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Neural networks (NNs) are often used as surrogates or emulators of partial differential equations
(PDEs) that describe the dynamics of complex systems. A virtually negligible computational cost
of such surrogates makes them an attractive tool for ensemble-based computation, which requires a
large number of repeated PDE solutions. Since the latter are also needed to generate sufficient data
for NN training, the usefulness of NN-based surrogates hinges on the balance between the training
cost and the computational gain stemming from their deployment. We rely on multifidelity simu-
lations to reduce the cost of data generation for subsequent training of a deep convolutional NN
(CNN) using transfer learning. High- and low-fidelity images are generated by solving PDEs on
fine and coarse meshes, respectively. We use theoretical results for multilevel Monte Carlo method
to guide our choice of the numbers of images of each kind. We demonstrate the performance of this
multifidelity training strategy on the problem of estimation of the distribution of a quantity of in-
terest, whose dynamics is governed by a system of nonlinear PDEs (parabolic PDEs of multiphase
flow in heterogeneous porous media) with uncertain/random parameters. Our numerical experi-
ments demonstrate that a mixture of a comparatively large number of low-fidelity data and smaller
number of high-fidelity data provides an optimal balance of computational speed-up and prediction
accuracy. The former is reported relative to both CNN training on high-fidelity images only and
Monte Carlo solution of the PDEs. The latter is expressed in terms of both the Wasserstein distance
and the Kullback-Leibler divergence.

KEY WORDS: encoder-decoder, multifidelity, multiphase flow, neural network, shock,
surrogate models, transfer learning, uncertainty quantification

1. INTRODUCTION

Machine learning techniques, especially neural netwdlss(), have pervaded every facet of
human activity and have permeated into the field of scientiimputing. In the latter set-
ting, NNs are used to approximate highly nonlinear and irl&gfunctions (Friedman et al.,
2001), solve (ordinary and partial) differential equatide.g., Lee and Kang (1990), Lagaris
et al. (1998), Fuks and Tchelepi (2020), among many othakanstruct cheap surrogates for
ensemble-based computation (e.g., Mo et al., 2019a; Ratisdi, 2019). Examples of the lat-
ter include inverse modeling (Mo et al., 2019b; Zhou andakatsky, 2021), data assimilation
(Tang et al., 2020), and uncertainty quantification (Ttigyand Bilionis, 2018; Zhu et al., 2019).
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32 Song & Tartakovsky

A typical ensemble-based computation of practical sigaifge involves repeated solutions
of (coupled, nonlinear) partial-differential equatioROES)

N(u;0) = g(x,t;0), (x,t) € D x (0,T], 1)

which describe the spatiotemporal evolution of (a set @festariablesi(x, ¢) in the computa-
tional domainD over simulation time horizof0, T']. Multiple solutions of Eq. (1)—for different
values of the input®(x, t) that parameterize the differential operatdr the source functiop,
and auxiliary functions in the initial and/or boundary camhs—are required because these
values are known at best in terms of their distributions,chvkare either inferred from data or
provided by the expert. The high computational cost of smjuEq. (1) numerically often pre-
cludes one from generating enough samples to obtain meahstgtistics ofu(x,¢) or the
derived quantities of interest. A surrogate of Eq. (1) emra negligible cost, making possible
ensemble-based computation with arbitrarily small sangpdirror.

Alternative strategies for surrogate construction inelpdlynomial chaos expansions (Xiu,
2010), Kriging or Gaussian processes (Couckuyt et al., pqdalynomial regression (Mont-
gomery and Evans, 2018), tensor-product splines (HwangMaxdins, 2018), and random
forests (Breiman, 2001). The current popularity of NN-lsbs@rrogates (Mo et al., 2019a; Raissi
et al., 2019) is grounded in the scalability and approxioratiapabilities of deep NNs (Fried-
man et al., 2001; Tripathy and Bilionis, 2018). Regardldsh®@surrogate type, the training of a
surrogate requires a large number of solutions of Eq. (1difterent combinations of parameter
valuesP. Advanced computer architectures, e.g., CUDA-compatibdgohics processing units
(GPUs) and tensor processing units (TPUSs), are almost asigcéo train a large NN. A com-
bined cost of training-data acquisition and NN training barso large as to negate the benefits
of the NN.

This observation suggests that the practical utility of &h & a surrogate model hinges on
one’s ability to dramatically reduce the cost of its constilen. We rely on multifidelity simula-
tions to reduce the cost of data generation for subsequanirig of a deep convolutional NN
(CNN) using transfer learning. High- and low-fidelity imagae generated by solving Eq. (1) on
fine and coarse meshes, respectively. A fine mesh is defindrtimeed to resolve the spatiotem-
poral variability of the model’s input8 and outputs:; the resulting high-fidelity simulation car-
ries a high computational cost. Lower-fidelity solutionsEaf. (1), obtained on coarser meshes
on which appropriately homogenized inpétg, are defined, are cheaper to compute but less
accurate. We train a CNN on a mixture of these multifidelityagdasing the theoretical results
for multilevel Monte Carlo (MLMC) (Giles, 2008; Heinrich998, 2001; Taverniers et al., 2020)
to guide our choice of the numbers of solutian, t) of each kind. Similar to MLMC (Muller
et al., 2013; Peherstorfer, 2019), the varying fidelity (dkaels”) of predictions ofu can be
achieved not only by solving Eq. (1) on different meshes,dist by replacing Eq. (1) with its
cheaper-to-compute counterparts. For example, the rhakip flow equations used as the com-
putational testbed in this study can be replaced with thapheto-solve Richards equation and
Green—-Ampt equation (Sinsbeck and Tartakovsky, 2015; ‘&rad., 2020), each of which en-
capsulates progressively simplified physics. We leaveatpiect of NN training on multifidelity
data for a follow-up study.

