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[1] Predictions of reactive transport in the subsurface are routinely compromised by both
model (structural) and parametric uncertainties. We present a set of computational tools for
quantifying these two types of uncertainties. The model uncertainty is resolved at the
molecular scale where epistemic uncertainty incorporates aleatory uncertainty. The
parametric uncertainty is resolved at both molecular and continuum (Darcy) scales. We
use the proposed approach to quantify uncertainty in modeling the sorption of neptunium
through a competitive ion exchange. This radionuclide is of major concern for various
high-level waste storage projects because of its relatively long half-life and its high-
solubility and low-sorption properties. We demonstrate how parametric and model
uncertainties affect one’s ability to estimate the distribution coefficient. The uncertainty
quantification tools yield complete probabilistic descriptions of key parameters
affecting the fate and migration of neptunium in the subsurface rather than the lower
statistical moments. This is important, since these distributions are highly skewed.
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1. Introduction

[2] Subsurface modeling is notoriously plagued by uncer-
tainties that are both epistemic (i.e., reducible through
observations) and aleatory (i.e., irreducible because of
inherent stochasticity) in nature. While this distinction is
somewhat artificial in most hydrologic applications (see the
relevant discussion by Tartakovsky [2007, and references
therein]), biogeochemistry is an area where both types of
uncertainties are present. This is because multiple biological
and/or chemical reactions occurring simultaneously form a
complex nonlinear system, whose dynamics are neither
continuous nor entirely deterministic.
[3] Epistemic uncertainty can be subdivided into

parametric and structural (model) uncertainty, both of which
have been the subject of recent investigations. Parametric
uncertainty in geochemistry reflects our partial knowledge
of the key parameters governing reactive transport, includ-
ing distribution coefficient, reaction rate constants and,
more fundamentally, the surface areas of reacting species.
These and other parameters are uncertain not only because
of measurement errors and spatial heterogeneity, but
because of a significant scale effect. The latter refers to a
discrepancy between parameter values obtained from
laboratory and field experiments. A typical example is a
difference of several orders of magnitude between field and

laboratory estimates of reaction rate constants [e.g., Paces,
1983; Velbel, 1986]. Additional flaws in the estimation of
field weathering reaction rates involve the failure to
properly account for various factors in the chemical rate
laws [Lichtner, 1993]. Time- and scale-dependent effective
kinetic rate constants have been related to grain size
distributions [Lichtner and Tartakovsky, 2003] and
have been variously analyzed via volumetric [Kechagia et
al., 2002] and stochastic [Dagan and Indelman, 1999]
averaging. Recent assessments of parametric uncertainty
in reactive transport include Sanchez-Vila and Rubin
[2003] and Dentz and Berkowitz [2005].
[4] Model (structural, conceptual) uncertainty in

geochemistry manifests itself on a multiplicity of scales,
ranging from field scale, to laboratory scale, to pore scale, to
molecular scale. On macroscopic scales, including both field
and laboratory scales, the validity of standard mathematical
descriptions that are based on the advection-dispersion
equation with reactive terms is being challenged because
of their failure to capture anomalous transport and other
observed phenomena. The recently proposed alternatives
include stochastic nonlocal transport models [Rubin, 2003,
and references therein], continuous time random walk
models [Berkowitz et al., 2006], fractional derivative trans-
port equations [Schumer et al., 2003], residence time
transfer function approach [Robinson et al., 2003] and
delayed diffusion models [Dentz and Tartakovsky, 2006].
While in principle one can quantify this source of uncer-
tainty by either selecting the ‘‘best’’ model via the Bayesian
maximum entropy approach [Christakos, 1990] or averag-
ing over several alternative models via the maximum
likelihood Bayesian averaging [Neuman, 2003], no attempt
to do so in the context of geochemistry has been reported.
[5] Model uncertainty is further exacerbated by the studies

