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Abstract Subsurface processes can be simulated at multiple scales with variable degrees of fidelity.
Some microscopic (pore-scale) features of reactive transport cannot be properly resolved in macroscopic
(Darcy-scale) models. While microscopic descriptors might be closer to reality, they are computationally
unfeasible when deployed on a macroscale. Hybrid algorithms combine the physical fidelity of a micro-
scopic model with the computational efficiency of its macroscopic counterpart. We develop a hybrid model
of dynamic reactive fronts in an open fracture, with a chemical reaction occurring in the zone of contact
between two dissolved species. Away from the front, both fluid flow and solute transport are described by
one-dimensional models. In the front’s proximity, two-dimensional Stokes equations are used to model fluid
flow, and solute transport is described with advection-diffusion-reaction equations. These two descriptors
are coupled via an iterative procedure, which enforces the continuity of concentrations and mass fluxes
across the interface between the two models. Our numerical experiments demonstrate that the hybrid
model outperforms its microscopic and macroscopic counterparts in terms of computational time and
representational accuracy, respectively.

1. Introduction

Reaction fronts moving with a fluid are a characteristic feature of many physical, chemical, and biological pro-
cesses (e.g., Coveney & Fowler, 2005; De Wit, 2004; Fernandez & Homsy, 2003; Johnson et al., 1985). This phe-
nomenon occurs when a fluid with a dissolved species A displaces a fluid (the same or different) with a
dissolved species B. A chemical reaction, e.g., A1B! C, occurs within a spatially localized region (a ‘‘front’’)
separating these two solutions. The position and width of this front change with time due to fluid flow, molec-
ular diffusion, and hydrodynamic dispersion. While localized reaction fronts might occupy a minuscule fraction
of a flow domain, their effects on flow and transport can be felt over much larger regions (G�alfi & R�acz, 1988).

Like all subsurface flow and transport processes, dynamic reaction fronts can be described with either pore-
scale (microscopic) or Darcy-scale (macroscopic) models. The former have a solid physical foundation con-
sisting of Stokes equations for flow and advection-reaction-diffusion equations for transport; yet they are
impractical for large-scale simulations of practical interest because of the lack of knowledge about pore
geometry and prohibitively high computational cost. A set of simplifying assumptions is required to derive
equations for average flow velocity (Darcy’s law) and solute concentration (advection-dispersion equation
or ADE), which provide Darcy-scale descriptors of flow and transport in porous media. Such macroscopic
models fail when some of these assumptions become invalid (Battiato & Tartakovsky, 2011; Battiato et al.,
2009; Boso & Battiato, 2013). If the failure of macroscopic models is confined to a small region of a computa-
tional domain, hybrid pore-scale/Darcy-scale algorithms (e.g., Tartakovsky et al., 2008) allow one to combine
the high fidelity of microscopic models with the computational efficiency of their macroscopic counterparts.
Hybrid algorithms yield accurate predictions, while keeping computational cost relatively low by restricting
microscopic simulations to subdomains wherein macroscopic models break down, and solving macroscopic
equations in the rest of the computational domain (e.g., Alexander et al., 2002, 2005a, 2005b; Taverniers
et al., 2014). Hybrid algorithms for subsurface applications have been developed by Battiato et al. (2011),
Roubinet and Tartakovsky (2013), Balhoff et al. (2008), Tomin and Lunati (2013), and Tang et al. (2015). In
these and other similar analyses, the microscopic and macroscopic simulation domains are fixed in space.

A major goal of our analysis is to develop a hybrid model of dynamic reactive fronts, which involve two dis-
solved species undergoing a nonlinear homogeneous reaction to produce another solute. A set of numerical
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experiments is performed to investigate the validity of the homogenizability conditions for multicomponent
reactive flow in a horizontal open fracture. When these conditions are not met, we deploy the hybrid algo-
rithm that couples a pore-scale model in the vicinity of a moving reaction front with a corresponding Darcy-
scale model elsewhere in the fracture. The two models are coupled via an iterative procedure, which enforces
the continuity of concentrations and mass fluxes across the interface between the two models.

Section 2 contains pore- and Darcy-scale formulations of flow and reactive transport in both general porous
media and an open fracture; it also summarizes, in the form of a phase diagram in the space of P�eclet and
Damk€ohler numbers, the conditions under which the Darcy-scale model becomes invalid. In section 3, we
develop our hybrid algorithm for dynamic reactive fronts. In section 4, we report results of our numerical
experiments in various transport regimes, including those under which the Darcy-scale model becomes
invalid and either the pore-scale model or the hybrid must be used. The relative performance of the three
modeling strategies is compared in terms of both accuracy and computational time. Main conclusions
drawn from our study are presented in section 5.

