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Neural networks (NNs) are often used as surrogates or emulators of partial differential equations

(PDEs) that describe the dynamics of complex systems. A virtually negligible computational cost

of such surrogates makes them an attractive tool for ensemble-based computation, which requires a

large number of repeated PDE solutions. Since the latter are also needed to generate sufficient data

for NN training, the usefulness of NN-based surrogates hinges on the balance between the training

cost and the computational gain stemming from their deployment. We rely on multifidelity simu-

lations to reduce the cost of data generation for subsequent training of a deep convolutional NN

(CNN) using transfer learning. High- and low-fidelity images are generated by solving PDEs on

fine and coarse meshes, respectively. We use theoretical results for multilevel Monte Carlo method

to guide our choice of the numbers of images of each kind. We demonstrate the performance of this

multifidelity training strategy on the problem of estimation of the distribution of a quantity of in-

terest, whose dynamics is governed by a system of nonlinear PDEs (parabolic PDEs of multiphase

flow in heterogeneous porous media) with uncertain/random parameters. Our numerical experi-

ments demonstrate that a mixture of a comparatively large number of low-fidelity data and smaller

number of high-fidelity data provides an optimal balance of computational speed-up and prediction

accuracy. The former is reported relative to both CNN training on high-fidelity images only and

Monte Carlo solution of the PDEs. The latter is expressed in terms of both the Wasserstein distance

and the Kullback–Leibler divergence.

KEY WORDS: encoder-decoder, multifidelity, multiphase flow, neural network, shock,
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1. INTRODUCTION

Machine learning techniques, especially neural networks (NNs), have pervaded every facet of
human activity and have permeated into the field of scientificcomputing. In the latter set-
ting, NNs are used to approximate highly nonlinear and irregular functions (Friedman et al.,
2001), solve (ordinary and partial) differential equations [e.g., Lee and Kang (1990), Lagaris
et al. (1998), Fuks and Tchelepi (2020), among many others] and construct cheap surrogates for
ensemble-based computation (e.g., Mo et al., 2019a; Raissiet al., 2019). Examples of the lat-
ter include inverse modeling (Mo et al., 2019b; Zhou and Tartakovsky, 2021), data assimilation
(Tang et al., 2020), and uncertainty quantification (Tripathy and Bilionis, 2018; Zhu et al., 2019).
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A typical ensemble-based computation of practical significance involves repeated solutions
of (coupled, nonlinear) partial-differential equations (PDEs)

N (u;θ) = g(x, t;θ), (x, t) ∈ D × (0, T ], (1)

which describe the spatiotemporal evolution of (a set of) state variablesu(x, t) in the computa-
tional domainD over simulation time horizon(0, T ]. Multiple solutions of Eq. (1)—for different
values of the inputsθ(x, t) that parameterize the differential operatorN , the source functiong,
and auxiliary functions in the initial and/or boundary conditions—are required because these
values are known at best in terms of their distributions, which are either inferred from data or
provided by the expert. The high computational cost of solving Eq. (1) numerically often pre-
cludes one from generating enough samples to obtain meaningful statistics ofu(x, t) or the
derived quantities of interest. A surrogate of Eq. (1) carries a negligible cost, making possible
ensemble-based computation with arbitrarily small sampling error.

Alternative strategies for surrogate construction include polynomial chaos expansions (Xiu,
2010), Kriging or Gaussian processes (Couckuyt et al., 2014), polynomial regression (Mont-
gomery and Evans, 2018), tensor-product splines (Hwang andMartins, 2018), and random
forests (Breiman, 2001). The current popularity of NN-based surrogates (Mo et al., 2019a; Raissi
et al., 2019) is grounded in the scalability and approximation capabilities of deep NNs (Fried-
man et al., 2001; Tripathy and Bilionis, 2018). Regardless of the surrogate type, the training of a
surrogate requires a large number of solutions of Eq. (1) fordifferent combinations of parameter
valuesθ. Advanced computer architectures, e.g., CUDA-compatiblegraphics processing units
(GPUs) and tensor processing units (TPUs), are almost a necessity to train a large NN. A com-
bined cost of training-data acquisition and NN training canbe so large as to negate the benefits
of the NN.