[Tartakovsky et al., 2007] that suggest that proper modeling
of many geochemical phenomena, including precipitation
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and dissolution, should explicitly account for pore-scale
processes. Moreover, the theoretical [Kapoor et al., 1997]
and experimental [Raje and Kapoor, 2000; Gramling et al.,
2002] investigations showed that it might be necessary to go
down to the molecular scale to capture adequately mixing
processes that affect the rate of a reaction involving two or
more reactants.
[6] It is at the molecular level that epistemic (model)

uncertainty in coupled chemical reactions is intimately
intertwined with aleatory uncertainty. The latter is caused
by the randomness in collisions of molecules of reacting
species and the nonuniformity of molecular mixtures, espe-
cially in such complex systems as porous media. It plays a
crucial role in selecting a particular reaction path from many
possible reaction paths at any given time t. A proper
identification of reaction rate equations is an integral part
of a modeling process that is prone to uncertainty. To
quantify this source of epistemic and aleatory uncertainties,
we employ the stochastic simulation algorithm of Gillespie
[1977] that is used extensively in biochemistry. This algo-
rithm provides probabilistic predictions of the number of
reacting molecules of a given species that participate in the
chemical reaction process at a given time.
[7] Our main goals are to introduce computational tools

for quantification of parametric and model uncertainties in
geochemical reactions and to investigate the impact of these
types of uncertainty on one’s ability to predict reaction rates,
distribution coefficients, etc. In section 2, we formulate a set
of equations describing geochemical reactions between
multiple species and analyze them deterministically, i.e.,
ignoring uncertainty. Sections 3 and 4 present computation-
al tools for quantifying parametric and model uncertainties
respectively. These tools are used in section 5 to ascertain
the importance of the two types of uncertainties by consid-
ering a relatively simple reactive system involving two
reactants. Uncertainty in a more challenging problem,
sorption of neptunium through the competitive ion ex-
change, is quantified in section 6.

2. Chemical Reactions

[8] To analyze epistemic and aleatory uncertainties af-
fecting reactive transport in the subsurface, we focus on
chemical reactions while disregarding other transport mech-
anisms, including advection, diffusion and hydrodynamic
dispersion. (This approach is justified in the concluding
remarks in section 7).
[9] Consider a (reversible) chemical reaction between n

species A1, A2, . . ., An that can be represented as

a1A1 þ a2A2 þ . . .þ amAmÐamþ1Amþ1 þ . . .þ anAn; ð1Þ

where {ai}i=1
n are stoichiometric coefficients. The concen-

tration Ci(t) % [Ai] of a reacting species Ai at time t is
described by a nonlinear rate equation,

dCi

dt
¼ Fi C1;C2; ::Cnð Þ; i ¼ 1; . . . ; n; ð2Þ

subject to appropriate initial conditions. Model (and
aleatory) uncertainty refers to the imperfect knowledge
about the functional forms of Fi (i = 1, . . ., n). Parametric

uncertainty refers to the imperfect knowledge about the
coefficients entering the functions Fi (i = 1, . . ., n) and/or
initial concentrations.
[10] A simple example of (1)–(2) consists of an irrevers-

ible chemical reaction involving three reacting species, two
reactants A1 and A2 forming a species A3, such that

A1 þ A2 ! A3: ð3Þ

A deterministic framework for modeling this reaction
postulates reaction rate equations for the concentrations Ci

of each species, e.g.,

dCi

dt
¼ 'kC1C2; i ¼ 1; 2;

dC3

dt
¼ kC1C2; ð4Þ

prescribes a reaction rate constant k, and specifies initial
conditions, e.g.,

C1 0ð Þ ¼ C; C2 0ð Þ ¼ C; C3 0ð Þ ¼ 0; ð5Þ

where the initial concentration of reactants has a precisely
determined value C. The initial concentrations of C1 and C2

do not have to be the same. We set C1(0) = C2(0) = C to
simplify the presentation.
[11] The system of reaction equations (4)–(5) implies that

C1(t) = C2(t). This yields analytical solutions for the
concentration of each species,

C1 tð Þ ¼ C2 tð Þ ¼ C

Ckt þ 1
; C3 tð Þ ¼ Ckt

Ckt þ 1
: ð6Þ

These solutions are represented by the solid lines in
Figures 1 and 2 for C = 1 and k = 1, both defined in
consistent units.
[12] By its very nature, this deterministic analysis ignores

uncertainty in both reaction rate constant k (parametric
uncertainty) and the choice of reaction rate equations (4)
(modeling uncertainty). In the following sections, we intro-
duce mathematical tools to analyze these two sources of
uncertainty and demonstrate their importance.