The idea of using multifidelity data in the context of NNs i moique to this study. For
example, Geneva and Zabaras (2020) trained surrogate snosieg low-fidelity simulations
as a conditional input. Meng and Karniadakis (2020) buillyfeonnected NN surrogates by
training different networks to handle the low- and-high figedata. The novelty of our approach
is to deploy transfer learning on multifidelity data to trdifferent parts of a single network.
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Section 2 contains a brief description of our CNN and the fowkfor its training on mul-
tifidelity of data. The performance of this algorithm is esbn a system of nonlinear parabolic
PDEs governing multiphase flow in a heterogeneous porousumedith uncertain properties,
which are formulated in Section 3. In Section 4, we demotwesthee accuracy and computational
efficiency of the CNN-based surrogate used to quantify pteeiuncertainty of Eq. (1) in terms
of the distribution of a quantity of interest. The main carsibns drawn from this study are
presented in Section 5.

2. DEEP CONVOLUTIONAL NEURAL NETWORKS

While many flavors of NNs can be used as a surrogate for a PBedaodel like Eq. (1), we
choose CNNs because of their proven ability to model comptadinear phenomena and the
negligible cost of their forward pass. To be specific, weadhee CNN with encoder-decoder ar-
chitecture (Mo et al., 2019b), which has previously beendisesingle-phase (Mo et al., 2019a)
and multiphase (Mo et al., 2019b) flow problems in the contéxncertainty quantification. The
presence of dense-blocks differentiates the selectedtectiire from other encoder-decoders
such as the one found in U-Net (Ronneberger et al., 2015)d€hee blocks have connections
between nonadjacent layers to enhance the flow of informatimugh a network (Mo et al.,
2019a). The encoder-decoder architecture is ideally gdidtetraining on multifidelity data, as
detailed in Section 2.1.

The CNN-based surrogate is set up as an image-to-imagességnenodel (Zhou and Tar-
takovsky, 2021). To train and test the network, we use tharpater value8 (x;) in N elements
{xi}fvi'l of a numerical grid as input and the discretized soluiidg;, ¢;) of PDE (1) atNy
time steps{tk}kN‘;1 as output. To facilitate the generalizibility of the trath€ENN to unseen
sets of the inpuB(x;), i.e., to ensure that the CNN is not overfitted to a particalasice of
0(x;), the training data comprises a large numbgg, of the solutionsu obtained forNyin

realizations{04, . .., 0 y,,,} Of the inputd. The loss function
Nyain Net  Nts Ny
LOw) =D 3 ul tr; 0m) — (W3 00) +A D wd, (2)
m=1i=1k=1 n=1

consists of two parts. The first represents thenorm discrepancy between the state variables
u predicted by solving PDE (1)i(x;, t5) and estimated by the CNNy;, (w), with N,, weights

w = (wy,...,wy,)". The Ly-norm regularization prevents overfitting by penalizinggi
weightsw associated complex models; the regularization parametiztermines how much
regularization penalty is applied. The CNN training cotssf finding a set of weighte* that
minimizes..

2.1 Transfer Learning

The construction of CNN-based generalizable surrogateighnare capable of making predic-
tions for realizations 06 (x) not seen during training, requires a large number of PDHisols,
Niain, €.9.,Nyain ~ 1500, was used by Mo et al. (2019a) and Zhou and Tartakov€k1{j2o
train the encoder-decoder CNNs similar to ours. When asiRFIE solution is expensive, the
costs associated with largé,,in can be large to the point where CNN training becomes unfea-
sible. To alleviate this problem, we use both multifideligtal and transfer learning (Donahue
et al., 2014). The latter is a technique that uses an NN tldimeone task as the starting point
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for a different NN being trained for a new task. Transfer héag has been implemented for
face detection (Jiang and Learned-Miller, 2017), genenaif image description (Karpathy and
Fei-Fei, 2015), and construction of physics-informed NNadhighat et al., 2021), among other
applications.

Let HFS and LFS data refer to the solutions of Eq. @{x;,tx), obtained on the fine
(Nei = N{FS) and coarse Ne = NS5 with NYS < NEFS) meshes, respectively. Wy,
in Eqg. (2) denotes the number of weights in the CNN trainedhenHFS data, then our im-
plementation of transfer learning starts with the constoacof a CNN composed ofV rs
(Nips < Ny) weightswirs = (wy,...,wy,) ' trained on the LFS data. Then, the HFS
data are used to train the desired high-resolution CNN toaletermine the remaining weights
WhEs = (WNet1, - - -, Wh,) | - This transfer learning strategy is depicted in Fig. 1 arntditbel
in the following.

2.2 Workflow for CNN Training on Multifidelity Data

Our strategy for CNN training on multifidelity data consististhree phases (Fig. 1), each of
which results in a CNN denoted hby/; (i = 1,2, 3). During Phase 1, the CNRN/; with the
NLS x NLFS output is trained on the LFS data. In Phase 2, the CNjwith NS x NEFS
output is constructed by adding an additional layer withweeghtswyes, which are trained
on the HFS data while keeping the original weightg-s fixed. Phase 3 consists of fine-tuning
the CNN M, by allowing all the weightsw = {w| s, wes} to update during the training on
the same HFS data. The numerical experiments reported tin8e@ and 4 demonstrate that
this transfer learning strategy significantly reduces thmiber of high-resolution PDE solu-
tions.

The workflow of our approach is provided below (see AppendifoAthe corresponding
pseudocode).

Phase 1: Train a CNN/;, with N5 x N.S output, on the LFS data.

State 1.1: Initialize the transfer learning by employing émcoder-decoder CNN of Mo
etal. (2019b) My with NEFS x NHFS output, whoseV,, weightsw are set
to PyTor ch defaults.