This observation suggests that the practical utility of an NN as a surrogate model hinges on
one’s ability to dramatically reduce the cost of its construction. We rely on multifidelity simula-
tions to reduce the cost of data generation for subsequent training of a deep convolutional NN
(CNN) using transfer learning. High- and low-fidelity images are generated by solving Eq. (1) on
fine and coarse meshes, respectively. A fine mesh is defined by the need to resolve the spatiotem-
poral variability of the model’s inputsθ and outputsu; the resulting high-fidelity simulation car-
ries a high computational cost. Lower-fidelity solutions ofEq. (1), obtained on coarser meshes
on which appropriately homogenized inputsθhom are defined, are cheaper to compute but less
accurate. We train a CNN on a mixture of these multifidelity data, using the theoretical results
for multilevel Monte Carlo (MLMC) (Giles, 2008; Heinrich, 1998, 2001; Taverniers et al., 2020)
to guide our choice of the numbers of solutionsu(x, t) of each kind. Similar to MLMC (Müller
et al., 2013; Peherstorfer, 2019), the varying fidelity (aka“levels”) of predictions ofu can be
achieved not only by solving Eq. (1) on different meshes, butalso by replacing Eq. (1) with its
cheaper-to-compute counterparts. For example, the multiphase flow equations used as the com-
putational testbed in this study can be replaced with the cheaper-to-solve Richards equation and
Green–Ampt equation (Sinsbeck and Tartakovsky, 2015; Yanget al., 2020), each of which en-
capsulates progressively simplified physics. We leave thisaspect of NN training on multifidelity
data for a follow-up study.

The idea of using multifidelity data in the context of NNs is not unique to this study. For
example, Geneva and Zabaras (2020) trained surrogate models using low-fidelity simulations
as a conditional input. Meng and Karniadakis (2020) built fully connected NN surrogates by
training different networks to handle the low- and-high fidelity data. The novelty of our approach
is to deploy transfer learning on multifidelity data to traindifferent parts of a single network.
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Section 2 contains a brief description of our CNN and the workflow for its training on mul-
tifidelity of data. The performance of this algorithm is tested on a system of nonlinear parabolic
PDEs governing multiphase flow in a heterogeneous porous medium with uncertain properties,
which are formulated in Section 3. In Section 4, we demonstrate the accuracy and computational
efficiency of the CNN-based surrogate used to quantify predictive uncertainty of Eq. (1) in terms
of the distribution of a quantity of interest. The main conclusions drawn from this study are
presented in Section 5.

2. DEEP CONVOLUTIONAL NEURAL NETWORKS

While many flavors of NNs can be used as a surrogate for a PDE-based model like Eq. (1), we
choose CNNs because of their proven ability to model complexnonlinear phenomena and the
negligible cost of their forward pass. To be specific, we select the CNN with encoder-decoder ar-
chitecture (Mo et al., 2019b), which has previously been used for single-phase (Mo et al., 2019a)
and multiphase (Mo et al., 2019b) flow problems in the contextof uncertainty quantification. The
presence of dense-blocks differentiates the selected architecture from other encoder-decoders
such as the one found in U-Net (Ronneberger et al., 2015). Thedense blocks have connections
between nonadjacent layers to enhance the flow of information through a network (Mo et al.,
2019a). The encoder-decoder architecture is ideally suited for training on multifidelity data, as
detailed in Section 2.1.

The CNN-based surrogate is set up as an image-to-image regression model (Zhou and Tar-
takovsky, 2021). To train and test the network, we use the parameter valuesθ(xi) in Nel elements
{xi}

Nel
i= 1 of a numerical grid as input and the discretized solutionu(xi, tk) of PDE (1) atNts

time steps{tk}
Nts
k= 1 as output. To facilitate the generalizibility of the trained CNN to unseen

sets of the inputθ(xi), i.e., to ensure that the CNN is not overfitted to a particularchoice of
θ(xi), the training data comprises a large numberNtrain of the solutionsu obtained forNtrain

realizations{θ1, . . . ,θNtrain} of the inputθ. The loss function

L(w) =

Ntrain
∑

m= 1

Nel
∑

i= 1

Nts
∑

k= 1

|u(xi, tk;θm)− ûik(w;θm)|+ λ

Nw
∑

n= 1

w2
n, (2)

consists of two parts. The first represents theL1-norm discrepancy between the state variables
u predicted by solving PDE (1),u(xi, tk) and estimated by the CNN,̂uik(w), with Nw weights
w = (w1, . . . , wNw)

⊤. The L2-norm regularization prevents overfitting by penalizing large
weightsw associated complex models; the regularization parameterλ determines how much
regularization penalty is applied. The CNN training consists of finding a set of weightsw⋆ that
minimizesL.

2.1 Transfer Learning

The construction of CNN-based generalizable surrogates, which are capable of making predic-
tions for realizations ofθ(x) not seen during training, requires a large number of PDE solutions,
Ntrain, e.g.,Ntrain ∼ 1500, was used by Mo et al. (2019a) and Zhou and Tartakovsky (2021) to
train the encoder-decoder CNNs similar to ours. When a single PDE solution is expensive, the
costs associated with largeNtrain can be large to the point where CNN training becomes unfea-
sible. To alleviate this problem, we use both multifidelity data and transfer learning (Donahue
et al., 2014). The latter is a technique that uses an NN trained for one task as the starting point
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for a different NN being trained for a new task. Transfer learning has been implemented for
face detection (Jiang and Learned-Miller, 2017), generation of image description (Karpathy and
Fei-Fei, 2015), and construction of physics-informed NNs (Haghighat et al., 2021), among other
applications.