3. Quantification of Parametric Uncertainty

[13] Incomplete knowledge of the reaction rate constants
k in (4) at the field scale gives rise to parametric uncertainty.
Among various factors affecting the values of reaction rate
constants are the heterogeneity of a subsurface environment
and the presence of other reacting species whose minute
concentrations might not be of immediate concern but affect
the rate of the reactions.
[14] The latter source of uncertainty introduces temporal

fluctuations of reaction rate constants, which cannot be
accurately ascertained under field conditions. This uncer-
tainty can be quantified by treating the reaction rate constant
k as a random process k(t) with a prescribed distribution
(e.g., Gaussian or lognormal), mean !k, variance sk2, and a
correlation structure (e.g., white noise used in our simula-
tions). This renders the reaction rate equations (4) stochas-
tic, so that their solutions are given in terms of probability
density functions.
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3.1. Solutions of Fokker-Planck Equation

[15] Close inspection of the Langevin-type equations (4)
reveals that they have only one independent variable, say
concentration C1. Its probability density function p(c1; t)
satisfies the Fokker-Planck equation [Risken, 1989],

@p

@t
¼ ' @vp

@c1
þ @

@c1
D

@p

@c1

! "

; ð7Þ

where the drift and diffusion coefficients according to Itô
are given by

v ¼ '!kc21 and D ¼ 1

2
c41; ð8Þ

respectively. An initial condition for (7) reflects the degree
of certainty in the initial concentration C and, in general, is
expressed by a probability density function, p(c1; 0) =
p0(c1). If it is known precisely, the initial condition takes the
form p(c1;0) = d(c1 ' C), where d(x) is the Dirac delta

function. In the simulations below, we employ the latter
initial condition.
[16] We solved the Fokker-Plank equation (7)–(8) both

analytically and numerically with a forward Euler algorithm.
Once p(c1; t) is found, the nth statistical moment of concen-
trations can be computed as

hCn
1 tð Þi ¼

Z

cn1p c1; tð Þdc1: ð9Þ

Numerical and analytical solutions for the mean (the dashed
lines in Figures 1 and 2) are identical. These results
correspond the reaction rate constant k that is modeled as a
lognormal process in with mean 0 and variance 0.1. This
corresponds to the geometric mean !k = 1, with possible
values of k spanning 3 orders of magnitude. A comparison
of the dashed and solid lines in Figures 1 and 2 show that
incorporating parametric uncertainty leads to faster reaction
rate predictions than in the deterministic case.
[17] Next, we compute confidence intervals for the con-

centration estimates !Ci, which are defined as !Ci ± 2sCi. If Ci

were Gaussian, that would correspond to the 95% confi-
dence interval. To investigate the impact of the parametric
distributional assumption on uncertainty quantification, we
alternatively treat k as either Gaussian or lognormal process.
In both cases, the mean value of k is set to !k = 1 and its
standard deviation is set to sk = 0.33. The corresponding
confidence intervals for the estimates of C1 are shown by
the dashed lines in Figures 3 and 4. One can see that the
contribution of parametric uncertainty to the overall predic-
tive uncertainty is quite significant, with larger parametric
uncertainty translating into larger predictive uncertainty.

3.2. Direct Solutions of Stochastic Partial Differential
Equations

[18] For general, fully coupled chemical reactions with n
reacting species (1), the dimensionality of the Fokker-Plank
equations can be as high as n + 1. The computational
expense associated with their solutions is often so high as
to render this approach impractical. In this case, one can
solve stochastic differential equations (2) or (4) directly.

Figure 1. Predictions (ensemble means) of the reactant’s
concentration reflecting various sources of uncertainty.

Figure 2. Predictions (ensemble means) of the product’s
concentration reflecting various sources of uncertainty.