Phase 1 Phase 2 Phase 3

State 1.2 (Initial) State 1.2 (Trained) State 2.2 (Initial) State 2.2 (Trained) Initial Trained

In Conv
Input dim: [HFS]

In Conv In Conv In Conv. In Conv.
Input dim: [HFS] Input dim: [HFS] Input dim: [HFS] Input dim: [HFS] Input dim: [HFS] Input dim: [HFS]

Encoding Encoding Encoding Encoding Encoding Encoding Encoding
Dense
Block

Dense
Block

Dense Dense Dense Dense

Block Block Block Block
Decoding Decoding Decoding Decoding Decoding Decoding

Out Conv.
Out dim: [HFS]

Out Conv. Temp Temp out Conv Out Conv Out Canv Out Conv
Out dim: [HFS] Out dim: [LFS] Out dim: [LFS] Out dim: [HFS] Out dim: [HFS] Out dim: [HFS] Out dim: [HFS]

Blue indicates an un-trained network block Green indicates a trained network block

Checkered indicates a semi-trained network block Grey indicates a “locked” block

FIG. 1. Workflow for CNN training on multifidelity data. Phase 1 retara low-resolution CNN trained
on the LFS data. Phase 2 supplements that network with ati@tailayer whose weights are determined
from the HFS data, producing a high-resolution CNN. In Pi&adbe latter is fine-tuned by allowing all
the weights to vary during the training on the same HFS dappeAdix A provides a pseudocode for all
three phases.
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State 1.2: Train the CNN/; on the LFS data. The starting point is a CNN obtained
from Min; by replacing its last layef,s, Which hasNygs weights wiygs,
with a temporary convolution layeliemp The latter is composed of weights
wiemp @nd makes the output d¥f; match the dimensions of the LFS data,
[Nis x N5FS x NEFS). Then, the weights af/1, Wphase1= {WHFs, Wiemp} are

trained on the LFS data by minimizing Eq. (2).

Phase 2: Train a CNN/,, with N,, weightsw = {wrs, wyrs} (of which N gs weights
are locked) andV{FS x NEFS output, on the HFS data.

State 2.1: Build a CNN fromi/, by replacing its layeLemp With the layerLas;and dis-
carding Liemp The modified CNN has weights = {wyrs, Whrs}, among
which weightsw| s have been updated by data awdrs have not been up-
dated by data.

State 2.2: Train the resulting CNIN, on the HFS data by minimizing Eq. (2) over the
weightswyes Of layer Lias, While keeping the remaining weightg ks fixed
at their values in\/;.

Phase 3: Train a CNN/; on the HFS data by allowing all weights of M, to vary during
the minimization.

Because the bulk of the CNM/3 training is carried out on the LFS data, this procedure isemor
efficient than CNN training solely on HFS data. The predeapability of the trained/, is
only sometimes similar to that of the traindds; Phase 3 improves the performance if changes
are needed in the layers which were locked during Phase 2.

3. COMPUTATIONAL EXAMPLE: MULTIPHASE FLOW

Numerical solution of problems involving multiphase flowporous media is notoriously dif-
ficult because of the high degree of nonlinearity and stiffnef the governing PDEs. Each
forward solve of these PDEs is so expensive that it is uncomm@., uncertainty quantifica-
tion efforts in petroleum engineering have been based oavas$ three model runs. This high
cost and numerical complexity make the multiphase flow equsta challenging testbed for
ensemble-based simulations.

We consider horizontal flow of two incompressible and imibigcfluids, with viscosities
w; anduy, in a heterogeneous, incompressible, and isotropic parmdiumD. The latter is
characterized by porosity and intrinsic permeability:. The porosity is assumed to be constant
at¢$ = 0.25, and intrinsic permeabilitly(x) is treated as a random variable. The time domain
is between zero and a specified terminal timeMass conservation of théh fluid phase{ =
1,2) implies

05,
ot

whereS,(x,t) is the phase saturation constraineddiy+ S, = 1; ¢, is the source/sink term;
and the macroscopic velocity(x, t) is described by the generalized Darcy law

d—+V -vi+q =0 x=(x1,22) €D, tel0,T), (3a)

Vy = —k@VPg (3b)
He
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The relative permeability for théth phasek,.,, varies with the phase saturatidn, = k,.,(S¢),
in accordance with the Brooks—Corey constitutive modelrég01954). Following Taverniers
et al. (2020) and many others, we neglect the capillary &rce., we assume pressure within
the two phases to be equal, = P, = P(x,t); this is a common assumption in applications to
reservoir engineering and carbon sequestration.

The two-dimensional computational spatial domaiins a 150x 150 m square (Fig. 2) with
impermeable bottonT}{, or z, = 0) and top [; or o = 150 m) boundaries; Dirichlet conditions
are imposed along the leff'( or 1 = 0) and right (', or z; = 150 m) boundaries:

P
g— =0, xelpuUuly P=102 andS; =10, xeI';; P=101 xeT}; (4a)
%2
here and below, the pressureis expressed in MPa. Initial conditions are

P(x,0) =101, S1(x,0) =0, xeD. (4b)

All the model parameters, except for the intrinsic permiésibi (x), are assumed to be con-
stant and known with certainty. The uncertain permeabflity) is modeled as a second-order
stationary random field, such th&t(x) = Ink is multivariate Gaussian with medi™) = 0,
varianceo?, = 2.0, and an exponential two-point covariaréex, y) = o2 exp(—|x — y|/Ay)
with the correlation lengthy = 19 m. We use a truncated Karhunen—Loéve expansionpwith
31 terms to represeiif(x) (Taverniers et al., 2020). A representative realizatiothefresulting
permeability field is shown in Fig. 2 for the 128128 mesh.

Equations (3)—(4) are approximated using a finite volumesehin space and implicit Eu-
ler scheme in time, yielding a highly nonlinear algebraistsyn (Aziz, 1979). Adaptive time-
stepping is implemented to advance the solution in time.a&hdime step, the nonlinear alge-
braic system is solved through Newton—Raphson (NR) itmnativith the modified Appleyard
update dampening (Appleyard et al., 1981) that improvestim¥ergence of NR iterations by
capping the maximum saturation update to a specified liroittkevth iteration and théth cell
of volumeV;, the convergence criteria are

man‘At(%)‘ < €1, maxi|Pl.(V+1) — Pi(v)| < €, ma>g-|SL§)Vl.+l) — SLEI.)| <es (B

15 [ [In(mDarcy)]

Xx2[m]

50

x1[m]

FIG. 2. A representative realization of log permeability fiéfld= In k£ on the 128x 128 grid, which is
used in high-fidelity simulations. Permeabilktyis expressed in mDarcy.
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wherer, ; is the residual of the mass balance of phiskt is the time step, the relative residual
norme; = 10~%, the maximum pressure update= 10~3, and the maximum saturation update
€3 = 1072

3.1 Upscaling of Permeability

Multifidelity data are generated by solving Egs. (3)—(4) oagressively coarsened grids: the
128 x 128 and 64x 64 grids are used for HFS and LFS, respectively. The spaBatetiza-
tions of these HFS and LFS\¢ = 1.17 and 2.34 m, respectively) are sufficient to capture the
randomness in permeability fields. The latter rests on thke ‘of thumb” requirement thakz

be such that Az < Ay, i.e., that a numerical mesh should have at least four elenoétength

Az per correlation lengthy [e.g., Ye et al. (2004) and references therein]. Our HFS &fd L
satisfy this requirement, since we usg = 19 m.

