing (legacy) particle tracking code into a sim-
ulator capable of handling non-Fickian behavior.

Particle tracking algorithms for solving the ADE (1) utilize its equivalence to the Langevin equation, which describes a
solute particle’s trajectory as a stochastic process [39]. Introducing a randomized time step into this process yields a new
‘‘subordinated” stochastic process that is capable of capturing anomalous transport behavior (e.g., [40]). This subordinated
process is described by a set of Langevin equations, which represent a CTRW (e.g., [41]). In this paper, we adopt a general
Langevin approach that imposes no statistical restrictions on the stochastic processes representing the spatial and temporal
random increments. Each of these two processes can be correlated, non-stationary, and cross-correlated with the other, as
well as have arbitrary distributions.

Employing this subordination strategy, we obtain a simple method to convert any random walk particle tracking simu-
lator into a continuous time randomwalk simulator. This enables us to achieve two computational advantages. First, the pro-
posed approach is non-intrusive in that it allows one to use any existing particle tracking simulator for modeling non-Fickian
behavior. Second, the proposed approach is applicable to heterogeneous and non-stationary fields, whereas standard contin-
uum formulations of non-Fickian transport require stationarity and statistical homogeneity. For stationary and uncorrelated
random increments the well-known partial differential equation (PDE) formulations of CTRW in terms of generalized Fok-
ker–Planck equations [23] can be obtained by a generalized Kramers–Moyal expansion. The two components of the proposed
approach, CBPT and CTRW, are described in Sections 2 and 3, respectively. The computational algorithm is presented in Sec-
tion 3.1. Section 4.1 contains a computational example that can be solved analytically and, hence, is used to analyze the accu-
racy and robustness of our algorithm. In Section 4.2, we apply the algorithm to model non-Fickian transport in two separate
three-dimensional macroscopically heterogeneous porous media; the simulation results are contrasted with those obtained
by solving the classical ADE (1). Section 5 provides a brief summary of the results and conclusions.

2. Convolution-based particle tracking (CBPT)

A standard random walk particle tracking (e.g., [28]) solves the ADE (1) by utilizing the equivalence between the ADE and
the following Langevin equation (e.g., [39])

Xðt þ DtÞ ¼ XðtÞ þ A½XðtÞ(Dt þ B½XðtÞ( " n
ffiffiffiffiffiffi
Dt

p
: ð2Þ

Here XðtÞ ¼ ½X1ðtÞ;X2ðtÞ;X3ðtÞ(T is the random particle location at time t; n ¼ ½n1; n2; n3(
T is Gaussian white noise with zero

mean and unit variance,

hnii ¼ 0; hninji ¼ dij: ð3Þ

The drift vector A and the second-order tensor B are related to the coefficients in (1) by (e.g., [25])

A ¼ v þrD; BBT ¼ 2D: ð4Þ

The particle’s initial position, or its label, is given by Xðt ¼ 0Þ ¼ x0.
The CBPT [38] accelerates the convergence of the particle tracking algorithm (2)–(4), i.e., requires fewer particles, by tak-

ing advantage of the linearity of the ADE (1). Let gðx; t % sjx0Þ denote the Green’s function for (1), which is defined as a solu-
tion of the adjoint equation
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subject to the initial condition gðx; s ¼ tjx0Þ ¼ dðx% x0Þ and appropriate homogeneous boundary conditions. The Green’s
function gðx; tjx0Þ can be expressed in terms of particle trajectories as (e.g., [39])

gðx; tjx0Þ ¼ hd½x% XðtÞ(ijXð0Þ¼x0 ; ð6Þ

where the angular brackets denote the ensemble average over the random vector n. We use the particle tracking algorithm
(2)–(4) to compute the Green’s function gðx; t % sjx0Þ in (5) and (6).