Figure 3. Confidence interval (CI) resulting from quanti-
fication of parametric uncertainty for Gaussian reaction rate
constant k.
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[19] An Itô formulation of the Langevin-type equations (4)
can be solved numerically by using the following stochastic
Euler discretization scheme [Kloeden and Platen, 1992],

C1 t þDtð Þ ¼ C1 tð Þ ' !kC1 tð ÞC2 tð ÞDt ' C1 tð ÞC2 tð ÞDW ; ð10Þ

where Dt is a time step and DW is a Gaussian variable with
zero mean and the variance proportional to the variance of k
and the time step Dt. This is in effect the same as varying
the reaction rate constant at each time step by generating a
random number with mean !k and a given variance. Similar
equations can be written for the concentrations C2 and C3.
[20] To compute the statistical moments of the concen-

trations Ci (i = 1, . . ., 3), one should average the results of
these calculations over many realizations. In our simula-
tions, 1000 realizations were sufficient to reproduce accu-
rately the mean. The corresponding curves coincide with
their analytical and numerical counterparts computed by
solving the Fokker-Plank equations, so that the dashed lines
in Figures 1 and 2 represent the mean concentrations
computed with (10).

4. Quantification of Model Uncertainty

[21] Reaction rate equations (4) provide a macroscopic
description (or a mathematical abstraction) of chemical
reactions that occur at the molecular level. To quantify
the uncertainty associated with the selection of this
particular model, one can attempt to derive it from ‘‘first
principles’’ by accounting for the interactions of molecules
of the species A1 and A2. This can be achieved by deriving the
Master equation for the probability distribution of the
collisions [Risken, 1989]. Solving the Master equation
can become prohibitively expensive as the number of
species increases.
[22] The stochastic simulation algorithm of Gillespie

[1977] provides a computationally efficient alternative to
the Master equation approach. At the heart of this algorithm

lies the concept of a reaction probability density function
P(t, m), which is the joint probability for reaction m to occur
in the infinitesimal time interval [t + t, t + t + Dt] given a
certain state at time t. A particular reaction m is selected
randomly from a set of all possible reactions, which is
determined by the molecular populations of reactants for
each individual reaction.
[23] The time t, during which no reactions occur,

depends upon the total molecular population of all reacting
species and is conceptually similar to the residence time
reflecting the randomness of collisions. Assigning a con-
stant deterministic value to t yields standard deterministic
reaction rate equations, such as (4), which are discretized in
time with a time step t.
[24] The Gillespie [1977] algorithm assumes that molec-

ular populations of reactants are uniform in space, which
results in reaction rate constants k that are known with
certainty (deterministic). This assumption breaks down in
complex environments, such as porous media. To account
for the variability in mixing, we modify t (see below) by a
random parameter m > 1, such that m = 1 corresponds to
uniform mixing and the larger m the longer it takes for
reacting molecules to collide. More complex mixing laws
[e.g., Robinson and Viswanathan, 2003] or mechanistic
simulations designed to inform the selection of m could
be incorporated as well.
[25] For the reacting system used as an example in

section 2, m represents the only possible reaction (3) and
t is the only random variable. The modified Gillespie
algorithm we propose consists of the following steps.
[26] 1. Compute the total number of the reacting pairs of

available molecules, a0 = kC1C2.
[27] 2. Generate random numbers r1 on the uniform unit

interval and m uniformly random on the interval [1, 10].
[28] 3. Compute t as

t ¼ 'ma'1
0 ln r1: ð11Þ

[29] 4. Increase time by t, decrease the number of
reacting molecules of A1 and A2 by 1 each, and increase
the number of molecules of the product A3 by 1.
[30] 5. Repeat steps 1–4 until the reactant population

goes to zero.
[31] The result of these simulations is a stochastic reali-

zation of concentration profiles. The statistics of concen-
trations are computed in the Monte Carlo fashion by
averaging over an ensemble of realizations. The circles in
Figures 1 and 2 represent the mean concentrations of
reacting species A1 and A2 and their product A3, obtained
from 1000 realizations of r1 for deterministic m = 1. Since
these simulations reproduce the conditions of uniform
mixing and deterministic reaction rate constants, they coin-
cide with the deterministic concentration predictions, a
slight discrepancy between the two stemming from the
finite size of Monte Carlo sampling. The dotted lines in
Figures 1 and 2 represent the mean of 1000 realizations of
the random pair (r1, m). They demonstrate how the hetero-
geneity of molecular mixture (random m > 1) affects the
mean concentrations of the reacting species by predicting
significantly slower rates for the chemical reaction. The

Figure 4. Confidence interval (CI) resulting from quanti-
fication of parametric uncertainty for lognormal reaction
rate constant k.
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imperfectly mixed reacting mixture results in molecules of
the reacting species taking longer to come into contact, thus
causing the reaction to proceed at a slower rate.