This grid coarsening must be accomplished by upscalingg¢eoing) of the realizations of
the random permeability which are initially generated at the finest scale (Fig. 2).ohg al-
ternative upscaling strategies (Boso and Tartakovskyg2Paleologos et al., 1996; Tartakovsky
and Neuman, 1998), we select the one proposed by Durlofsd§5)2because of its computa-
tional simplicity. It turns a scalar permeability field defthon the fine (128 128) mesh into
its upscaled tensorial (anisotropic) counterpart whoseiafjonal components are 0 and the di-
agonal components are computed as the distance-weiglittatietic mean perpendicular to the
direction of flow and the distance-weighted harmonic meahendirection of flow.

3.2 Data Acquisition

Multifidelity training data come in the form aWV;s = 16 temporal snapshots of the saturation

S1(x,t) computed by solving Egs. (3)—(4) on th& x Ne grids with Ny = 128= NS and

64 = N47S. Figure 3 shows examples of such images, corresponding foetmeability field in

Fig. 2. The permeability fields on the finest meghx Nyes X Nyeg|, are used as the inp@t

for all CNNs. The size of the CNN/Vis x N x Ngj], depends on the size of the training data.
The numerical solutions of Egs. (3)—(4) are obtained usikgtd ab-based multiphase flow

simulator on a computer with an Intel Core i7-4790 3.6GHzpssor and 64GB of RAM. The

[m] =

o, ml o=

50 g 100 50y w100

S,
150 = 10
103
t=11yr 0.6

&

0.4

wlml o

m aml o

LFS
t=6yr |

50 4y 100

0.0

50y, m 100 150 0 I —— 50 0 50 (] 100

FIG. 3: Temporal snapshots of saturatiSi(x, t) computed with (top-row) HFS and (bottom-row) LFS
for the permeability field:(x) in Fig. 2
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computation time for each HFS data point is 219.13 and 37fb8 sach LFS data point. The
time needed to generate a data set is henceforth referresdhedata-generation budget

3.3 CNN Training

Table 1 describes the CNN architecture used in the implestientof our approach (see Fig. 1).
The model implementation and training is done usiygor ch and other open source pack-
ages. The computations were carried out on the Stanford iabégh-performance computing
cluster. The allocated computing resources include Inetof Gold 6126 CPU (2.6 GHz),
60GB RAM, and Nvidia V100 GPU with 16GB vRAM. (Although awalile, multicores were

not used for this work.)

The key hyper-parameters affecting the CNN performancdterdearning rate (LR), the
weight decay (WD), the factor (F), and the minimum learniater(mLR). The LR and WD
are parameters of the Adam optimizer (Kingma and Ba, 20h#) tlhe F and mLR are param-
eters of theReduceLRONPI at eau scheduler. The CNN training involves many more hyper-
parameters, but we use their default valueByTor ch. The the regularization paramefeis
specified through WD following the implementation of Loshot and Hutter (2017). Further
information on the hyper-parameters, schedulers, anchigetrs can be found in tHey Tor ch
documentation (Paszke et al., 2019).

The hyper-parameters used by Mo et al. (2019b) in a similaN@kthitecture serve as an
initial guess for the hyper-parameter optimization. Tharcle is iterated through variations of
LR, WD, F, and mLR, in this order. Once an acceptable valuehyffeer-parameter was found,
the search moved to the next hyper-parameter. A robust gectk may yield a more optimal
set of hyper-parameters. The search required 100 HFS, adthteaining pass taking about 0.65
hours to complete, when 200 epochs were used. It took 7 2irigghours to find functional
hyper-parameters (12 training passes), and a considesatailer wall-clock time because this
task was parallelized across several GPU nodes. We setbetbgper-parameter values yielding

TABLE 1: Model block description and the input and output dimensafreach model block. In
our numerical experiments, the number of time stepgds= 16; the number of elements in fine
and coarse meshesi&|FS x NHFS = 128 x 128 andV4 S x NLFS = 64 x 64, respectively; the
number of elements in the output of the dense blodK{s.se= 32; and the number of channels
in each of the seven layers of the CNNnigs = 64,n, = 344,n3 = 172,n4 = 652,n5 = 326,

ng = 606, andn; = 303

Layer Input Output
Input: permeability field: 1 X Nues X NHEs
Convolution 1 ny x NHFS x NHFS na x N5 x NLs
Dense block (encoding) ny x NS x NS ng x N5FS x NS
Convolution 2 ng x N5 x NLs 14 X NgenseX Nense
Dense block N4 X NgenseX Ndense N5 X NgenseX Ndense
Convolution Transpose 1 15 X NgenseX Ndense ne x N5 x NLs
Dense block (decoding) ne x N5S x NS n7 x N5FS x NYS
Convolution Transpose 2 n7 x NS x NLFs Nis x NHFS x NHFS
Output: saturation mag Nis x NHFS x NHFs
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the smallest root mean square error (RMSE) on the HFS tes(Eligt 4). These values are used
as a starting point in the hyper-parameter optimizatiomfattifidelity transfer learning. Then,
the LR and epochs at each phase (Section 2.2) are modifiednimizé the RMSE on the
corresponding test data. The resulting hyper-parameleeyare shown in Table 2.