Concentration cðx; tÞ resulting from spatially and/or temporally distributed sources _mðx0; t0Þ can now be computed as

cðx; tÞ ¼
Z t

0

Z

X
_mðx0; sÞgðx; t % sjx0Þdx0ds; ð7Þ

where X is the computational domain. The accuracy and computational efficiency of the CBPT (2)–(7) are analyzed in detail
in [38]. For the computational example described in Section 4.1, the performance of the CBPT algorithm is demonstrated in
Table 1.

The performance metric ! in Table 1 is defined as

! ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

cexðxiÞ % cnuðxiÞ
cexðxiÞ

" #2
vuut ; ð8Þ

where cex is the ‘‘exact” concentration computed with an analytical solution, cnu is the concentration predicted by a numer-
ical method, i.e., by either the CBPT or the conventional particle tracking method, and N is the number of observations. It can
be seen that the CBPT method is always at least as accurate as the conventional particle tracking methods and needs fewer
particles to achieve the same accuracy in most cases, especially for larger solute injection times. The concentration as a func-
tion of distance from the center of the plume is plotted in Fig. 1.

3. Continuous time random walk (CTRW)

The random walk model (2)–(4) treats the time step s ) Dt as deterministic and the transition length vector n as random,
which results in Fickian dispersion. Let us introduce the randomized or operational time sðtÞ (e.g., [40]) defined as a ‘‘renewal
process” (e.g., [42,43]) that is conjugate to

dtðsÞ
ds

¼ sðsÞ; ð9Þ

Table 1
Performance metrics for the CBPT and conventional particle tracking methods.

Number of particles Duration of mass injection (years) CBPT method, ! Conventional method, !

105 1000 0.0154 0.433
105 100 0.0301 0.177
105 10 0.0698 0.0925
105 1 0.122 0.119
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Fig. 1. Concentration cðx1; tÞ at time t = 1000 yr predicted with the analytical solution, the conventional particle tracking method, and the CBPT.
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where sðsÞ is a random process to be specified below. The random trajectory becomes an implicit function of time, X½sðtÞ(.
Thus, we obtain the subordinated system of Langevin equations (e.g., [41])

Xðsn þ DsÞ ¼ XðsnÞ þ A½XðsnÞ(Dsþ B½XðsnÞ( " nðsnÞ
ffiffiffiffiffiffi
Ds

p
; ð10aÞ

tðsn þ DsÞ ¼ tðsnÞ þ sðsnÞDs; ð10bÞ

where A and B are defined in (4), Ds is the constant increment of the discretized operational time sn ¼ nDs.
In general, the random series fnðsnÞg and fsðsnÞg can be correlated or uncorrelated, stationary or non-stationary, and have

arbitrary distributions.
As pointed out in the Introduction, this formulation is quite general and provides an alternative to PDE formulations of

CTRW that assume statistical stationarity and independence of the stochastic processes nðsÞ and sðsÞ. Furthermore, note that
PDE formulations in terms of nonlocal Fokker–Planck equations typically rely on the truncation of a Kramers–Moyal expan-
sion after the second-order term (e.g., [21,39]). The validity of this truncation in the CTRW framework for a Gaussian white
noise nðsÞ has been demonstrated in [30] by using random walk particle tracking simulations.

To facilitate the comparison with the existing CTRW literature, in the following we take each of the processes nðsÞ and sðsÞ
to be uncorrelated and characterized by the joint probability density

P fnðsnÞ; sðsnÞgNn¼1

h i
¼
YN

n¼1

w½nðsnÞ; sðsnÞ(; ð11Þ

where wðn; sÞ is the joint transition length and time distribution density. The principal of causality requires that the temporal
random process satisfy the condition tðsnþ1Þ P tðsnÞ, which implies that sðsnÞ P 0. The system of Langevin equations (10) de-
scribes particle motion as a CTRW in a macroscopically heterogeneous medium.

The choice of the probability density wðn; sÞ is crucial to simulating non-Fickian transport in (randomly) heterogeneous
environments, which are characterized by evolving hierarchies of length scales.