5. Parametric and Model Uncertainties

[32] The algorithm described above does not explicitly
account for parametric uncertainty, i.e., uncertainty about
the actual value of reaction rate constant k. To account for
both sources of uncertainty, we modify the first step of the
algorithm by replacing the constant value k with its random
counterpart whose mean and variance are !k and sk2, respec-
tively. The statistics of concentrations are computed in the
Monte Carlo fashion by averaging over an ensemble of
realizations. The dash-dotted lines in Figures 1 and 2
represent the mean concentrations of the reacting species
A1 and A2 and their product A3, obtained from 1000
realizations, where each realization draws one random
triplet from the set (r1, m, k).
[33] The tools developed above can be used to quantify

the relative effects of parametric and model uncertainty on
one’s ability to model geochemical reactions. This section
provides such an analysis for the relatively simple irrevers-
ible chemical reaction (3) involving two reactants and one
product. A more challenging reactive system, dealing with
neptunium ion exchange, is analyzed in section 6.
[34] Figures 1 and 2 compare the predictions of the

evolution of the concentration of the reactants A1 or A2

and the product A3, respectively. These predictions alterna-
tively ignore uncertainty (the solid lines), account for
parametric uncertainty (the dotted line), account for model
uncertainty (the dashed lines), and account for both sources
of uncertainty (the dash-dotted lines). The total time of 1 unit
corresponds to the time it takes the reactant concentration to
decrease by 50% in the deterministic scenario.
[35] The deterministic predictions are obtained by replac-

ing the time fluctuating reaction rate constant k with its
mean value !k, i.e., by setting k = !k = 1. To facilitate the
comparison, numerical simulations to quantify combined
parametric and model uncertainties (the generalized sto-
chastic simulation algorithm) used the same random numb-
ers as those generated to solve the stochastic differential
equations (10) for quantification of parametric uncertainty
and to implement the Gillespie algorithm for quantification
of model uncertainty.
[36] Parametric uncertainty leads to predictions of reac-

tion rates that are faster than those obtained either by
ignoring uncertainty or by accounting for model uncertainty
only or by accounting for both sources of uncertainty.
The nonlinearity of the reactions (4) and the skewness
of the lognormal distribution of k ensures that even
though the randomly generated values of k had the same
mean value !k as that used in deterministic simulations, the
resulting reaction is always faster than the reaction predicted
by deterministic simulations.
[37] Model uncertainty results in predicted reactions that

are slower than their deterministic counterparts. Accounting
for both parametric and model uncertainties leads to the
slowest predicted reactions. This behavior is caused by the
nonlinearity of the reacting system, in which the effect of
both parametric and model uncertainties is to predict reac-
tion rates that are slower than those predicted by quantifying
model uncertainty only.

[38] Figures 3 and 4 provide probabilistic estimates of the
reactant concentration and the corresponding confidence
intervals for Gaussian and lognormal reactive rate constants
k, respectively. The confidence intervals are defined here as
!Ci ± 2sCi. The normal distribution has the mean !k = 1 and
standard deviation sk = 0.33, and the lognormal distribution
has the mean log !k = 0 and standard deviation log sk = 0.33.
The higher variability of k in the latter case translates into
the wider confidence intervals, i.e., into the higher predic-
tive uncertainty.
[39] The analysis above reveals that the impact of both

sources of uncertainty on geochemical reactions is signifi-
cant and cannot be ignored.