2. Problem Formulation

We consider both pore-scale and Darcy-scale descriptions of fluid flow and reactive solute transport in a
generic porous medium X̂. The material’s pore space, denoted by <̂ � X̂, is fully saturated with a fluid of
dynamic viscosity l. The (multiconnected) solid-fluid interface is denoted by Ĉ. The fluid is a dilute solution
of two chemical species A and B, which undergo an irreversible fast bimolecular reaction,

A1B�!k C; (1)

to form the reaction product C with the homogeneous reaction rate constant k [L/T]. We assume that this
chemical reaction does not alter the pore space <̂ and, hence, does not affect the flow velocity.

The pore-scale molar concentrations of the dissolved species A, B, and C are denoted by ĉ i [M/L3], where i5
A; B; and C, respectively. The corresponding Darcy-scale concentrations Ĉ i [M/L3] are averages of ĉ i over a
representative elementary volume V̂ � X̂ centered around a point x,

Ĉ iðx; tÞ5 1

jjV̂ jj

ð
V̂ ðxÞ

ĉ iðy; tÞdy; i5A; B; C: (2)

A characteristic length of V̂ ; ‘, is much smaller than that of X̂; ‘� L, so that E � ‘=L� 1. Equations
describing the spatiotemporal evolution of ĉ iðx̂; t̂Þ and Ĉ iðx̂; t̂Þ are described below.

2.1. Pore-Scale Equations
Steady-state pressure-driven single-phase incompressible fluid flow is described by Stokes and continuity
equations,

lr̂2
v̂2r̂p̂50; r̂ � v̂50; x̂ 2 <̂; (3)

where v̂ðx̂Þ is the fluid velocity, p̂ðx̂Þ is the fluid pressure, and x̂ is a point in <̂. Flow equations (3) are sub-
ject to no-slip boundary conditions on the impermeable solid-fluid interface Ĉ, i.e., v̂50 for x̂ 2 Ĉ.

The pore-scale concentrations ĉ iðx̂; tÞ are described by a system of coupled advection-diffusion-reaction
equations,

@ĉ i

@ t̂
1r̂ � ðv̂ĉ iÞ5Dr̂2

ĉ i2kĉ Aĉ B; i5A; B; x̂ 2 <̂; t̂ > 0; (4a)

and

@ĉ C

@ t̂
1r̂ � ðv̂ĉ CÞ5Dr̂2

ĉ C1kĉAĉ B; x̂ 2 <̂; t̂ > 0: (4b)

Here for the sake of simplicity and without loss of generality, we assume that the three dissolved species
have the same molecular diffusion coefficient D [L2/T]. Transport equations (4) are subject to no-flux bound-
ary conditions on the solid-fluid interface Ĉ with unit normal vector n̂ðxÞ,
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n̂ � r̂ĉ i50; i5A; B; C; x̂ 2 Ĉ: (5a)

and initial conditions

ĉ iðx̂; 0Þ5ĉ in;i; i5A; B; C; x̂ 2 <̂; (5b)

where ĉ in;iðx̂Þ are known (possibly spatially varying) initial concentrations.
2.1.1. Dimensionless Formulation
Let L and v denote characteristic length and characteristic velocity magnitude, respectively; and set
c?5max fĉ in;A; ĉ in;Bg. We introduce dimensionless parameters and independent and dependent variables,

Pe5
vL
D
; Da5

L2kc?

D
; x5

x̂
L
; t5

t̂D
L2
; v5

v̂
v
; p5

p̂l2

lvL
; ci5

ĉ i

c?
: (6)

The P�eclet number Pe5td=ta represents the ratio between the diffusion (td5L2=D) and advection (ta5L=v)
time scales, while the Damk€ohler number Da5td=tr is defined as the ratio between the diffusion and reac-
tion (tr51=kc?) time scales. (This scaling of pressure p̂ ensures that the rescaled viscous term has the same
order of magnitude as its counterpart in the original Stokes equations.) Rewriting (3) and (4) in terms of the
dimensionless quantities (6) yields a dimensionless form of the governing equations

E2r2v2rp50; r � v50; x 2 <; (7)

and

@ci

@t
1Per � ðvciÞ5r2ci2Da cAcB; i5A; B; x 2 <; t > 0; (8a)

@cC

@t
1Per � ðvcCÞ5r2cC1Da cAcB; x 2 <; t > 0; (8b)

subject to the correspondingly rescaled initial and boundary conditions.