Some approaches and criteria for computing or selecting wðn; sÞ can be found in [22,44]. Here we consider random walks
that are mutually uncorrelated in space and time, so that the joint probability density wðn; sÞ can be decoupled, i.e.,
wðn; sÞ ¼ wsðnÞwtðsÞ.

Furthermore, in the following we assume that transition times on a deterministic time interval ½t1; t2( follow a truncated
power-law distribution (e.g., [30,45])

wtðsÞ ¼
rbð1þ s=t1Þ%1%b

t1Cð%b; rÞ
e%r%s=t2 ; r ¼ t1

t2
; 0 6 b 6 2; ð12Þ

where Cða; xÞ is the incomplete Gamma function. The median transit time is set equal to the increment of the operational
time, t1 ¼ Ds. For times s > t2;wtðsÞ decreases exponentially fast. The transport behavior is anomalous in the transition re-
gime t1 6 t 6 t2 and becomes Fickian for large times t > t2.

3.1. Simulation algorithm

The Green’s function !gðx; tjx0Þ is given in terms of the particle trajectories of the CTRW (10) by

!gðx; tjx0Þ ¼ hdfx% X½sðtÞ(gijXð0Þ¼x0 ; ð13Þ

where the angular brackets denote the average over the spatial and temporal random processes nðsÞ and sðsÞ. Note that the
particle trajectory here is an implicit function of time, XðtÞ ) X½sðtÞ(. Expression (13) can be written as

!gðx; tjx0Þ ¼
Z 1

0
hd½x% XðsÞ(d½s% sðtÞ(ijXð0Þ¼x0ds: ð14Þ

We discretize the operational time s according to sn ¼ nDs and sðtÞ ¼ NtDs, where the discrete process Nt is defined by

Nt ¼ minðnjtðsnþ1Þ > tÞ: ð15Þ

Thus, we obtain for !gðx; tjx0Þ the expression [46]

!gðx; tjx0Þ ¼
X1

n¼0

hd½x% XðsnÞ(dn;Nt ijXð0Þ¼x0 ¼ hd½x% XðsNt Þ(ijXð0Þ¼x0 ; ð16Þ

where hdn;Nt i is the distribution of the renewal process Nt , i.e., the probability to make n steps up to time t.
This relation provides a straightforward recipe on how to obtain !gðx; tÞ. The solution for the concentration profile for a

general source distribution then is calculated by the convolution of the source term with !g as expressed by (7). The corre-
sponding algorithm combines the CBPT and CTRW approaches and consists of the following steps.
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1. Starting from a point source at x0 at time t = 0, the spatio-temporal particle trajectories are tracked according to (10).
After Nt steps, that is, when the simulation time t is between tN and tNþ1; tN 6 t < tNþ1, the position xN is recorded.
The Green’s function !g is determined by sampling the particle positions in space according to (16).

2. Finally, the anomalous concentration profile is obtained by convolving !g with the source term.

This algorithm renders itself to straightforward integration into most existing legacy codes, as we do below for the DOE-
certified code Finite Element Heat and Mass Transfer Code (FEHM) [47]. Next, we apply this code to three computational
examples of increasing difficulty. The example in Section 4.1 is used to demonstrate the accuracy and computational effi-
ciency of the CBPT. Section 4.2 provides two examples of the use of the CBPT-CTRW to model anomalous transport in realistic
three-dimensional geological settings.

3.2. Integration into legacy codes

FEHM is a multiphase, multidimensional reservoir simulator. In order to calculate the velocity field, FEHM simulations
may include numerous coupled processes including thermo-hydro-chemical-mechanical (THCM). These coupled processes
are often important for studies of carbon sequestration, nuclear waste disposal, and hazardous waste disposal. FEHM cur-
rently lacks the capability of handling anomalous transport. It relies on a three-dimensional node-based particle tracking
method that takes advantage of the fluxes at nodes being given by the flow solution, and can be used easily with unstruc-
tured grids, without having to use interpolation schemes. The particle tracking algorithm takes advantage of the complex
velocity field calculated by the flow simulation that often depends on the numerous coupled processes mentioned above.
The proposed algorithm can be used with any node based particle tracking technique.