6. Neptunium Ion Exchange Example

[40] A more challenging example of a coupled chemical
reaction system (1) is the neptunium competitive ion ex-
change. Neptunium-237 is one of the key radionuclides
investigated by several high-level waste storage projects
because of its long half-life and its high-solubility and low-
sorption properties. Migration of neptunium-237 from the
proposed repository site could be significantly retarded
because of sorption by zeolitic minerals that lie beneath
the repository. Minerals such as sodium, calcium and
magnesium ions that are naturally present in the groundwa-
ter compete with neptunium ions for the same sorption sites.
In other words, the geochemical processes affecting the fate
and transport of neptunium-237 are complex and highly
uncertain.
[41] One of these processes is a competitive ion exchange

mechanism, where the positively charged sodium Na+ and
calcium Ca2+ ions are in competition with neptunium ions
NpO2

+,

NpOþ
2 þ tAl ' Naf g Ð tAl ' NpO2f g þ Naþ ð12aÞ

Ca2þ þ 2 tAl ' Naf g Ð 2tAl ' Caf g þ 2Naþ: ð12bÞ

Reaction (12a) describes a neptunium ion displacing a
sorbed sodium ion from a zeolite tAl' that acts as a sorption
site. Reaction (12b) describes the displacement of a calcium
ion by two sodium ions.
[42] This set of reversible coupled chemical reactions,

which involves six reacting species, can be represented by
four irreversible coupled reactions,

NpOþ
2 þ tAl ' Naf g ! tAl ' NpO2f g þ Naþ ð13aÞ

tAl ' NpO2f g þ Naþ ! NpOþ
2 þ tAl ' Naf g ð13bÞ

Ca2þ þ 2 tAl ' Naf g ! 2tAl ' Caf g þ 2Naþ ð13cÞ

2tAl ' Caf g þ 2Naþ ! Ca2þ þ 2 tAl ' Naf g: ð13dÞ

Let C1 and C2 denote the concentrations of sorbed
({tAl-Na}) and aqueous (Na+) sodium ions, respectively;
C3 and C4 the concentrations of sorbed ({tAl-NpO2}) and
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aqueous (NpO2
+) neptunium ions, respectively; and C5 and

C6 the concentrations of sorbed ({2tAl-Ca}) and aqueous
(Ca2+) calcium ions, respectively.
[43] In addition to these concentrations, one is also

interested in computing transport parameters that affect
the fate and migration of neptunium-237 in groundwater.
The distribution coefficient Kd is defined as the ratio of the
concentrations of sorbed neptunium ions ({tAl-NpO2

+}) and
those present in the aqueous phase (NpO2

+),

Kd ¼ C3=C4: ð14Þ

6.1. Deterministic Analysis

[44] A deterministic analysis of the reacting system (13)
relies on the rate equations

dC1

dt
¼ 'k1C1C4 þ k2C2C3 ' 2k3C1

2C6 þ 2k4C2
2C5 ð15aÞ

dC2

dt
¼ k1C1C4 ' k2C2C3 þ 2k3C1

2C6 ' 2k4C2
2C5 ð15bÞ

dC3

dt
¼ k1C1C4 ' k2C2C3 ð15cÞ

dC4

dt
¼ 'k1C1C4 þ k2C2C3 ð15dÞ

dC5

dt
¼ k3C1

2C6 ' k4C2
2C5 ð15eÞ

dC6

dt
¼ 'k3C1

2C6 þ k4C2
2C5; ð15f Þ

where k1, k2, k3 and k4 represent the reaction rate constants
for the reactions (13a), (13b), (13c), and (13d), respectively.
The average values of these coefficients, k1 = 101.58, k2 = 1,
k3 = 101.5 and k4 = 1, have been determined experimentally
in a report cited byViswanathan et al. [1998]. It is worthwhile
to point out that these experiments measured the average
equilibrium constants K defined as the ratio of forward
to backward reaction rates, K1 = k1/k2 and K2 = k3/k4.
Determination of the values of reactions rate constants from
such experiments is, obviously, not unique.
[45] Initial concentrations, C1 = 1.3 ( 10'4, C2 = 1.3 (