Let HFS and LFS data refer to the solutions of Eq. (1),u(xi, tk), obtained on the fine
(Nel = NHFS

el ) and coarse (Nel = NLFS
el with NLFS

el < NHFS
el ) meshes, respectively. IfNw

in Eq. (2) denotes the number of weights in the CNN trained on the HFS data, then our im-
plementation of transfer learning starts with the construction of a CNN composed ofNLFS

(NLFS < Nw) weightswLFS = (w1, . . . , wNLFS)
⊤ trained on the LFS data. Then, the HFS

data are used to train the desired high-resolution CNN, i.e., to determine the remaining weights
wHFS = (wNLFS+1, . . . , wNw)

⊤. This transfer learning strategy is depicted in Fig. 1 and detailed
in the following.

2.2 Workflow for CNN Training on Multifidelity Data

Our strategy for CNN training on multifidelity data consistsof three phases (Fig. 1), each of
which results in a CNN denoted byMi (i = 1, 2, 3). During Phase 1, the CNNM1 with the
NLFS

el × NLFS
el output is trained on the LFS data. In Phase 2, the CNNM2 with NHFS

el × NHFS
el

output is constructed by adding an additional layer with theweightswHFS, which are trained
on the HFS data while keeping the original weightswLFS fixed. Phase 3 consists of fine-tuning
the CNNM2 by allowing all the weightsw = {wLFS,wHFS} to update during the training on
the same HFS data. The numerical experiments reported in Sections 3 and 4 demonstrate that
this transfer learning strategy significantly reduces the number of high-resolution PDE solu-
tions.

The workflow of our approach is provided below (see Appendix Afor the corresponding
pseudocode).

Phase 1: Train a CNNM1, with NLFS
el ×NLFS

el output, on the LFS data.

State 1.1: Initialize the transfer learning by employing the encoder-decoder CNN of Mo
et al. (2019b),Minit with NHFS

el × NHFS
el output, whoseNw weightsw are set

to PyTorch defaults.

FIG. 1: Workflow for CNN training on multifidelity data. Phase 1 returns a low-resolution CNN trained
on the LFS data. Phase 2 supplements that network with an additional layer whose weights are determined
from the HFS data, producing a high-resolution CNN. In Phase3, the latter is fine-tuned by allowing all
the weights to vary during the training on the same HFS data. Appendix A provides a pseudocode for all
three phases.
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State 1.2: Train the CNNM1 on the LFS data. The starting point is a CNN obtained
from Minit by replacing its last layerLlast, which hasNHFS weightswHFS,
with a temporary convolution layerLtemp. The latter is composed of weights
wtemp and makes the output ofM1 match the dimensions of the LFS data,
[Nts×NLFS

el ×NLFS
el ]. Then, the weights ofM1, wphase1= {wHFS,wtemp} are

trained on the LFS data by minimizing Eq. (2).

Phase 2: Train a CNNM2, with Nw weightsw = {wLFS,wHFS} (of which NLFS weights
are locked) andNHFS

el ×NHFS
el output, on the HFS data.

State 2.1: Build a CNN fromM1 by replacing its layerLtempwith the layerLlast and dis-
cardingLtemp. The modified CNN has weightsw = {wLFS,wHFS}, among
which weightswLFS have been updated by data andwHFS have not been up-
dated by data.

State 2.2: Train the resulting CNNM2 on the HFS data by minimizing Eq. (2) over the
weightswHFS of layerLlast, while keeping the remaining weightswLFS fixed
at their values inM1.

Phase 3: Train a CNNM3 on the HFS data by allowing all weightsw of M2 to vary during
the minimization.

Because the bulk of the CNNM3 training is carried out on the LFS data, this procedure is more
efficient than CNN training solely on HFS data. The predictive capability of the trainedM2 is
only sometimes similar to that of the trainedM3; Phase 3 improves the performance if changes
are needed in the layers which were locked during Phase 2.

3. COMPUTATIONAL EXAMPLE: MULTIPHASE FLOW

Numerical solution of problems involving multiphase flow inporous media is notoriously dif-
ficult because of the high degree of nonlinearity and stiffness of the governing PDEs. Each
forward solve of these PDEs is so expensive that it is uncommon; e.g., uncertainty quantifica-
tion efforts in petroleum engineering have been based on as few as three model runs. This high
cost and numerical complexity make the multiphase flow equations a challenging testbed for
ensemble-based simulations.