2.2. Darcy-Scale Equations
Under certain conditions on Pe and Da, the spatial averaging of pore-scale equations (7) and (8) yields
Darcy-scale (advection-dispersion-reaction) equations for the dimensionless macroscopic concentrations
Ci5Ĉ i=c?,

@Ci

@t
1Per � ðVCiÞ5r � ðDrCiÞ2Da CACB; i5A; B; x 2 X; t > 0; (9a)

and

@CC

@t
1Per � ðVCCÞ5r � ðDrCCÞ1Da CACB: (9b)

Here VðxÞ is the Darcy flux (macroscopic velocity) computed by solving
the groundwater flow equation, and DðUÞ is the dispersion coefficient
tensor. Specifically, equations (9) are valid if (Boso & Battiato, 2013)

E� 1; Pe < E22; Da < E22; Da=Pe < E21: (10)

The inequality E� 1 is a condition that ensures spatial-scale separa-
tion, Pe < E22 ensures that the system is not dominated by advection
at the microscale, Da < E22 is the sufficient condition for good mixing
of the reactants, and the condition Da=Pe < E21 imposes a constraint
on the advective and reactive time scales. These sufficient conditions
delineate a homogenizability region in a two-dimensional Pe-Da
space (Figure 1), where equations (9) are valid. The validity is guaran-
teed inside the region and not guaranteed outside.

Dynamic reactive fronts provide a challenging illustration of the possi-
ble breakdown of Darcy-scale models. Let us suppose that, at time

Figure 1. Region of the validity of the Darcy-scale transport model (9) in the
Pe-Da phase space spanned by the P�eclet (Pe) and Damk€ohler (Da) numbers.
Case 1, ða; bÞ5ð21; 1Þ, satisfies and Case 2, ða; bÞ5ð1=4;23=2Þ, violates the
homogenizability conditions (10).
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t 5 0, the solutes A and B occupy distinct subdomains XA and XB (X5XA [ XB), which are separated by an
interface c5XA \ XB. This situation translates into (dimensionless) initial concentrations

Cin;A5
1 x 2 XA

0 x 2 XB

and Cin;B5

0 x 2 XA

1 x 2 XB

:

8<
:

8<
: (11)

The reaction A1B! C takes place only in the immediate vicinity of the interface c, which is both advected
with the flow, c5cðx; tÞ, and diffuses due to hydrodynamic dispersion. High concentration gradients in this
diffuse reactive front can invalidate some of the homogenizability conditions (10), leading to a local break-
down of the Darcy-scale transport model (9). Our study has three interconnected objectives. First, we iden-
tify flow and transport regimes in which the breakdown indeed occurs, as predicted by the theory (Boso &
Battiato, 2013). Second, we demonstrate that under these conditions, no amount of mesh refinement
around the front, used to numerically solve (9), can remedy the model’s inadequacy. Third, we show that
the hybrid model outperforms its microscopic and macroscopic counterparts in terms of computational
time and representational accuracy, respectively. These objectives are achieved via numerical experimenta-
tion with diffusive reactive fronts propagating through an open fracture.

2.3. Pore- and Darcy-Scale Models of Front Propagation in Fractures
Consider an open fracture of length L and width 2w, such that X̂5fx̂5ðx̂ ; ŷÞ> : 0 < x̂ < L; 2w < ŷ < wg.
Flow is driven by the externally imposed pressure gradient, 2J imposed in the x̂ direction.
2.3.1. Pore-Scale Model
Making use of the dimensionless quantities (6) and neglecting the boundary effects close to the fracture’s
entrance and exit, the solution of (7) in the rescaled fracture domain X5fx5ðx; yÞ> : 0 < x < 1; 2E < y
< Eg is given by Poiseuille’s formula v5ðu; 0Þ> with

uðyÞ5 3
2

12
y2

E2

� �
; E � w=L: (12)

(A dimensional form of Poiseuille’s law obtained by solving [3] reads ûðyÞ5JE2ð12y2=E2Þ=ð2lÞ. The average
(characteristic) flow velocity is v5ð2EÞ21Ð E

2E ûðyÞdy5JE2=ð3lÞ. The definition of the dimensionless velocity
in (6), u5û=v, gives (12).) Pore-scale transport equations (8) reduce to