4. RESULTS

Once trained (in this example, on 573 LFS and 100 HFS, whiok ® hours to generate),
the CNN surrogate provides an accurate approximation oPfDE solution on the fine mesh
(Fig. 5), even for such highly nonlinear problems as Eq. I§a} exhibit sharp dynamic fronts.
A forward pass of the CNN surrogate is on the order of a secahdreas a fine-mesh PDE
solution takes nearly 220 s. This two-orders-of-magnitsipeedup makes CNN surrogates an
invaluable tool for uncertainty quantification (UQ) (Secti4.2).

4.1 Model Performance

We compare the relative performance of the CNN trained orifialglity data and the CNNs
trained on either HFS data or LFS data, in terms of both acgu@MSE on test data) and
computational cost. We also investigate the effect of vayyhe amount of HFS and LFS data
for a given computational budget of 12 hours.

To train the high-resolution (12& 128 output) CNN solely on the LFS (64 64) data,
the latter have to be downscaled to match the dimensions.dM® dy taking the Kronecker
product of a 64x 64 LFS image and a 2 2 matrix of 1 s. The transformed LFS data have the
desired dimensions, while containing the same informad®ithe original image. The test data
are composed of HFS images (PDE solutions on fine mesh) tmatwe¢used for CNN training.
Figure 6 exhibits the RMSEs on test data of the CNNs traineligin-, low-, and multifidelity

0.325 0.20 0.20
0.300 0.19
0.275

40250

=

& 0.225
0.200 017 017

0.175

0.150 0.16

10-° 104 102 10-° 105 10 10— 02 04 06 08 107 10-° 10-°
Learning Rate Weight Decay Factor Minimum Learning Rate

FIG. 4: Hyper-parameter performance in the neighborhood of optithyper-parameter set in terms of the
root mean square error (RMSE) for the test data. Unlessddlas ther-axis variable, all plots correspond
to LR=5x10"°, WD = 1x 10~%, F= 0.6, and mLR= 5 x 10~°. Each data point represents the mean
and standard deviation of 10 training sessions.

TABLE 2: Learning rates and epochs
used at each phase

Learningrate Epochs

Phase 1 5 104 170
Phase 2 5 10~° 150
Phase 3 10° 100
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Model (5) abs(s — 5) Model (S)
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HFS (S) Model () 5-§ Model ()
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HFS (S)
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sl o
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HFS (S)
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FIG. 5: Temporal snapshots of the saturation mépsk, t) for the permeability field:(x) in Fig. 2. These
are generated with either HFS of the PDE model in Egs. (3) dhddbeled asS in the first and fourth
columns) or the CNN surrogate (labeled%i the second and fifth columns). The third and sixth columns
display the absolute difference between the two predistigh— §|.

data as function of the computational budget; each poirtiéiseé graphs represents an average
over 10 repetitions of training and is accompanied by eraws lfthe standard deviation).

The left plate of Fig. 6 reveals that, if the data-generatiodget does not exceed 20 hours,
the CNN trained on the LFS data outperforms its HFS-trairmehterpart in terms of RMSE.
That is because such budgets do not allow for generationfi€isat amounts of HFS data.
As the budget increases, the error of the LFS data precli@eRMSE of the CNN trained on
such data from dropping below 0.125 while the RMSE of the HifaBed CNN continues to
decrease. This finding is reminiscent of the cost-consrhselection between high- and low-
fidelity models in the context of ensemble-based simulati@insbeck and Tartakovsky, 2015;
Yang et al., 2020). This figure also demonstrates that, fetatively small budget of 12 hours,
the use of multifidelity data yields the CNN whose RMSE is agjably smaller that those of
the CNNs trained on either HFS data or LFS data.

An optimal mix of the HFS and LFS data is investigated in thghtiplate of Fig. 6. The
multifidelity training was conducted five times for each HES$ ratio, with random selection
of LFS/HFS from a larger pool of data. At the empirically opsil mix of 573 LFS and 100 HFS,
five of our experiments yield RMSE values of 0.097, 0.12, 8,@105, and 0.110. Two of the
five CNNs trained on 12 hours, worth of these multifidelityadathieve lower RMSEs than the
RMSE of 0.099 for the CNN trained on 79 hours, worth of HFS datds LFS/HFS ratio lies
near the range, 1.5-5.5, suggested for multilevel MontéoGaethod (Taverniers et al., 2020).
Based on the theoretical results and the numerical expatinpegesented here, we recommend
the LFS/HFS ratio of 5 as a suitable initial guess. For tha-g@neration budget of 12 hours, a
mix dominated by the LFS data results in a CNN whose RMSE dritga exceeds 1.0 (beyond
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FIG. 6: RMSE on test data for the alternative CNN training strategieis plotted as function of the
budget allocated for data generation (left) and the numbd&E solutions on the fine mesh used to
generate HFS data (right). Each RMSE point in these gragitesents an average over 10 iterations of
training and is accompanied by error bars (the standarcatien). The left plate provides RMSE for the
CNNs trained on high-fidelity (blue circles), low-fidelityed triangles), or multifidelity (black star) data.
The latter corresponds to the CNN trained on an optimal @hest RMSE) mix of high- and low-fidelity
data for a set budget of 12 hours; it is contrasted with the EMSthe CNN trained on the HFS data
generated within the same budget (blue square). The bledk<in the right plate represent RMSE of the
CNN trained on the multifidelity data sets, in which the numbeHFS varies while the data-generation
budget is fixed at 12 hours. Also shown there are RMSEs of thR<Cikained on 12 hours (dot-dashed
line) and 79 hours (dotted line) of HFS.

the scale of Fig. 6), which indicates that the network’s Gstvolution Transpose 2 layer is not
meaningfully trained.

4.2 CNN Surrogates for Uncertainty Quantification

Finally, we investigate the utility of our CNN surrogates mcertainty quantification. A quan-
tity of interest is the breakthrough tim&,eq, at thex; = 100 m plane (Fig. 2), with the term
breakthroughdefined as the saturation of the invading phés¢ éxceeding 0.15. Given uncer-
tainty in intrinsic permeabilityt(x), a solution of Eq. (3) and, hence, predictionslgfaxare
given in terms of their cumulative distribution functior@@Fs) or probability density functions
(PDFs).