4. Transport in macroscopically homogeneous and heterogeneous media

In this section, we apply the random walk algorithm presented above to transport in macroscopically homogeneous and
heterogeneous media. The code is validated against known solutions for instantaneous sources in macroscopically homoge-
neous media [30] and applied to solute transport evolving from continuous solute injections in macroscopically homoge-
neous and heterogeneous media.

4.1. Macroscopically homogeneous medium

Consider solute transport in a three-dimensional macroscopically homogeneous porous medium X ¼ ½0;1( * ½0; L2(*
½0; L3(. Flow velocity v is taken to be constant and aligned with the x1 coordinate axis, v ¼ ½v ;0;0(T with v = 34.2 m/yr. The
longitudinal dispersivity is set to aL ¼ 500 m, the corresponding longitudinal dispersion coefficient is DL ¼ aLv , and the
transverse horizontal and vertical dispersion are neglected, DT ¼ 0. Constant head boundaries are prescribed at the inlet
and outlet, with a difference in head of 0.377 MPa. The porosity and permeability are constant throughout the medium with
values ofx ¼ 0:03361 and k ¼ 10%12 m2, respectively. The parameters are chosen such that the resulting flow translates into
a mean travel time of 500 yr to reach the outlet. Regardless of the transport model used, this parameter choice renders trans-
port one-dimensional, cðx; tÞ ¼ cðx1; tÞ.

The initial concentration is set to cðx1; t ¼ 0Þ ¼ 0. The boundary condition at x1 ¼ 0 is more conveniently expressed in
terms of the flux-averaged concentration [48]

cf ðx1; tÞ ¼ v%1
Z x1

0

@cðx01; tÞ
@t

dx01: ð17Þ

At the inlet x1 ¼ 0; cf ðx1; tÞ is given by

cf ðx1 ¼ 0; tÞ ¼ jðtÞ=v ; ð18Þ

where jðtÞ is the boundary flux. The concentration and concentration flux are zero at the boundary at infinity. We study
transport in terms of spatial profiles, that is snapshots of cðx1; tÞ and breakthrough curves at a given distance. The latter
are equivalent to first passage time distributions at a control plane. They are obtained from the flux-averaged concentration.
In these simulations, the domain X is discretized with grid spacings Dx1 ¼ 400 m.

4.1.1. Validation of the simulation algorithm
Here, we validate the simulation algorithm against known solutions for the flux-averaged concentration cf ðx1; tÞ with a

constant, continuous injection at the inlet, that is, jðtÞ ¼ v at x1 ¼ 0 using a total of 104 particles. For stationary and uncor-
related random increments, the CTRW (10) admits a PDE representation in terms of a temporally nonlocal Fokker–Planck
equation (e.g., [21,23,30]). Dentz et al. [30] studied resident and flux-averaged concentrations for anomalous transport in
a macroscopically homogeneous medium using randomwalk simulations as well as Laplace space solutions of the equivalent
generalized Fokker–Planck equations. For the above specified boundary and initial conditions, the Laplace transform of the
flux-averaged concentration is given by
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~cf ðx1; kÞ ¼ exp % vx1
2DL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4
kDL

eMv2

s

% 1

 !" #
: ð19aÞ

Here the tilde indicates Laplace transforms, k is the Laplace variable, eM is the Laplace transform of the memory function de-
fined as

eMðkÞ ¼ t1k~wtðkÞ
1% ~wtðkÞ

; ð19bÞ

and ~wtðkÞ is the Laplace transform of wtðtÞ in (12). The Laplace transform of the concentration cðx1; tÞ given by a solution of
the ADE (1) is recovered from (19a) by setting eM ) 1.

The analytical solution (19) is used to analyze the convergence of the CBPT and to validate the particle tracking imple-
mentation of the CTRW (10)–(12) (the simulation algorithm in Section 3.1). Fig. 2 compares the accuracy of the CBPT for both
classical (Fig 2a) and anomalous (Fig 2b) transport. In the latter case, the CBPT is an integral part of the CBPT-CTRW algo-
rithm described in Section 3.1. In both cases, the Laplace transform (19) of concentration for the analytical solution is in-
verted with the algorithm of de Hoog et al. [49].