@ci

@t
1Pe u

@ci

@x
5
@2ci

@x2
1
@2ci

@y2
2Da cAcB; i5A; B; x 2 X; t > 0; (13a)

and

@cC

@t
1Pe u

@cC

@x
5
@2cC

@x2
1
@2cC

@y2
1Da cAcB: (13b)

Initial conditions leading to formation of a localized reactive front, (11), become

cAðx; 0Þ5
1 x � x0

0 x > 0
; cBðx; 0Þ5

0 x � x0

1 x > 0
; cCðx; 0Þ5 1

4
;

8<
:

8<
: (14)

where x0 is an initial position front cðtÞ, and the initial value cCðx; 0Þ51=4 is arbitrarily selected for illustra-
tion purposes. Boundary conditions at the fractures’ inlet and outlet are

cAð0; y; tÞ51; cAð1; y; tÞ50; jyj < E; t > 0; (15a)

cBð1; y; tÞ50; cBð0; y; tÞ51; jyj < E; t > 0; (15b)

cCð0; y; tÞ5 1
4
; cCð1; y; tÞ5 1

4
; jyj < E; t > 0: (15c)

Boundary conditions at the fracture’s walls are

@ci

@y
ðx;6E; tÞ50; i5A; B; C; 0 < x < 1; t > 0: (16)

Water Resources Research 10.1002/2017WR020867

SIULIUKINA AND TARTAKOVSKY HYBRID MODEL OF REACTIVE FRONTS 64



2.3.2. Darcy-Scale Model
The (dimensionless) Darcy-scale concentrations Ciðx; tÞ satisfy transport equations (9), which for the prob-
lem under consideration reduce to

@Ci

@t
1Pe

@Ci

@x
5D @

2Ci

@x2 2Da CACB; i5A; B; 0 < x < 1; t > 0; (17a)

and

@CC

@t
1Pe

@CC

@x
5D @

2CC

@x2
1Da CACB; i5A; B; 0 < x < 1; t > 0: (17b)

The dispersion coefficient is now given by D5112E2Pe2=105 (Boso & Battiato, 2013). Equations (17) are
subject to initial conditions

CAðx; 0Þ5
1 x � x0

0 x > x0

; CBðx; 0Þ5
0 x � x0

1 x > x0

; CCðx; 0Þ5 1
4
;

8<
:

8<
: (18)

and boundary conditions

CAð0; tÞ51; CAð1; tÞ50; CBð1; tÞ50; CBð0; tÞ51; CCð0; tÞ5 1
4
; CCð1; tÞ5 1

4
: (19)

A solution of Darcy-scale model (14)–(17), Ciðx; y; tÞ with i5A; B; and C, is consistent with its pore-scale
counterpart (13)–(16), ciðx; y; tÞ with i5A; B; and C, if they satisfy the definition of Darcy-scale concentration
(2),

�c iðx; tÞ5 1
2E

ðE

2E
ciðx; y; tÞdy; i5A; B; C; (20)

i.e., if Ciðx; tÞ5�c iðx; tÞ for i5A; B; and C.

3. Hybrid Models of Dynamic Reactive Fronts

We present a general formulation of our hybrid model in section 3.1 and its implementation for transport in
fractures in section 3.2.

3.1. General Hybrid Formulation
Let us suppose that, in the immediate neighborhood N d½cðx; tÞ� of the reactive front’s core cðx; tÞ, macro-
scopic equations (9) become invalid because some of the conditions in (10) are violated (see section 2.2).
The dynamics of cðx; tÞ is determined by advection, while the envelope @N dðx; tÞ5cðx; tÞ6dðxÞ represents
the diffusive nature of dynamic reactive fronts. While the width of the reaction zone increases with time, we
keep the width of N d½cðx; tÞ� constant and set to d 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjDjjDt

p
where Dt is a time step of the Darcy-scale

simulations. That is because the concentration gradients in the outer edges of the diffuse reaction front are
sufficiently small for the Darcy-scale model to be valid. The pore-scale model (7) and (8) is solved inside
N d½cðx; tÞ�, and the Darcy-scale model (9) is solved elsewhere in the computational domain. The two mod-
els are coupled by enforcing the continuity of concentrations and the normal component of mass fluxes
along the envelope @N d,

Ciðx; tÞ5 1
jj@N dðx; tÞjj

ð
@N dðx;tÞ

ciðs; tÞds; Jiðx; tÞ5 1
jj@N dðx; tÞjj

ð
@N dðx;tÞ

jiðs; tÞds; (21)

for i5A; B; and C. Here ji and Ji are the normal components of the pore- and Darcy-scale dimensionless
mass fluxes ji5vci2rci and Ji5VCi2DrCi , respectively. The coordinate x designates a segment of @N d

