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Abstract. Observable phenomena can often be described by alternative models with different degrees of fidelity.
Such models typically contain uncertain parameters and forcings, rendering predictions of the state
variables uncertain as well. Within the probabilistic framework, solutions of these models are given
in terms of their probability density functions (PDFs). In the presence of data, the latter can be
treated as prior distributions. Uncertainty and assimilation of measurements into model predictions,
e.g., via Bayesian updating of solution PDFs, pose a question of model selection: Given a significant
difference in computational cost, is a lower-fidelity model preferable to its higher-fidelity counterpart?
We investigate this question in the context of multiphase flow in heterogeneous porous media whose
hydraulic properties are uncertain. While low-fidelity (reduced-complexity) models introduce a
model error, their moderate computational cost makes it possible to generate more realizations,
which reduces the (e.g., Monte Carlo) sampling error. These two errors determine the model with
the smallest total error. Our analysis suggests that assimilation of measurements of a quantity
of interest (a medium’s saturation, in our example) influences both types of errors, increasing the
probability that the predictive accuracy of a reduced-complexity model exceeds that of its higher-
fidelity counterpart.
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1. Introduction. Every physical, biological, and chemical phenomenon can be described
by alternative mathematical models that differ in their degree of fidelity. Fine-scale models
(e.g., molecular dynamics simulations) typically rely on fewer assumptions but are compu-
tationally prohibitive at a scale of practical interest. Their coarse-scale counterparts (e.g.,
reaction-diffusion equations) are orders of magnitude faster to compute but rest on a number
of foundational assumptions whose veracity might be hard to ascertain and lead to model
errors. The standard choice between different fidelity models is a compromise between repre-
sentational accuracy and computational expediency.

Uncertainty in models’ parameterizations and forcings (e.g., initial/boundary conditions
and sources) complicates the model selection. When quantified probabilistically, this uncer-
tainty gives rise to multiple model predictions, whose likelihood of occurrence is expressed in
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terms of the probability density function (PDF) of a quantity of interest (QoI) or its statistical
moments (e.g., ensemble mean and variance). A significant computational cost of each deter-
ministic solve of a high-fidelity model implies that the PDF of its solution must be estimated
from only a few realizations. This gives rise to a sampling error.

Given a fixed amount of time for the calculations, a reduced-complexity model enables
one to compute more realizations, decreasing the sampling error in estimation of the solution
PDF. The sampling error can be eliminated completely if a reduced-complexity model allows
derivation of a closed-form PDF equation [23, 27, 28]. If the sampling error of a high-fidelity
model dominates the model error of a low-fidelity model, then, other factors being equal,
the low-fidelity model is preferable [15]. The balance between model error and sampling error
triggers a model-selection problem: Given limited computational resources, which model yields
the smallest total error?

Availability and assimilation of QoI measurements add another facet to the model-selection
problem. When used within a Bayesian framework, data assimilation would treat the PDFs
obtained with multifidelity models as priors. If Bayesian data assimilation were to be robust,
and as more data become available, the significance of the choice of a prior is expected to
diminish. In other words, the solution PDF computed with a reduced-complexity model might
lead to a posterior distribution that is “close” to that calculated with the solution PDF from
its high-fidelity counterpart.

Moreover, the calculation of a posterior distribution becomes increasingly sampling inten-
sive as the amount of available data increases. As more data become available, the percentage
of realizations that match the data decreases, and therefore larger sample sizes are required.

In other words, one can expect data assimilation to decrease the model error of a reduced-
complexity model and to increase the sampling error of all calculations. These two effects
change the balance between the model and sampling errors and, therefore, affect the optimal
model selection.