We consider horizontal flow of two incompressible and immiscible fluids, with viscosities
µ1 andµ2, in a heterogeneous, incompressible, and isotropic porousmediumD. The latter is
characterized by porosityφ and intrinsic permeabilityk. The porosity is assumed to be constant
atφ = 0.25, and intrinsic permeabilityk(x) is treated as a random variable. The time domaint
is between zero and a specified terminal timeT . Mass conservation of theℓth fluid phase (ℓ =
1,2) implies

φ
∂Sℓ

∂t
+∇ · vℓ + qℓ = 0, x ≡ (x1, x2)

⊤ ∈ D, t ∈ [0, T ], (3a)

whereSℓ(x, t) is the phase saturation constrained byS1 + S2 = 1; qℓ is the source/sink term;
and the macroscopic velocityvℓ(x, t) is described by the generalized Darcy law

vℓ = −k
krℓ
µℓ

∇Pℓ. (3b)
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The relative permeability for theℓth phase,krℓ, varies with the phase saturation,krℓ = krℓ(Sℓ),
in accordance with the Brooks–Corey constitutive model (Corey, 1954). Following Taverniers
et al. (2020) and many others, we neglect the capillary forces, i.e., we assume pressure within
the two phases to be equal,P1 = P2 ≡ P (x, t); this is a common assumption in applications to
reservoir engineering and carbon sequestration.

The two-dimensional computational spatial domainD is a 150× 150 m square (Fig. 2) with
impermeable bottom (Γb orx2 = 0) and top (Γt orx2 = 150 m) boundaries; Dirichlet conditions
are imposed along the left (Γl or x1 = 0) and right (Γr or x1 = 150 m) boundaries:

∂P

∂x2
= 0, x ∈ Γb ∪ Γt; P = 10.2 and S1 = 1.0, x ∈ Γl ; P = 10.1, x ∈ Γr; (4a)

here and below, the pressureP is expressed in MPa. Initial conditions are

P (x, 0) = 10.1, S1(x, 0) = 0, x ∈ D. (4b)

All the model parameters, except for the intrinsic permeability k(x), are assumed to be con-
stant and known with certainty. The uncertain permeabilityk(x) is modeled as a second-order
stationary random field, such thatY (x) = ln k is multivariate Gaussian with mean〈Y 〉 = 0,
varianceσ2

Y = 2.0, and an exponential two-point covarianceC(x,y) = σ2
Y exp(−|x− y|/λY )

with the correlation lengthλY = 19 m. We use a truncated Karhunen–Loéve expansion withp =
31 terms to representY (x) (Taverniers et al., 2020). A representative realization ofthe resulting
permeability field is shown in Fig. 2 for the 128× 128 mesh.

Equations (3)–(4) are approximated using a finite volume scheme in space and implicit Eu-
ler scheme in time, yielding a highly nonlinear algebraic system (Aziz, 1979). Adaptive time-
stepping is implemented to advance the solution in time. At each time step, the nonlinear alge-
braic system is solved through Newton–Raphson (NR) iterations with the modified Appleyard
update dampening (Appleyard et al., 1981) that improves theconvergence of NR iterations by
capping the maximum saturation update to a specified limit. For theνth iteration and theith cell
of volumeVi, the convergence criteria are

maxi

∣

∣

∣

∣

∆t

(

rℓ,i
φVi

)∣

∣

∣

∣

< ǫ1, maxi|P
(ν+1)
i − P

(ν)
i | < ǫ2, maxi|S

(ν+1)
ℓ,i − S

(ν)
ℓ,i | < ǫ3, (5)

FIG. 2: A representative realization of log permeability fieldY = ln k on the 128× 128 grid, which is
used in high-fidelity simulations. Permeabilityk is expressed in mDarcy.
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whererℓ,i is the residual of the mass balance of phaseℓ, ∆t is the time step, the relative residual
normǫ1 = 10−6, the maximum pressure updateǫ2 = 10−3, and the maximum saturation update
ǫ3 = 10−2.

3.1 Upscaling of Permeability

Multifidelity data are generated by solving Eqs. (3)–(4) on progressively coarsened grids: the
128× 128 and 64× 64 grids are used for HFS and LFS, respectively. The spatial discretiza-
tions of these HFS and LFS (∆x = 1.17 and 2.34 m, respectively) are sufficient to capture the
randomness in permeability fields. The latter rests on the “rule of thumb” requirement that∆x
be such that 4∆x ≤ λY , i.e., that a numerical mesh should have at least four elements of length
∆x per correlation lengthλY [e.g., Ye et al. (2004) and references therein]. Our HFS and LFS
satisfy this requirement, since we useλY = 19 m.

This grid coarsening must be accomplished by upscaling (coarsening) of the realizations of
the random permeabilitŷk which are initially generated at the finest scale (Fig. 2). Among al-
ternative upscaling strategies (Boso and Tartakovsky, 2018; Paleologos et al., 1996; Tartakovsky
and Neuman, 1998), we select the one proposed by Durlofsky (2005) because of its computa-
tional simplicity. It turns a scalar permeability field defined on the fine (128× 128) mesh into
its upscaled tensorial (anisotropic) counterpart whose off-diagonal components are 0 and the di-
agonal components are computed as the distance-weighted arithmetic mean perpendicular to the
direction of flow and the distance-weighted harmonic mean inthe direction of flow.