ðx; tÞ that falls within the corresponding element of a numerical mesh used in the Darcy-scale
computation.
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3.2. Hybrid Model of Front Propagation in Fractures
The Darcy-scale description (14)–(17) reduces the front’s core cðx; tÞ to
a single point xfðtÞ. Starting with its initial position xfð0Þ5x0, the core
propagates with dimensionless velocity Pe, so that dxf=dt5Pe. The
domain of pore-scale model (12)–(16) becomes N d5fx : xfðtÞ2d < x
< xfðtÞ1d;2E < y < Eg with the envelope consisting of two seg-
ments, @N d5fðx; yÞ : xfðtÞ6d;2E < y < Eg. Setting d5m

ffiffiffiffiffiffiffiffiffi
DDt
p

, these
points are given by

aðtÞ5xfðtÞ2m
ffiffiffiffiffiffiffiffiffi
D�t
p

; bðtÞ5xfðtÞ1m
ffiffiffiffiffiffiffiffiffi
D�t
p

; (22)

where the coefficient m defines the dimensionless width of N d (Fig-
ure 2). In the simulations reported below, we set m 5 2,800, which cor-
responds to N d occupying 20% of the whole simulation domain X.

The Darcy-scale model (14)–(17) is solved in the rest of the fracture N c
d5fx : 0 < x < aðtÞ; bðtÞ < x < 1g.

The continuity conditions (21) used to couple the pore- and Darcy-scale simulations take the form,

Ciðx; tÞ5 1
2E

ðE

2E
ciðy; tÞdy; Jiðx; tÞ5 1

2E

ðE

2E
jiðy; tÞdy; for x5aðtÞ; bðtÞ: (23)

Our hybrid algorithm consists of the following steps.

1. Initiate simulations by setting t 5 0 and xfð0Þ5x0; and by making an initial guess of the concentration
values at x 5 a and x 5 b, Ca;i and Cb;i with i5A; B; and C, respectively. (In the simulations reported below,
we set Ca;A50:8; Ca;B50:2; Ca;C50:5; Cb;A50:2; Cb;B50:8, and Cb;C50:5.)

2. Compute a(t) and b(t) from (22), and assign pore- and Darcy-scale internal boundary conditions

ciða; y; tÞ5Ciða; tÞ5Ca;i ; ciðb; y; tÞ5Ciðb; tÞ5Cb;i ; i5A; B; C:

3. Solve the pore-scale equations (13) on domain N d5fx : aðtÞ < x < bðtÞ;2E < y < Eg. These equations
are subject to initial and boundary conditions (14)–(16), which are supplemented with the interfacial con-
ditions at x5aðtÞ and x5bðtÞ from step 2.

4. Solve the Darcy-scale equations (17) on domain N c
d5fx : 0 < x < aðtÞ [ bðtÞ < x < 1g. These equations

are subject to initial and boundary conditions (18) and (14), which are supplemented with the interfacial
conditions at x5aðtÞ and x5bðtÞ from step 2.

5. Calculate pore-scale interfacial fluxes

jiðx; y; tÞ52
@ci

@x
ðx; y; tÞ1Pe uðyÞCx;i; x5a; b; i5A; B; C;

where u(y) is given by (12) and ciðx; y; tÞ (i5A; B; and C) are computed in step 3. Evaluate average pore-
scale interfacial fluxes

�j iðx; tÞ5 1
2E

ðE

2E
jiðx; y; tÞdy; x5a; b; i5A; B; C:

Calculate Darcy-scale interfacial fluxes

Jiðx; tÞ52D @Ci

@x
ðx; tÞ1Pe Cx;i; x5a; b; i5A; B; C;

where Ciðx; tÞ (i5A; B; and C) are computed in step 4.

6. Find the values of Ca;i and Cb;i (i5A; B; and C) that enforce the continuity conditions (23) by solving an
optimization problem

argmin
Ca;i ;Cb;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i5A;B;C

�j iða; tÞ2Jiða; tÞ½ �21 �j iðb; tÞ2Jiðb; tÞ½ �2
n os

:

In the simulations reported below we used the Matlab optimization procedure fmincon with conver-
gence error of 1029 to solve this problem.