Figure 7 exhibits the CDF and PDF @f,.ax alternatively computed with HFS and LFS
Monte Carlo and with the CNN trained on the multifidelity daf&e distributions obtained via
Monte Carlo method consisting of 292 hours of HFS are treaseground truth. The distribu-
tions obtained from 24 hours of LFS involve a sufficient numtifesamples for the error to be
attributable solely to the low resolution, i.e., to the détization errors in solving PDEs. The
numbers of HFS samples generated during either 6 or 12 hégimalations are insufficient
for the Monte Carlo method to converge, leading to the apabéz errors in estimation of PDF
and CDF ofTyea The CNN trained on multifidelity data yields accurate esties of these
quantities, while requiring only 12 hours of data generatio
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FIG. 7: Left: The converged CDF (top) and PDF (bottom) of breaktigtotime is calculated using MC
simulations of HFS, LFS, and the CNN surrogate model. The @B# PDF calculated from varying
amounts of HFS are displayed on the subplots. Bar plots: Ri8&dle-top), MAE (middle-bottom), KL
divergence (right-top), and Wasserstein distance (ffiglttem) from PDF calculated using CNN model,
HFS, and LFS.

In addition to visual comparison, the alternative straedor estimation of the distributions
of Threak @are compared in terms of RMSE, mean absolute error (MAE) Kilithack—Leibler
(KL) divergence, and the Wasserstein distance. The UQ taskrapeated 50 times, with Fig. 7
displaying the mean and standard deviation of these measfidiscrepancy. We found 3200
forward passes of the CNN to be sufficient for the CDF/PDFestes to converge; this UQ
task took about 10 minutes, whereas an equivalent HFS Maoarti® Gethod takes 194 hours.
By every discrepancy measure, the CNN estimates outpetforoonverged LFS Monte Carlo
method and are at least as accurate as the HFS Monte Carlodnating 72 hours of data.
Likewise, the CNN estimates are vastly more accurate thatifS Monte Carlo of a similar
data-generation budget.

5. CONCLUSIONS

We proposed a transfer learning-based approach to train M @Nmultifidelity (e.g., multi-
resolution) data. High- and low-fidelity images were getextdy solving a PDE on fine and
coarse meshes, respectively. The performance of our tigokvas tested on a system of non-
linear parabolic PDEs governing multiphase flow in a hetenegpus porous medium with uncer-
tain (random) permeability. A quantity of interest (Qoltitis example is the PDF or CDF of the
breakthrough time of an invading fluid. Our analysis leaddé&following major conclusions.
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1. CNN surrogates trained on multifidelity data provide aouaate approximation of the
PDE solution on the fine mesh, even for highly nonlinear protd that exhibit sharp
dynamic fronts. A forward pass of the CNN surrogate is twoeosf magnitude faster
than a PDE solution on the fine-mesh. This speedup makes Chbgsites an invaluable
tool for ensemble-based computation of the PDF/CDF of a Qol.

2. CNN training on multifidelity data reduces the data-gatien budget 7-fold relative to
to CNN training on HFS data alone. If the budget is relatishall, the CNN trained on
the LFS data is more accurate than its HFS-trained countefathe budget increases,
the opposite is true. This finding is reminiscent of the ausistrained selection between
high- and low-fidelity models in the context of ensembledsbsimulations.

3. For a small data-generation budget (12 hours, in our elgnipe CNN trained on multi-
fidelity data exhibits an appreciably smaller RMSE on tesa tlzan the CNNs trained on
either HFS or LFS data. Performance of the multifidelity CN&pelnds on the ratio be-
tween HFS and LFS in the training set. Theoretical studighemultilevel Monte Carlo
method can be used to guide the selection of an optimal migwef and high-fidelity
data.

4. The CNN trained on multifidelity data is largely insengtito the discretization error
of LFS. CNN-derived estimates of the PDF and CDF of the Qokhrse to those of the
converged high-fidelity Monte Carlo method, but the fornrerthree orders of magnitude
faster to obtain than the latter.

The computational efficiency and accuracy of CNN trainingnautifidelity data depend
crucially on the HFS/LFS ratio. We relied on the theoretieslults for MLMC as an empirical
guide for the selection of this ratio; a detailed theorétanad/or experimental investigation of
an optimal HFS/LFS ratio is left for the future. Another ditien for subsequent studies is the
use of multiple physical models of different complexityth@r than a single model solved on
different numerical grids, to generate multifidelity data.

ACKNOWLEDGMENTS

This research was supported in part by Air Force Office of r8ifie Research under Award
No. FA9550-21-1-0381; by the Advanced Research ProjecenégEnergy (ARPA-E), U.S.
Department of Energy, under Award No. DE-AR0001202; and biftdrom Total.

REFERENCES

Appleyard, J.R., Cheshire, I.M., and Pollard, R.K., Spetéahniques for Fully Implicit Simulator®roc.
of the European Symposium on Enhanced Oil RecoBayrnemouth, UK, pp. 395-408, 1981.

Aziz, K., Petroleum Reservoir SimulatipNew York: Applied Science Publishers, 1979.

Boso, F. and Tartakovsky, D.M., Information-Theoretic Agch to Bidirectional ScalingiVater Resour.
Res, vol. 54, no. 7, pp. 4916-4928, 2018.

Breiman, L., Random Forestslach. Learn, vol. 45, no. 1, pp. 5-32, 2001.

Corey, A.T., The Interrelation between Gas and Oil Relg®igemeabilitiesProducers Month.vol. 19, no.
1, pp. 38-41, 1954.

Couckuyt, I., Dhaene, T., and Demeester, P., SooDACE Teolad-lexible Object-Oriented Kriging Im-
plementationJ. Mach. Learn. Resvol. 15, pp. 3183-3186, 2014.