10'3, C3 = 0, C4 = 10'5, C5 = 1.7 ( 10'4, and C6 = 10'3

(units are mol/L), have been determined [Viswanathan et
al., 1998] from the average concentrations of sodium ions
in the groundwater by sampling at various locations.
Since the solubility of neptunium in water at a given
pH is known, one can determine the concentration of
neptunium in groundwater. Assuming that initially all nep-
tunium is dissolved in the groundwater, one obtains initial
conditions for (15).
[46] Solutions of the rate equations (15) subject to these

initial conditions are shown in Figure 5. Since the concen-
trations of sodium and calcium ions are 2 orders of
magnitude higher than the initial concentration of neptuni-
um (aqueous), and since the concentrations of sodium and
calcium ions (both sorbed and aqueous) do not change
significantly over time, the log plots of these concentrations
look superficially constant. Figure 6 elucidates the temporal
variability of the concentrations of the sorbed and aqueous
neptunium ions. Both concentrations reach steady state, at
which point they were substituted into (14) to compute the
distribution coefficient Kd = 3.53.
[47] A host of uncertainties, both structural and paramet-

ric, are unaccounted for in this deterministic analysis. For
example, while the initial concentrations of sodium and
calcium ions are not known exactly, they have a profound
effect on the distribution coefficient. [Viswanathan et al.,
1998] compared the values of Kd computed numerically for
various initial sodium ion concentrations with the experi-
mental values recorded by Tait et al. [1996]. They found
that Kd varies from 0.2 to 5.5 when the initial sodium ion

Figure 5. Log concentrations of the reacting species.

Figure 6. Log concentration of sorbed and aqueous
neptunium ions.
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concentration varies from 0.1 mol/L to 0.002 mol/L,
respectively.

6.2. Quantification of Parametric Uncertainty

[48] To account for uncertainty in the reaction rate con-
stants k1, k2, k3, and k4, we treat them as normal white noise,
whose mean values were determined from the experimental
data in a report cited by Viswanathan et al. [1998].
Reasonable variance values were assumed for the purpose
of illustration. This renders the rate equations (15) stochastic.
Since the corresponding Fokker-Planck equation is seven-
dimensional, solving it either analytically or numerically
is not straightforward.
[49] Instead, we use the discretization scheme of the Itô

formulation of the Langevin-type equations (15), as
described in section 3.2. The mean concentrations of
aqueous and sorbed neptunium computed with this algo-
rithm are shown by the dashed lines in Figures 7 and 8,
respectively.

6.3. Quantification of Model Uncertainty

[50] We use the modified stochastic simulation algorithm
(section 4) to quantify model uncertainty in the ion ex-
change reactions. Now the reaction probability density
function P(t, m) is truly a joint probability for reaction m
to occur in the infinitesimal time interval [t + t, t + t +Dt],
since there is more than one reaction involved. The algo-
rithm is similar to the single irreversible reaction case
described in section 4, with an additional step of determin-
ing which reaction m occurs.
[51] 1. Compute the total number of reacting pairs of

molecules available for each reaction,

a1 ¼ k1C1C4; a2 ¼ k2C2C3 ð16aÞ

a3 ¼ k3C
2
1C6; a4 ¼ k4C

2
2C5; ð16bÞ

and compute their sum a0 = a1 + a2 + a3 + a4.
[52] 2. Generate random numbers r1 and r2 on the

uniform unit interval and m uniformly random on the
interval [1, 10].

[53] 3. Compute t as

t ¼ 'ma'1
0 ln r1: ð17Þ

[54] 4. Determine which reaction m occurs by taking m to
be that integer for which

X

m'1

j¼1

aj < r2a0 )
X

m

j¼1

aj: ð18Þ

[55] 5. Update time by t and molecular levels for reaction
m (decrease reactants by 1 and increase products by 1).
[56] 6. Repeat steps 1–5 until either of the reactant

population goes to zero or steady state is reached, in this
case, the latter.
[57] The result of these simulations is a stochastic reali-

zation of the concentration profiles. The statistics of con-
centrations are computed in the Monte Carlo fashion by
averaging over an ensemble of realizations. The circles in
Figures 7 and 8 represent the mean concentrations of
aqueous and sorbed neptunium, respectively, obtained from
1000 realizations of the parametric triplet (r1, r2, m).