The breakthrough is computed at a distance of x = 15.2 km over a total time of 3000 yr. The results from both analytical
and numerical (the CBPT-CTRW algorithm) simulations are plotted in Fig. 2 for the ADE and b ¼ 1:25. The analytical solutions
shown as circles and the numerical solutions represented by solid lines are in excellent agreement with each other. Such
continuous injection scenarios are of practical importance for the modeling of contamination events in industrial plants,
where contaminants can leak into the subsurface over many years, underground nuclear waste storage, as well as for the
modeling of heat plumes in the subsurface that are generated by heat exchangers.

4.1.2. Breakthrough curves and spatial profiles
An often neglected aspect of contaminant transport is the spatial nature of the plume across the entire field of study, be-

cause PTAs are concernedmostly with the breakthrough across a control plane. In this section, we present both breakthrough
curves as well as the spatial concentration distribution for pulse injection jðtÞ ¼ vdðtÞ at the inlet x1 ¼ 0.

As in [30], we study the effects on anomalous transport of the three key parameters in the CTRW model defined by the
truncated power-law waiting time distribution (12): the median waiting time t1, the cut-off time t2 after which transport
becomes Fickian, and the exponent b.

Consequently, we set t1 ¼ 4 yr and t2 ¼ 104 yr, and focus on the effects of 0 6 b 6 2. It has been shown (e.g., [22]) that
b ¼ 2 asymptotically leads to the Fickian behavior as predicted with the ADE (1) and that deviations from the Fickian trans-
port become stronger as b becomes smaller.

Fig. 3 depicts the breakthrough curves resulting from the pulsed boundary condition, cð0; tÞ ) 1 for t 6 103 yr and
cð0; tÞ ) 0 for t > 103 yr. The breakthroughs computed with the particle tracking simulations of the classical and anomalous
transport are shown for several values of b.

In accordance with the theory, b ¼ 2 gives rise to the classical transport behavior in terms of breakthrough times, peak
concentrations, and Gaussianity of concentration profiles. As b decreases, breakthrough times become larger and concentra-
tion profiles exhibit progressively longer tails. The peak breakthrough values of concentration become progressively smaller,
since the area under the breakthrough curves (i.e., total mass) is constant. The number of particles that is required to rep-
resent breakthrough curves within a given tolerance level increases as b decreases and the deviation from the Gaussian
behavior becomes more pronounced.
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Fig. 2. The breakthrough curves at x1 ¼ 15:2 km predicted with (a) the classical and (b) anomalous ðb ¼ 1:25Þ models of transport.
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Fig. 4 exhibits the temporal evolution of the concentration profiles for several values of b. The classical transport model
(ADE or b ¼ 2) exhibits no tailing and predicts that the solute occupies the entire computational domain by t = 2000 yr. For
b ¼ 1:99, the tailing is very small and most of the mass has broken through by t = 2000 yr and all of it by t = 3000 yr. While
b ¼ 1:5 leads to a significant tailing, the arrival at the outlet starts to taper off by 2000 yr. The concentration profiles corre-
sponding to b < 1 indicate that mass is still breaking through at the end of the simulation time.

Fig. 4 also reveals that the concentration at the inlet x1 ¼ 0 increases with decreasing b. This is because smaller values of b
correspond to larger residence times in a boundary cell, resulting in a slower rate of transport across the medium and hence
later arrival at the cross-section x1 ¼ 15:2 km. This is a mathematical representation of subscale mass transfer processes,
such as diffusion into dead-end pores, which retard the solute migration.
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Fig. 3. Breakthrough curves of concentration cðx1; tÞ at x1 ¼ 15:2 km for the pulsed input at the inlet x1 ¼ 0.