7. Set t5t1Dt, advance the front’s core xfðt1DtÞ5xfðtÞ1Pe Dt, and go to step 2.

Figure 2. A dynamic diffused reaction front, centered at xfðtÞ, propagating in
an open fracture of dimensionless unit length and dimensionless width 2E. Our
hybrid algorithm solves the (two-dimensional) pore-scale model in the front’s
neighborhoodN d5fx : xfðtÞ2aðtÞ < x < xfðtÞ1bðtÞ; 2E < y < Eg and the
(one-dimensional) Darcy-scale model in the rest of the fracture. The two
models are coupled by enforcing the continuity conditions at a(t) and b(t).
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4. Simulation Results

We use the Crank-Nicolson scheme with the upwind method for advection terms to solve both the pore-
scale problem (13) and Darcy-scale (17) problems. The former was first solved on domain X5fx5ðx; yÞ> : 0

Figure 3. (top and middle) Temporal snapshots, at t51:0; 2:0; and 5.0 (from left to right), of the averaged pore-scale concentrations �c Aðx; tÞ and �c Cðx; tÞ (solid
line) and their Darcy-scale counterparts CAðx; tÞ and CCðx; tÞ (dashed line), for Case 1 which satisfies the homogenizability conditions. (bottom) The corresponding
total mass of the reaction product in the fracture, computed with the pore-scale (mC) and Darcy-scale (MC) models.

Figure 4. (top and middle) Temporal snapshots, at t51:0; 2:0; and 5.0 (from left to right), of the averaged pore-scale concentrations �c Aðx; tÞ and �c Cðx; tÞ (solid
line) and their Darcy-scale counterparts CAðx; tÞ and CCðx; tÞ (dashed line), for Case 2 which violates the homogenizability conditions. (bottom ) The corresponding
total mass of the reaction product in the fracture, computed with the pore-scale (mC) and Darcy-scale (MC) models.

Water Resources Research 10.1002/2017WR020867

SIULIUKINA AND TARTAKOVSKY HYBRID MODEL OF REACTIVE FRONTS 67



< x < 1; 2E < y < E50:0625g discretized by a uniform mesh of size
Dx5Dy56:2531025 with a time step Dt56:2531027; the latter on
domain X5fx : 0 < x < 1g discretized by a uniform mesh of size DX

51:2531023 with a time step DT 51:2531025 (Figure 2). This choice
of discretization parameters ensures that any disagreement between
the pore- and Darcy-scale simulations is solely due to limitations of
the Darcy-scale model rather than numerical errors (see Appendix A
for detail).

Next, we consider two transport regimes, hereafter referred to as Case
1 and Case 2, which are characterized by different combinations of Pe and Da or, equivalently, a52log EPe
and b5log EDa with E50:0625. Case 1 corresponds to Pe5Da50:0625 which translates into a521 and
b 5 1; this regime satisfies constraints (10) (see Figure 1). Case 2 is characterized by Pe52:0 and Da564:0,
so that a50:25 and b521:5; this regime lies outside the homogenizability domain (see Figure 1).

4.1. Impact of Breakdown of the Darcy-Scale Model
For both Cases 1 and 2, we compare the averaged pore-scale concentrations of reactant A and reaction
product C with the corresponding Darcy-scale concentrations. The former, �c Aðx; tÞ and �c Cðx; tÞ, are com-
puted with (13) and (20); and the latter, CAðx; tÞ and CCðx; tÞ, with (17). Also compared is the total mass of
the reaction product in the fracture, computed with the pore-scale (mC) and Darcy-scale (MC) models as

mCðtÞ5
ð1

0
�c Cðx; tÞdx and MCðtÞ5

ð1

0
CCðx; tÞdx: (24)

Figure 3 exhibits these three quantities for Case 1. Since this regime falls within the homogenizability region
(Figure 1), one should expect a good agreement between the pore- and Darcy-scale simulations. This is
indeed the case. A slight disagreement between the two models’ predictions, which can be quantified in
terms of a model error E i5jj�c i2Cijj2 (i5A; B;C), being approximately of order OðE2Þ, as predicted by the
homogenization theory (Boso & Battiato, 2013).

Case 2, which violates the homogenizability conditions, gives rise to a pronounced disagreement between
predictions of the pore- and Darcy-scale models (Figure 4). It exemplifies a transport regime in which the
advection and diffusion time scales are significantly faster than the reaction time scale. In this regime, the
model errors E i > E for all three quantities. By way of example, the relative model error in predictions of the
concentration of solute A, introduced by the use of the Darcy-scale simulations, �A5100%3jj�c A2CAjj2=jj�c Ajj2,
grows with time, reaching 
 12% by t 5 5 (Table 1). This apparent failure of the Darcy-scale model is not only
quantitative but also qualitative. While the Darcy-scale model predicts a Gaussian behavior, the averaged
pore-scale dynamics is non-Gaussian, as evidenced by the asymmetric, long-tailed concentration profiles.