6.4. Joint Uncertainty Quantification

[58] To quantify both parametric and model uncertainties,
wemodified the stochastic simulation algorithm in section 6.3
to allow for random fluctuations of reaction rate constant
(see also section 5). To facilitate the comparison of the
effects of various sources of uncertainty, we used the same
set of random numbers in all three computations.
[59] Figures 7 and 8 reveal that parametric uncertainty

plays a smaller role than the model uncertainty in the overall
ability to predict chemical reactions. Model uncertainty
leads to predictions of reactions that are slower than their
deterministic counterparts. This is because it takes into
account the possibility of imperfect collisions and mixing
levels of reactants.
[60] Accounting for both model and parametric uncer-

tainties leads to predictions of reactions that are similar to
those that incorporate only model uncertainty, and are

Figure 7. Impact of various sources of uncertainty on the
predicted (log) concentration of aqueous neptunium.

Figure 8. Impact of various sources of uncertainty on the
predicted (log) concentration of sorbed neptunium.
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slower than those that account for parametric uncertainty
only. This finding is to be expected, because of the Gaussian
distribution of reaction rate constants, which ensures that
the effects of higher reaction rate constants in predicting
faster reaction rates are similar to the effect of the
corresponding lower reaction rate constants.
[61] To compute the distribution coefficient Kd, we allow

the reactions to reach steady state. The corresponding
concentrations of neptunium in sorbed and aqueous phases
are substituted into (14) to compute Kd. The values of
the distribution coefficient Kd computed for every realiza-
tion of the numerical algorithms that account for parametric
uncertainty, model uncertainty, and both types of uncertain-
ty are reported as histograms in Figures 9, 10, and 11,
respectively.
[62] The computed values of Kd ranged from 2.5 to 5.0,

with the mean values of 3.53, 3.51 and 3.39 obtained by
accounting for parametric, model, and both sources of
uncertainty, respectively.
[63] To test the robustness of our results and conclusions,

we considered two random models for the reaction rate

constants and mixing parameters (Gaussian and lognormal)
with a wide range of variances. While not shown here
graphically, the results of these simulations reveal that the
range of the distribution coefficient Kd was not significantly
affected by the variances of the input parameters. When the
reaction rate constants were allowed to vary by 2 orders of
magnitude according to the lognormal distribution, the joint
uncertainty model yielded slightly higher values of Kd,
which ranged from 4.2 to 4.7.

7. Conclusions

[64] We presented a set of mathematical tools to quantify
parametric and model uncertainty in coupled geochemical
reactions. These were used to study both a simple irrevers-
ible reaction involving two reacting species and more
realistic reversible reactions involving neptunium ion
exchange. Our analysis leads to the following major
conclusions.
[65] 1. The rate at which a reaction occurs varies greatly

because of the inclusion of various sources of uncertainty.
[66] 2. The range of distribution coefficients obtained for

the neptunium competitive ion exchange process considered
underscores the need for uncertainty quantification. It is
expected that the same behavior will be present in more
complex, multicomponent systems involving more chemical
species.
[67] 3. The proposed approach yields a complete proba-

bilistic description of the reaction rates and distribution
coefficient, key parameters affecting the fate and migration
of neptunium in the subsurface. This is important, since
these distributions are highly skewed.
[68] 4. The uncertainty quantification tools employed in

this study are fully scalable and can be used to investigate
any number of coupled reversible or irreversible geochem-
ical reactions.
[69] 5. Transport of radionuclides such as neptunium

could be greatly affected by the reactions that take place
in the subsurface and hence quantification of modeling and
parametric uncertainties is crucial in describing the overall
transport.
[70] The uncertainty quantification of geochemical reac-

tions carried out in this study is important in its own right. It

Figure 9. Histogram of the distribution coefficient values
accounting for parametric uncertainty.

Figure 10. Histogram of the distribution coefficient values
accounting for model uncertainties.

Figure 11. Histogram of the distribution coefficient values
accounting for both sources of uncertainty.
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can also be incorporated into reactive transport models by
employing operator splitting techniques [Kirkner and
Reeves, 1988].
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