Volume 3, Issue 1, 2022



44 Song & Tartakovsky

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, Nerfig, E., and Darrell, T., Decaf: A Deep Convo-
lutional Activation Feature for Generic Visual Recogniti€roc., 31st Int. Conf. on Machine Learning
pp. 647655, 2014.

Durlofsky, L.J., Upscaling and Gridding of Fine Scale Geidal Models for Flow Simulation3th Int.
Forum on Reservoir Simulatiomol. 2024, lles Borromees, Stresa, Italy, pp. 1-59, 2005.

Friedman, J., Hastie, T., and Tibshirani, Rhe Elements of Statistical Learningst ed., New York:
Springer, 2001.

Fuks, O. and Tchelepi, H., Limitations of Physics Informeddtline Learning for Nonlinear Two-Phase
Transport in Porous Medid, Mach. Learn. Model. Computol. 1, no. 1, pp. 19-37, 2020.

Geneva, N. and Zabaras, N., Multifidelity Generative Deegarhimg Turbulent Flowsf-ound. Data Sc;j.
vol. 2, no. 4, pp. 391-428, 2020.

Giles, M.B., Multilevel Monte Carlo Path Simulatio®per. Res.vol. 56, no. 3, pp. 607-617, 2008.

Haghighat, E., Raissi, M., Moure, A., Gomez, H., and JuaResA Physics-Informed Deep Learning
Framework for Inversion and Surrogate Modeling in Solid katics Comput. Meth. Appl. Mech. Eng.
vol. 379, p. 113741, 2021.

Heinrich, S., Monte Carlo Complexity of Global Solution atégral Equations]. Complexityvol. 14, no.
2, pp. 151-175, 1998.

Heinrich, S., Multilevel Monte Carlo Methodit. Conf. on Large-Scale Scientific Computiigpzopol,
Bulgaria, pp. 58-67, 2001.

Hwang, J.T. and Martins, J.R.R.A., A Fast-Prediction Sgate Model for Large Dataset&erospace Sci.
Tech, vol. 75, pp. 74-87, 2018.

Jiang, H. and Learned-Miller, E., Face Detection with thet&aR-CNN,2017 12th IEEE Int. Conf. on
Automatic Face & Gesture Recognition (FG 201\iashington, DC, pp. 650-657, 2017.

Karpathy, A. and Fei-Fei, L., Deep Visual-Semantic Alignmesfor Generating Image Descriptiofspc.,
IEEE Conf. on Computer Vision and Pattern Recogniti®oston, pp. 3128-3137, 2015.

Kingma, D.P. and Ba, J., Adam: A Method for Stochastic Optation, 2014. arXiv: 1412.6980

Lagaris, I.E., Likas, A., and Fotiadis, D.l., Artificial Neal Networks for Solving Ordinary and Partial
Differential EquationslEEE Trans. Neural Networksol. 9, no. 5, pp. 987-1000, 1998.

Lee, H. and Kang, I.S., Neural Algorithm for Solving Diffetéal Equations). Comput. Physvol. 91, no.
1, pp. 110-131, 1990.

Loshchilov, I. and Hutter, F., Decoupled Weight Decay Ragaétion, 2017. arXiv: 1711.05101

Meng, X. and Karniadakis, G.E., A Composite Neural NetwohaflLearns from Multifidelity Data: Ap-

plication to Function Approximation and Inverse PDE Praide]. Comput. Physvol. 401, p. 109020,
2020.

Mo, S., Zabaras, N., Shi, X., and Wu, J., Deep Autoregreddmeral Networks for High-Dimensional
Inverse Problems in Groundwater Contaminant Source |iileatton, Water Resour. Resvol. 55, no. 5,
pp- 3856-3881, 2019a.

Mo, S., Zhu, Y., Zabaras, N., Shi, X., and Wu, J., Deep Cortiahal Encoder-Decoder Networks for
Uncertainty Quantification of Dynamic Multiphase Flow inteegeneous MedidVater Resour. Res.
vol. 55, no. 1, pp. 703-728, 2019b.

Montgomery, D.C. and Evans, D.M., Second-Order RespongacuDesigns in Computer Simulation,
Aerospace Sci. Techol. 75, pp. 74-87, 2018.

Muller, F., Jenny, P., and Meyer, D.W., Multilevel Monter@afor Two Phase Flow and Buckley-Leverett
Transport in Random Heterogeneous Porous Madi@pmput. Physvol. 250, pp. 685-702, 2013.

Paleologos, E.K., Neuman, S., and Tartakovsky, D.M., HEffecHydraulic Conductivity of Bounded,
Strongly Heterogeneous Porous Mediater Resour. Resvol. 32, no. 5, pp. 1333-1341, 1996.

Journal of Machine Learning for Modeling and Computing



Transfer Learning on Multifidelity Data 45

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, ;anéh, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Ran, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S., Pytorchimperative Style, High-Performance Deep
Learning Library,Advances in Neural Information Processing SystemdH32Vallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, E&ed Hook, NY: Curran Associates, Inc.,
pp. 8024-8035, 2019.

Peherstorfer, B., Multifidelity Monte Carlo Estimation twifdaptive Low-Fidelity ModelsSIAM/ASA J.
Uncert. Quant.vol. 7, no. 2, pp. 579-603, 2019.

Raissi, M., Perdikaris, P., and Karniadakis, G.E., Phykiésrmed Neural Networks: A Deep Learning
Framework for Solving Forward and Inverse Problems InvajMNonlinear Partial Differential Equa-
tions,J. Comput. Physvol. 378, pp. 686—707, 2019.

Ronneberger, O., Fischer, P., and Brox, T., U-Net: Conuahat Networks for Biomedical Image Segmen-
tation,Int. Conf. on Medical Image Computing and Computer-Asdisteervention Munich, Germany,
pp. 234-241, 2015.

Sinsbeck, M. and Tartakovsky, D.M., Impact of Data Assitiola on Cost-Accuracy Tradeoff in Multifi-
delity Models,SIAM/ASA J. Uncert. Quantol. 3, no. 1, pp. 954-968, 2015.