3.2 Data Acquisition

Multifidelity training data come in the form ofNts = 16 temporal snapshots of the saturation
S1(x, t) computed by solving Eqs. (3)–(4) on theNel × Nel grids withNel = 128≡ NHFS

el and
64≡ NLFS

el . Figure 3 shows examples of such images, corresponding to the permeability field in
Fig. 2. The permeability fields on the finest mesh,[1 × NHFS × NHFS], are used as the inputθ
for all CNNs. The size of the CNN,[Nts ×Nel ×Nel], depends on the size of the training data.

The numerical solutions of Eqs. (3)–(4) are obtained using aMatlab-based multiphase flow
simulator on a computer with an Intel Core i7-4790 3.6GHz processor and 64GB of RAM. The

FIG. 3: Temporal snapshots of saturationS1(x, t) computed with (top-row) HFS and (bottom-row) LFS
for the permeability fieldk(x) in Fig. 2
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computation time for each HFS data point is 219.13 and 37.13 sfor each LFS data point. The
time needed to generate a data set is henceforth referred to as thedata-generation budget.

3.3 CNN Training

Table 1 describes the CNN architecture used in the implementation of our approach (see Fig. 1).
The model implementation and training is done usingPyTorch and other open source pack-
ages. The computations were carried out on the Stanford Mazama high-performance computing
cluster. The allocated computing resources include Intel Xenon Gold 6126 CPU (2.6 GHz),
60GB RAM, and Nvidia V100 GPU with 16GB vRAM. (Although available, multicores were
not used for this work.)

The key hyper-parameters affecting the CNN performance arethe learning rate (LR), the
weight decay (WD), the factor (F), and the minimum learning rate (mLR). The LR and WD
are parameters of the Adam optimizer (Kingma and Ba, 2014), and the F and mLR are param-
eters of theReduceLROnPlateau scheduler. The CNN training involves many more hyper-
parameters, but we use their default values inPyTorch. The the regularization parameterλ is
specified through WD following the implementation of Loshchilov and Hutter (2017). Further
information on the hyper-parameters, schedulers, and optimizers can be found in thePyTorch
documentation (Paszke et al., 2019).

The hyper-parameters used by Mo et al. (2019b) in a similar CNN architecture serve as an
initial guess for the hyper-parameter optimization. The search is iterated through variations of
LR, WD, F, and mLR, in this order. Once an acceptable value of ahyper-parameter was found,
the search moved to the next hyper-parameter. A robust grid search may yield a more optimal
set of hyper-parameters. The search required 100 HFS, with each training pass taking about 0.65
hours to complete, when 200 epochs were used. It took 7.2 training-hours to find functional
hyper-parameters (12 training passes), and a considerablysmaller wall-clock time because this
task was parallelized across several GPU nodes. We selectedthe hyper-parameter values yielding

TABLE 1: Model block description and the input and output dimensionsof each model block. In
our numerical experiments, the number of time steps isNts = 16; the number of elements in fine
and coarse meshes isNHFS

el ×NHFS
el = 128× 128 andNLFS

el ×NLFS
el = 64× 64, respectively; the

number of elements in the output of the dense block isNdense= 32; and the number of channels
in each of the seven layers of the CNN isn1 = 64,n2 = 344,n3 = 172,n4 = 652,n5 = 326,
n6 = 606, andn7 = 303

Layer Input Output

Input: permeability fieldk 1×NHFS×NHFS

Convolution 1 n1 ×NHFS
el ×NHFS

el n2 ×NLFS
el ×NLFS

el

Dense block (encoding) n2 ×NLFS
el ×NLFS

el n3 ×NLFS
el ×NLFS

el

Convolution 2 n3 ×NLFS
el ×NLFS

el n4 ×Ndense×Ndense

Dense block n4 ×Ndense×Ndense n5 ×Ndense×Ndense

Convolution Transpose 1 n5 ×Ndense×Ndense n6 ×NLFS
el ×NLFS

el

Dense block (decoding) n6 ×NLFS
el ×NLFS

el n7 ×NLFS
el ×NLFS

el

Convolution Transpose 2 n7 ×NLFS
el ×NLFS

el Nts ×NHFS
el ×NHFS

el

Output: saturation map̂S Nts ×NHFS
el ×NHFS

el
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the smallest root mean square error (RMSE) on the HFS test data (Fig. 4). These values are used
as a starting point in the hyper-parameter optimization formultifidelity transfer learning. Then,
the LR and epochs at each phase (Section 2.2) are modified to minimize the RMSE on the
corresponding test data. The resulting hyper-parameter values are shown in Table 2.