0 0.5 1 1.5 2
x 104

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Distance along X1

C
on

ce
nt

ra
tio

n

ADE
 = 1.99
 = 1.5
 = .95
 = .75

0 0.5 1 1.5 2
x 104

0

0.02

0.04

0.06

0.08

0.1

Distance along X1

C
on

ce
nt

ra
tio

n

ADE
 = 1.99
 = 1.5
 = .95
 = .75

0 0.5 1 1.5 2
x 104

0

0.005

0.01

0.015

0.02

0.025

0.03

Distance along X1

C
on

ce
nt

ra
tio

n

ADE
 = 1.99
 = 1.5
 = .95
 = .75

0 0.5 1 1.5 2
x 104

0

0.005

0.01

0.015

0.02

0.025

0.03

Distance along X1

C
on

ce
nt

ra
tio

n

ADE
 = 1.99
 = 1.5
 = .95
 = .75

a b

c d

Fig. 4. Concentration profiles cðx; tÞ at (a) t = 100 yr, (b) t = 500 yr, (c) t = 2000 yr, and (d) t = 3000 yr for pulsed input at the inlet.
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4.2. Macroscopically heterogeneous medium

We use the CBPT-CTRW algorithm to simulate anomalous transport in heterogeneous media using two examples
presented here. We consider in both examples a three-dimensional heterogeneous porous medium X ¼ ½0; L1( * ½0; L2(*
½0; L3(. The simulation results presented below correspond to L1 ¼ 20 km; L2 ¼ 9:6 km and L3 ¼ 5 km.

In the first example, the model was divided into 4 equal zones in the primary flow direction, spanning 5 km each. The first
and fourth zones have the same properties as the homogeneous medium example of the previous section. The second zone
has a reduced porosity of x ¼ 0:01425 and the third zone a reduced permeability of k = 10%13 m2. The simulations below
correspond to H1 % H2 ¼ 0:377 MPa. The other boundaries are impermeable to flow. To solve the flow equation (20) with
the finite element code FEHM, the domain is discretized with a total of 51 * 25 * 101 = 128,775 nodes in the x1; x2, and
x3 directions, respectively. The transport equations were solved using 104 particles.

Lower porosities result in faster movement of particles through zone 2. The overall flow is slower, as a result of the lower
permeability across one of the four zones, since the effective permeability is a harmonic mean of the different permeability
values. The breakthrough point for these simulations was at L1 ¼ 15:2 km. The simulation was performed for 3000 yr and
tracer was injected continuously for the entire period of the simulation. The breakthrough curve (Fig. 5) is shown for the
ADE as well as for the case of b ¼ 1:25.

This example demonstrates the effects of large scale heterogeneity on contaminant transport. Features such as high per-
meability faults or low permeability clay lenses can be represented in this manner.

In the second example, we take a geostatistical approach for representing heterogeneity. In the subsurface, permeability
fields k(x) often follow a log-normal distribution and are correlated. The mean, variance, and correlation length are quanti-
ties that can be obtained from field measurements. These parameters can then be used to generate synthetic permeability
fields. In the second case studied, in addition to the longitudinal dispersion coefficient specified in Section 4.1, we define the
transverse dispersion coefficient as DT ¼ aT jvj where the transverse dispersivity is set to aT ¼ 50 m. We specify a pulse
boundary condition at the inlet, injecting 104 particles uniformly over a 100 m distance at the top edge, x1 ¼ 0; x2 ¼ L2.

The medium’s permeability kðxÞ – the top subfigure in Fig. 6 – was constructed using a multiresolution random field gen-
erator based on the Karhunen–Loéve decomposition [50]. It represents a realization of the statistically homogeneous random
field that has the mean !k ¼ 10%12 m2, transformed variance r2

ln k ¼ 1, and anisotropic exponential covariance function with
correlation lengths 200 m, 200 m, and 100 m in the x1; x2 and x3 directions, respectively. Tracer was injected for the first 1000
yr of the simulation.