Tang, M., Liu, Y., and Durlofsky, L.J., A Deep-Learning-BasSurrogate Model for Data Assimilation in
Dynamic Subsurface Flow Problends,Comput. Physp. 109456, 2020.

Tartakovsky, D.M. and Neuman, S.P., Transient Effectivedtdylic Conductivities under Slowly and
Rapidly Varying Mean Gradients in Bounded Three-Dimenaiddandom MediayWater Resour. Res.
vol. 34, no. 1, pp. 21-32, 1998.

Taverniers, S., Bosma, S.B., and Tartakovsky, D.M., Acetdel Multilevel Monte Carlo with Kernel-
Based Smoothing and Latinized Stratificatidvater Resour. Resvol. 56, no. 9, p. e2019WR026984,
2020.

Tripathy, R.K. and Bilionis, I., Deep UQ: Learning Deep NaluNetwork Surrogate Models for High
Dimensional Uncertainty Quantificatiof, Comput. Physvol. 375, pp. 565-588, 2018.

Xiu, D., Numerical Methods for Stochastic Computations: A Spedttethod ApproachPrinceton, NJ:
Princeton University Press, 2010.

Yang, L., Wang, P., and Tartakovsky, D.M., Resource-Cairsdd Model Selection for Uncertainty Propa-
gation and Data Assimilatiol§IAM/ASA J. Uncert. Quant.ol. 8, no. 3, pp. 1118-1138, 2020.

Ye, M., Neuman, S.P., Guadagnini, A., and Tartakovsky, DNMbnlocal and Localized Analyses of Con-
ditional Mean Transient Flow in Bounded, Randomly Hetermgris Porous Medidyater Resour. Res.
vol. 40, no. 5, p. W05104, 2004.

Zhou, Z. and Tartakovsky, D.M., Markov Chain Monte Carlowiteural Network Surrogates: Application
to Contaminant Source IdentificatioB8toch. Environ. Res. Risk Asses®l. 35, no. 3, pp. 639-651,
2021.

Zhu, Y., Zabaras, N., Koutsourelakis, P.S., and PerdikBri®hysics-Constrained Deep Learning for High-
Dimensional Surrogate Modeling and Uncertainty Quantificawithout Labeled Data). Comput.
Phys, vol. 394, pp. 56-81, 2019.

Volume 3, Issue 1, 2022



46 Song & Tartakovsky

APPENDIX A. PSEUDOCODE FOR TRAINING SURROGATE MODEL WITH
MULTIPLE LEVELS OF DATA

Algorithm 1: CNN training for given data
Input : Starting model {4;,); training data (data,); test data (datay); Number of
phases¥,); Epochs ¢ps)
Output : Best output modelX/oy)
Procedure:
fori=1,...,N,do
forj=1,...,epsdo
Train M;, using datgain;
Compute RMSEg; using datas;

end
Set RMSEpeckas mean of last 10 RMSE;
if RMSEcheck < RMSEyestthen
SetMoyt as Min;
‘ Set RMSEestas RMSEheck

end

end

Algorithm 2: Phase 1: Training using LFS

Input : Original model (M,rig); Convolution Transpose 2 layer frofyig
(Lconvtransposed Temporary convolution layer in order to match LFS output
dimensions Liemp); LFS training data (datain Lrs); LFS test data
(datgest, r9; Number of Phase 1 iteration8/fnase); Epoch in Phase 1
(epSphasei

Output  : CNN trained on LFS §/; pes)

Procedure:

Set]Wmodl by remOVinchonv,transposefrom Morig;

SetM; by attachingLiempto the end ofV/meq1;

Train M pestusing Algorithm 1 (inputsMin = M1, Nphase= Nphase1 €PS = €PSphasei

datgest = dataest L Fs datdain = datdain LFS);

Algorithm 3: Phase 2: Initial training using HFS
Input : Model from Phase 1¥/1 pes); Convolution Transpose 2 layer frofdg
(Lconvtransposed Temporary convolution layer in order to match LFS output
dimensions Liemp); HFS training data (dagain 1rg); HFS test data
(dataest,Hr9; Number of Phase 2 iteration8/gnased; Epoch in Phase 2
(ePSphased
Output : CNN trained on LFS and HFSW> pes)
Procedure:
SetMmod2 by removingLiemp from M pes; and lock all weights;
SetM; by attachingLcony,ranspose0 the end ofM g2 (the weights off.cony transpose2
remain unlocked);
Train M pestusing Algorithm 1 (inputsMsia = Mp, Nphase= Nphasez €PS = €PSphasez
dataest = dataestHrs datdain = dataain,Hrg);
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Algorithm 4: Phase 3: Final training using HFS

Input : Model from Phase 2/ nes); HFS training data (dagain nrg); HFS test
data (datas:Hr9; Number of Phase 3 iteration8/fnase3; Epoch in Phase 3
(epsphasea

Output : Fine tuned CNN trained on LFS and HF&®{ pes)

Procedure:

SetM3 by unlocking all weights imV/3 pesi

Train M3 pestusing Algorithm 1 (inputsMsian = M3, Nphase= Nphases €DS = €PSphase3

datest = datdest Hrs datdain = datdvain HFS);

Algorithm 5: Training surrogate model on multiple scales of data

Input : HFS training data (dagain nr9); HFS test data (data; ur9; LFS training
data (datgin Lrs); LFS test data (daga: r9; Number of Phase 1 iterations
(Nphased; Number of Phase 2 iteration8/ghase3; Number of Phase 3
iterations (Vphase3; Epoch in Phase Jkfsphased; Epoch in Phase 2
(epsphasel; Epoch in Phase 3fsphase3

Output : Surrogate model on the high-fidelity scale/4)

Procedure:

Set and initializeM iy as original model as described by Table 1,

Set Leonytranspose®S “Convolution Transpose 27 layer frofdyig;

SetLiempas temporary convolution layer in order to match LFS outgmiesisions

(16 x 64 x 64);

Train M; using LFS data via Algorithm 2;

Train M, using HFS data via Algorithm 3;

Train M3 using HFS data via Algorithm 4.
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