4. RESULTS

Once trained (in this example, on 573 LFS and 100 HFS, which took 12 hours to generate),
the CNN surrogate provides an accurate approximation of thePDE solution on the fine mesh
(Fig. 5), even for such highly nonlinear problems as Eq. (3) that exhibit sharp dynamic fronts.
A forward pass of the CNN surrogate is on the order of a second,whereas a fine-mesh PDE
solution takes nearly 220 s. This two-orders-of-magnitudespeedup makes CNN surrogates an
invaluable tool for uncertainty quantification (UQ) (Section 4.2).

4.1 Model Performance

We compare the relative performance of the CNN trained on multifidelity data and the CNNs
trained on either HFS data or LFS data, in terms of both accuracy (RMSE on test data) and
computational cost. We also investigate the effect of varying the amount of HFS and LFS data
for a given computational budget of 12 hours.

To train the high-resolution (128× 128 output) CNN solely on the LFS (64× 64) data,
the latter have to be downscaled to match the dimensions. We do so by taking the Kronecker
product of a 64× 64 LFS image and a 2× 2 matrix of 1 s. The transformed LFS data have the
desired dimensions, while containing the same informationas the original image. The test data
are composed of HFS images (PDE solutions on fine mesh) that were not used for CNN training.
Figure 6 exhibits the RMSEs on test data of the CNNs trained onhigh-, low-, and multifidelity

FIG. 4: Hyper-parameter performance in the neighborhood of optimum hyper-parameter set in terms of the
root mean square error (RMSE) for the test data. Unless labeled as thex-axis variable, all plots correspond
to LR = 5× 10−5, WD = 1× 10−5, F = 0.6, and mLR= 5× 10−6. Each data point represents the mean
and standard deviation of 10 training sessions.

TABLE 2: Learning rates and epochs
used at each phase

Learning rate Epochs

Phase 1 5× 10−4 170
Phase 2 5× 10−5 150
Phase 3 10−5 100
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FIG. 5: Temporal snapshots of the saturation mapsS1(x, t) for the permeability fieldk(x) in Fig. 2. These
are generated with either HFS of the PDE model in Eqs. (3) and (4) (labeled asS in the first and fourth
columns) or the CNN surrogate (labeled asŜ in the second and fifth columns). The third and sixth columns
display the absolute difference between the two predictions, |S − Ŝ|.

data as function of the computational budget; each point in these graphs represents an average
over 10 repetitions of training and is accompanied by error bars (the standard deviation).

The left plate of Fig. 6 reveals that, if the data-generationbudget does not exceed 20 hours,
the CNN trained on the LFS data outperforms its HFS-trained counterpart in terms of RMSE.
That is because such budgets do not allow for generation of sufficient amounts of HFS data.
As the budget increases, the error of the LFS data precludes the RMSE of the CNN trained on
such data from dropping below 0.125 while the RMSE of the HFS-trained CNN continues to
decrease. This finding is reminiscent of the cost-constrained selection between high- and low-
fidelity models in the context of ensemble-based simulations (Sinsbeck and Tartakovsky, 2015;
Yang et al., 2020). This figure also demonstrates that, for a relatively small budget of 12 hours,
the use of multifidelity data yields the CNN whose RMSE is appreciably smaller that those of
the CNNs trained on either HFS data or LFS data.

An optimal mix of the HFS and LFS data is investigated in the right plate of Fig. 6. The
multifidelity training was conducted five times for each HFS/LFS ratio, with random selection
of LFS/HFS from a larger pool of data. At the empirically optimal mix of 573 LFS and 100 HFS,
five of our experiments yield RMSE values of 0.097, 0.12, 0.098, 0.105, and 0.110. Two of the
five CNNs trained on 12 hours, worth of these multifidelity data achieve lower RMSEs than the
RMSE of 0.099 for the CNN trained on 79 hours, worth of HFS data. This LFS/HFS ratio lies
near the range, 1.5–5.5, suggested for multilevel Monte Carlo method (Taverniers et al., 2020).
Based on the theoretical results and the numerical experiments presented here, we recommend
the LFS/HFS ratio of 5 as a suitable initial guess. For the data-generation budget of 12 hours, a
mix dominated by the LFS data results in a CNN whose RMSE on test data exceeds 1.0 (beyond
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FIG. 6: RMSE on test data for the alternative CNN training strategies. It is plotted as function of the
budget allocated for data generation (left) and the number of PDE solutions on the fine mesh used to
generate HFS data (right). Each RMSE point in these graphs represents an average over 10 iterations of
training and is accompanied by error bars (the standard deviation). The left plate provides RMSE for the
CNNs trained on high-fidelity (blue circles), low-fidelity (red triangles), or multifidelity (black star) data.
The latter corresponds to the CNN trained on an optimal (the lowest RMSE) mix of high- and low-fidelity
data for a set budget of 12 hours; it is contrasted with the RMSE of the CNN trained on the HFS data
generated within the same budget (blue square). The black circles in the right plate represent RMSE of the
CNN trained on the multifidelity data sets, in which the number of HFS varies while the data-generation
budget is fixed at 12 hours. Also shown there are RMSEs of the CNNs trained on 12 hours (dot-dashed
line) and 79 hours (dotted line) of HFS.

the scale of Fig. 6), which indicates that the network’s lastConvolution Transpose 2 layer is not
meaningfully trained.