The heterogeneity of the medium causes spatial variability of the fluid velocity v(x). It is computed by rescaling the Darcy
flux q(x) with the medium’s (constant) porosityx, i.e., v ¼ q=x. The Darcy flux is given by a solution of the steady-state flow
equation,

q ¼ % kg
m rh; r " q ¼ 0; ð20Þ

where m is the fluid’s kinematic viscosity, g is the gravitational constant and hðxÞ is the hydraulic head. The flow is driven by
the hydraulic head gradient resulting from boundary conditions hðx1 ¼ 0; x2; x3Þ ¼ H1 and hðx1 ¼ L1; x2; x3Þ ¼ H2. The other
boundary conditions and domain discretization for this example were identical to those used in the previous heterogeneous
medium example.

The results of these simulations are presented in Fig. 6 for anomalous transport with b ¼ 1:5 and b ¼ 0:95, as well as for
the ADE model of transport. Iso-surface plots of the model domain are shown at various times, 100 yr, 600 yr and 1200 yr. A
normalized concentration of 0.0025 was chosen for the isoline with the ADE plume shown in red and the CBPT-CTRW shown

0 500 1000 1500 2000 2500 30000

0.2

0.4

0.6

0.8

1

Time

C
on

ec
nt

ra
tio

n

ADE
 = 1.25

Fig. 5. Comparison of the ADE and CTRW methods for flow through heterogeneous medium. Breakthrough curves of concentration cðx1; tÞ at x1 ¼ 15:2 km
for continuous injection at the inlet x1 ¼ 0.
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in white. Because the tracer is injected near the top surface of the domain, the majority of the plumes travel along the top
surface of the model domain. As time progresses, the plume appears to break apart into ‘‘islands” at the top surface. The is-
lands are due to the fact that low permeability zones cause the plume to leave the top surface and to reappear later due to
high permeability pathways. The CBPT-CTRW algorithm predicts significant attenuation of the plume for both values of b. It
resulted in lower peak concentration and longer tail breakthrough curves than those resulting from the ADE. Lower values of
b lead to higher values of the inlet concentration at later times, since they correspond to larger residence times in a cell. The
distance traveled by the plume also decreases as b decreases. Relative to its counterpart predicted with the ADE, it spreads
farther in the transverse direction.

5. Conclusions

Advection–dispersion equations (ADEs) are routinely used to describe transport phenomena in heterogeneous environ-
ments. Yet they often fail to capture subgrid heterogeneities that lead to the so-called anomalous or non-Fickian transport
behavior, whose manifestations are early or late arrival times, long tails of concentration profiles, etc.

We presented a particle-based approach for modeling non-Fickian (anomalous) transport in heterogeneous environ-
ments. The approach treats a particle trajectory as a subordinated stochastic process that is described by a set of Langevin
equations, which represent a CTRW at its basic level. To increase the computational efficiency and accuracy of these simu-
lations, we employ the convolution-based particle tracking (CBPT) method.

Fig. 6. Comparison of the ADE and CTRWmethods for flow through heterogeneous permeability field. The ADE plume is shown in red and the CTRW plume
in white. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Our analysis leads to the following major conclusions.

1. The Langevin formulation used in the CTRW–CBPT algorithm is general in that no statistical restrictions are imposed on
the stochastic processes representing the spatial and temporal random increments. They can be correlated in space and
time, stationary or non-stationary, their distributions are arbitrary.

2. For stationary and uncorrelated random increments, the well-known partial differential equation (PDE) formulations of
CTRW in terms of generalized Fokker–Planck equations can be obtained by a generalized Kramers–Moyal expansion.

3. The CTRW–CBPT algorithm reproduces analytical solutions for both classical (ADE-based) and anomalous (a PDE formu-
lation of CTRW) transport models, with CBPT providing a significant computational speed-up.

4. Finally, the CTRW–CBPT approach enables one to convert any existing particle tracking code into a simulator capable of
handling non-Fickian (anomalous) transport in large field-scale problems that exhibit complex parameter structures (e.g.,
realistic geological settings) and complex flow fields.
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