4.2. Relative Performance of the Hybrid Model
While the transport regime in Case 2 invalidates the reliance of the Darcy-scale model, the use of the pore-
scale simulations over the whole transport domain X is computationally expensive even for a single fracture

Table 1
Relative Model Errors, �A5100%3jj�c A2CAjj2=jj�c Ajj2 and
�h

A5100%3jj�c A2Ch
A jj2=jj�c Ajj2, Introduced by the Use of the Darcy-Scale and

Hybrid Simulations, Respectivelya

Model error t 5 1 t 5 2 t 5 5

Darcy-scale, �A 4.52 7.82 11.63
Hybrid, �h

A 0.05 0.11 0.15

aThe pore-scale result, �c A , is treated as ‘‘ground-truth.’’

Figure 5. Temporal snapshots, at t51:0; 2:0; and 5.0 (from left to right), of the averaged pore-scale concentration �c Aðx; tÞ
and its counterpart Ch

Aðx; tÞ computed with the hybrid simulations for Case 2.
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(Table A1) and prohibitively so for more complex pore geometries.
Instead, we employ the hybrid algorithm described in section 3.2. We
start by setting the width of the pore-scale simulation domain to
jN dj � D5bðtÞ2aðtÞ50:2; the Darcy-scale model is solved in the
remaining 80% of the simulation domain, ð0; aÞ [ ðb; 1Þ. Visual inspec-
tion of Figure 5 demonstrates a close agreement between the exact
(pore-scale) solution for the averaged pore-scale concentration �c Aðx; tÞ
and the hybrid solution Ch

Aðx; tÞ. Table 1 further corroborates this obser-
vation by collating values of the relative model error �h

A5100%3jj�c A2

Ch
A jj2=jj�c Ajj2 of the hybrid model at different times t. This degree of the hybrid’s accuracy is achieved at the

fraction of computational cost, yielding a significant reduction relative to that of the pore-scale simulations:
1,053 s for the hybrid model (Table 2) versus 5,975 s for the pore-scale simulations (Table A1). (All computa-
tions were carried out on a single-processor laptop.)

The hybrid’s accuracy (and computational cost) can be increased by enlarging the region of the computa-
tional domain, N dðtÞ, wherein the pore-scale simulations are performed. Alternatively, the hybrid’s compu-
tational cost can be reduced by decreasing the size of N dðtÞ, at the cost of reducing the hybrid’s accuracy
(Table 2). Even the smallest size of N d reported in Table 2, jN dðtÞj5D50:05, yields an acceptable relative
model error (�h

A50:43%). The increase in the hybrid’s accuracy and computational cost with D is to be
expected, since the accurate and expensive pore-scale simulations are carried out over the progressively
larger domain N d. Refining the mesh size and time step of the Darcy-scale component of the hybrid is rela-
tively inexpensive but does not yield a significant improvement in the relative model error (Table A2).

5. Summary and Conclusions

We developed a hybrid model of propagation of reactive fronts. These fronts involve an irreversible homo-
geneous reaction A1B! C and are highly localized due to an initial distribution of reactants A and B. A set
of numerical experiments for multicomponent reactive flow in a horizontal open fracture is performed to
demonstrate that dynamic reactive fronts might not be amenable to Darcy-scale modeling. Our hybrid algo-
rithm couples the pore-scale model in the vicinity of a moving reaction front with the Darcy-scale model
elsewhere in the fracture.

Our study leads to the following major conclusions.

� Necessary conditions for the breakdown of Darcy-scale models of dynamic reactive fronts are presented
as a phase diagram in the space of the P�eclet (Pe) and Damk€ohler (Da) numbers. Our simulations provide
an example of the failure of a Darcy-scale model whose parameters fall outside the homogenizability
region in this diagram.

� The observed failure of the Darcy-scale model of reaction fronts in an open fracture is not only quantita-
tive but also qualitative. While the Darcy-scale model predicts a Gaussian behavior, the true dynamics is
non-Gaussian, as evidenced by the asymmetric, long-tailed concentration profiles.

� The representational accuracy of our hybrid algorithm is comparable to that of high-fidelity pore-scale
simulations, but at the fraction of computational cost.