4.2 CNN Surrogates for Uncertainty Quantification

Finally, we investigate the utility of our CNN surrogates for uncertainty quantification. A quan-
tity of interest is the breakthrough time,Tbreak, at thex1 = 100 m plane (Fig. 2), with the term
breakthroughdefined as the saturation of the invading phase (S1) exceeding 0.15. Given uncer-
tainty in intrinsic permeabilityk(x), a solution of Eq. (3) and, hence, predictions ofTbreak are
given in terms of their cumulative distribution functions (CDFs) or probability density functions
(PDFs).

Figure 7 exhibits the CDF and PDF ofTbreak alternatively computed with HFS and LFS
Monte Carlo and with the CNN trained on the multifidelity data. The distributions obtained via
Monte Carlo method consisting of 292 hours of HFS are treatedas ground truth. The distribu-
tions obtained from 24 hours of LFS involve a sufficient number of samples for the error to be
attributable solely to the low resolution, i.e., to the discretization errors in solving PDEs. The
numbers of HFS samples generated during either 6 or 12 hours of simulations are insufficient
for the Monte Carlo method to converge, leading to the appreciable errors in estimation of PDF
and CDF ofTbreak. The CNN trained on multifidelity data yields accurate estimates of these
quantities, while requiring only 12 hours of data generation.
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FIG. 7: Left: The converged CDF (top) and PDF (bottom) of breakthrough time is calculated using MC
simulations of HFS, LFS, and the CNN surrogate model. The CDFand PDF calculated from varying
amounts of HFS are displayed on the subplots. Bar plots: RMSE(middle-top), MAE (middle-bottom), KL
divergence (right-top), and Wasserstein distance (right-bottom) from PDF calculated using CNN model,
HFS, and LFS.

In addition to visual comparison, the alternative strategies for estimation of the distributions
of Tbreak are compared in terms of RMSE, mean absolute error (MAE), theKullback–Leibler
(KL) divergence, and the Wasserstein distance. The UQ task was repeated 50 times, with Fig. 7
displaying the mean and standard deviation of these measures of discrepancy. We found 3200
forward passes of the CNN to be sufficient for the CDF/PDF estimates to converge; this UQ
task took about 10 minutes, whereas an equivalent HFS Monte Carlo method takes 194 hours.
By every discrepancy measure, the CNN estimates outperformthe converged LFS Monte Carlo
method and are at least as accurate as the HFS Monte Carlo method using 72 hours of data.
Likewise, the CNN estimates are vastly more accurate than the HFS Monte Carlo of a similar
data-generation budget.

5. CONCLUSIONS

We proposed a transfer learning-based approach to train a CNN on multifidelity (e.g., multi-
resolution) data. High- and low-fidelity images were generated by solving a PDE on fine and
coarse meshes, respectively. The performance of our algorithm was tested on a system of non-
linear parabolic PDEs governing multiphase flow in a heterogeneous porous medium with uncer-
tain (random) permeability. A quantity of interest (QoI) inthis example is the PDF or CDF of the
breakthrough time of an invading fluid. Our analysis leads tothe following major conclusions.
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1. CNN surrogates trained on multifidelity data provide an accurate approximation of the
PDE solution on the fine mesh, even for highly nonlinear problems that exhibit sharp
dynamic fronts. A forward pass of the CNN surrogate is two orders of magnitude faster
than a PDE solution on the fine-mesh. This speedup makes CNN surrogates an invaluable
tool for ensemble-based computation of the PDF/CDF of a QoI.

2. CNN training on multifidelity data reduces the data-generation budget 7-fold relative to
to CNN training on HFS data alone. If the budget is relativelysmall, the CNN trained on
the LFS data is more accurate than its HFS-trained counterpart. As the budget increases,
the opposite is true. This finding is reminiscent of the cost-constrained selection between
high- and low-fidelity models in the context of ensemble-based simulations.

3. For a small data-generation budget (12 hours, in our example), the CNN trained on multi-
fidelity data exhibits an appreciably smaller RMSE on test data than the CNNs trained on
either HFS or LFS data. Performance of the multifidelity CNN depends on the ratio be-
tween HFS and LFS in the training set. Theoretical studies onthe multilevel Monte Carlo
method can be used to guide the selection of an optimal mix of low- and high-fidelity
data.