� The hybrid formulation does not require any additional parameters beyond those used in macroscopic or
microscopic models.

� The hybrid formulation for the moving dynamic fronts suggests its high adaptability to a wide variety of
problems and different numerical schemes.

In follow-up studies, we will employ our hybrid algorithm to model dynamic reaction fronts, which propa-
gate in porous media and involve two-phase incompressible flow.

Appendix A: Verification of Numerical Simulations

To ensure that our numerical solutions of the pore-scale (13) and Darcy-scale (17) models are not signifi-
cantly affected by their space-time discetization, we progressively refine the mesh size and time step. Start-
ing with Dx5Dy51023 and Dt51025, the space-time discretization of (13) is refined according to

Table 2
Simulation Time (in Seconds) and Relative Model Error of the Hybrid Simula-
tions, �h

A5100%3jj�c A2Ch
A jj2=jj�c Ajj2 , at t 5 5 and for Several Sizes jN dj5D of

the Pore-Scale Simulation DomainN d

D 0.05 0.10 0.15 0.20 0.30 0.40

�h
A (%) 0.4301 0.3051 0.2196 0.1573 0.0482 0.00053

Sim. time (s) 391.62 650.71 891.74 1,053.28 1,768.05 2,564.89
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Dx=2k5Dy=2k and Dt=2k with k50; 1; � � �. Likewise, starting with DX 51022 and DT 51024, the space-time
discretization of (17) is refined according to DX=2k and DT=2k with k50; 1; � � �. Results of this mesh refine-

ment are reported in Figure A1 for the averaged pore-scale concentra-
tion �c Aðx; �Þ computed with (13) and (20) and for the Darcy-scale
concentration CAðx; �Þ computed with (17). The refinement beyond
k 5 2 shows no visual improvement. (Although not shown here, the
concentrations of species B and C exhibit an identical behavior.)

This assessment is made more quantitative by defining a relative dis-
cretization error

Ekðf Þ5
jjfk2fk11Þjj2
jjfk11jj2

; k50; 1; 2; � � �

where fk5�c AðDx=2k5Dy=2k ;Dt=2kÞ or fk5CAðDX=2k ;DT=2kÞ. Table A1
demonstrates that the discretization error of 1024 is achieved with the
refinement levels of k 5 4 for the pore-scale simulations and k 5 3 for
the Darcy-scale simulations. Further refinement does not substantially
improve the discretization error, but considerably increases the simu-
lation time. These values of the discretization parameters are used in
all the simulations reported in this study.

Finally, we explore benefits of refining the space-time discretization of
the Darcy-scale component of the hybrid, fDX=2k ;DT=2kg, while keep-
ing the discretization of the pore-scale component fixed at
fDx=24;Dy=24;Dt=24g. Such refinement does not improve the hybrid’s
accuracy, quantified in terms of the relative model error �h

A5100%3

jj�c A2Ch
A jj2=jj�c Ajj2 for the hybrid model (Table A2). Hence, going

Figure A1. Spatial profiles of (top) averaged pore-scale concentration �c Aðx; tÞ and (bottom) Darcy-scale concentration
CAðx; tÞ at times t 5 1, 2, and 5 (from left to right) for the transport regime characterized by a51=4 and b523=2. The
former is computed with (13) and (20), the latter with (17). Both use the progressively finer time-space discretizations.

Table A1
Relative Discretization Errors, Ek , and Simulation Times, in Seconds, for the Aver-
aged Pore-Scale (�c A) and Darcy-Scale (CA) Estimates of the Concentration of Spe-
cies A at Time t 5 1.0 on the Meshes and Time Steps Refined by the Factor of 2k

Refinement level, k

Relative error,
Ekðf Þ31023 Simulation time (s)

f 5�c A f 5 CA �c A CA

0 5.458 8.20763 57.19 2.24
1 2.542 1.31274 162.92 7.53
2 0.503 0.54580 546.83 20.69
3 0.285 0.05137 1,760.09 69.48
4 0.09215 0.05011 5,975.24 247.98
5 0.08973 – 15,627.45 –

Table A2
Relative Model Error of the Hybrid Simulations, �h

A, at t 5 1.0 and for Several
Levels of Refinement, k, of the Darcy-Scale Component

Refinement level, k 3 4 5

�h
A (%) 0.0529 0.0517 0.0503

Note. The discretization of the pore-scale component is fixed at Dx=24;

Dy=24;Dt=24.
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above the refinement level k 5 3 for the Darcy-scale component of the hybrid only increases the com-
putational time.
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