4. The CNN trained on multifidelity data is largely insensitive to the discretization error
of LFS. CNN-derived estimates of the PDF and CDF of the QoI areclose to those of the
converged high-fidelity Monte Carlo method, but the former are three orders of magnitude
faster to obtain than the latter.

The computational efficiency and accuracy of CNN training onmultifidelity data depend
crucially on the HFS/LFS ratio. We relied on the theoreticalresults for MLMC as an empirical
guide for the selection of this ratio; a detailed theoretical and/or experimental investigation of
an optimal HFS/LFS ratio is left for the future. Another direction for subsequent studies is the
use of multiple physical models of different complexity, rather than a single model solved on
different numerical grids, to generate multifidelity data.
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APPENDIX A. PSEUDOCODE FOR TRAINING SURROGATE MODEL WITH
MULTIPLE LEVELS OF DATA

Algorithm 1: CNN training for given data
Input : Starting model (Min); training data (datatrain); test data (datatest); Number of

phases (Np); Epochs (eps)
Output : Best output model (Mout)
Procedure:
for i = 1, . . . , Np do

for j = 1, . . . , eps do
TrainMin using datatrain;
Compute RMSEtest using datatest;

end
Set RMSEcheckas mean of last 10 RMSEtest;
if RMSEcheck< RMSEbest then

SetMout asMin;
Set RMSEbestas RMSEcheck;

end
end

Algorithm 2: Phase 1: Training using LFS
Input : Original model (Morig); Convolution Transpose 2 layer fromMorig

(Lconv,transpose2); Temporary convolution layer in order to match LFS output
dimensions (Ltemp); LFS training data (datatrain,LFS); LFS test data
(datatest,LFS); Number of Phase 1 iterations (Nphase1); Epoch in Phase 1
(epsphase1)

Output : CNN trained on LFS (M1,best)
Procedure:
SetMmod1 by removingLconv,transpose2fromMorig;
SetM1 by attachingLtemp to the end ofMmod1;
TrainM1,bestusing Algorithm 1 (inputs:Min = M1, Nphase= Nphase1, eps = epsphase1,
datatest= datatest,LFS, datatrain = datatrain,LFS);

Algorithm 3: Phase 2: Initial training using HFS
Input : Model from Phase 1 (M1,best); Convolution Transpose 2 layer fromMorig

(Lconv,transpose2); Temporary convolution layer in order to match LFS output
dimensions (Ltemp); HFS training data (datatrain,HFS); HFS test data
(datatest,HFS); Number of Phase 2 iterations (Nphase2); Epoch in Phase 2
(epsphase2)

Output : CNN trained on LFS and HFS (M2,best)
Procedure:
SetMmod2 by removingLtemp fromM1,best, and lock all weights;
SetM2 by attachingLconv,transpose2to the end ofMmod2 (the weights ofLconv,transpose2

remain unlocked);
TrainM2,bestusing Algorithm 1 (inputs:Mstart= M2, Nphase= Nphase2, eps = epsphase2,
datatest= datatest,HFS, datatrain = datatrain,HFS);
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Algorithm 4: Phase 3: Final training using HFS
Input : Model from Phase 2 (M2,best); HFS training data (datatrain,HFS); HFS test

data (datatest,HFS); Number of Phase 3 iterations (Nphase3); Epoch in Phase 3
(epsphase3)

Output : Fine tuned CNN trained on LFS and HFS (M3,best)
Procedure:
SetM3 by unlocking all weights inM2,best;
TrainM3,bestusing Algorithm 1 (inputs:Mstart= M3, Nphase= Nphase3, eps = epsphase3,
datatest= datatest,HFS, datatrain = datatrain,HFS);

Algorithm 5: Training surrogate model on multiple scales of data
Input : HFS training data (datatrain,HFS); HFS test data (datatest,HFS); LFS training

data (datatrain,LFS); LFS test data (datatest,LFS); Number of Phase 1 iterations
(Nphase1); Number of Phase 2 iterations (Nphase2); Number of Phase 3
iterations (Nphase3); Epoch in Phase 1 (epsphase1); Epoch in Phase 2
(epsphase2); Epoch in Phase 3 (epsphase3)

Output : Surrogate model on the high-fidelity scale (M3)
Procedure:
Set and initializeMorig as original model as described by Table 1;
SetLconv,transpose2as “Convolution Transpose 2” layer fromMorig;
SetLtemp as temporary convolution layer in order to match LFS output dimensions
(16× 64× 64);

TrainM1 using LFS data via Algorithm 2;
TrainM2 using HFS data via Algorithm 3;
TrainM3 using HFS data via Algorithm 4.

Volume 3, Issue 1, 2022