From the outset, it is worthwhile contrasting these aspects of the optimal model selection
with much of the existing literature on model selection and model averaging. The field of model
selection is well established [2, 3, 4]; it impacted application areas as diverse as psychology [30],
hydrology [10], ecology [1], and sociology [19]. The main focus of such studies is to identify
a model with highest accuracy or best predictive power, without considering computational
costs. We pose different questions: Given pervasive parametric uncertainty, is the use of
high-fidelity, computationally expensive models justified? Given computational constraints,
what model should be used? These are questions of efficiency rather than accuracy. This
aspect of model selection also lies outside the scope of Bayesian model averaging (BMA) (see,
e.g., [8, 13, 18]) and multilevel Monte Carlo (MMC) simulations (see, e.g., [11, 5]). BMA
assigns a weight to each model, which is equal to its posterior probability of predicting given
data, without considering the cost-accuracy tradeoff. In our analysis the fidelity of individual
models is known a priori. MMC uses multiple models in a hierarchical way to increase the
computational efficiency of stochastic calculations.

We investigate the impact of cost-accuracy tradeoff on model selection in the context
of multiphase flow in heterogeneous porous media whose hydraulic properties are uncertain.
More specifically, we consider an infiltration process, which is described alternatively by the
Richards (nonlinear diffusion-advection) equation [29] and a Green–Ampt (Laplacian growth)
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model [28]. The former is treated as a high-fidelity reference model and the latter as its
reduced-complexity approximation. Both models use the same physical quantities as input
and predict the infiltration depth as output. Uncertain properties of a porous medium are
modeled as random fields. Measurements of water content, acquired, e.g., with moisture
sensors, are assimilated into model predictions to update the alternative predictions of the
infiltration depth.

The paper is structured as follows. The two alternative models are described in section 2.
Detailed descriptions of the model for moisture measurements and the data assimilation proce-
dure are given in section 3. Simulation results are presented in section 4. Section 5 discusses
potential generalizations of our findings, and section 6 presents general conclusions drawn
from the results.

2. Alternative infiltration models. We consider infiltration of water into a two-dimen-
sional heterogeneous soil, whose initial state is characterized by water content θinit. Infiltration
is driven by a constant pressure head of ponding water, ψ0, prescribed at the soil’s surface
(z = 0). Our QoIs are the wetting depth zf(t;x) and the total amount of infiltrated water
Q(t).

2.1. Richards equation. At any point x = (x, z)⊤ in the flow domain D, the temporal
evolution of water content θ(x, t) : D×R+ → [θi,φ] and pressure head ψ(x, t) : D×R+ → R−

are described by the Richards equation [29]

(2.1)
∂θ

∂t
= ∇ · (K∇ψ)− ∂K

∂z
, x ∈ D, t > 0,

where θi is the irreducible water content, φ is the porosity, K(x, θ) is the soil hydraulic con-
ductivity, and z denotes depths. This equation is supplemented by two constitutive relations
K = Ks(x)Kr(x,ψ) and θ = f(ψ), where Ks and Kr are the saturated and relative hydraulic
conductivities, respectively. We employ the van Genuchten constitutive model [29],

(2.2) Kr =

[
1− ψmn

d (1 + ψn
d )

−m]2
(
1 + ψn

d

)m/2
,

θ − θi
φ− θi

=
1

(1 + ψn
d )

m
, ψd = α |ψ| , m = 1− 1

n
.

The shape parameters α > 0 and n > 0 may vary in space, reflecting the soil heterogeneity.
Equations (2.1) and (2.2) are defined on domain D = {x : −L ≤ x ≤ L, 0 ≤ z ≤ ∞}, subject
to initial and boundary conditions

(2.3) θ(x, 0) = θinit, ψ(x, z = 0, t) = ψ0, θ(x, z → ∞, t) = θinit,
∂ψ

∂x
(x = ±L, z, t) = 0.

Probabilistic model parameterization. Among all the model parameters, saturated hydraulic
conductivity Ks and soil parameter α vary most and exhibit the highest degree of uncertainty
(see, e.g., [21, 24] and the references therein). In line with this observation, we treat Ks(x)
and α(x) as random fields, while assuming the remaining parameters (φ, θi, and n) to be
constant and known with certainty. Following the standard practice (ibid.), we assume that the
random fields Ks and α are statistically independent, log-normal, and second-order stationary
(statistically homogeneous). The latter means that they have constant means and variances
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and autocovariance functions that depend only on the distance between two points. The
soil data analyzed in [21] and various subsequent studies suggest the use of an anisotropic
exponential covariance function

(2.4) C(dx, dz) = σ2e−s, s =
√

(dx/λx)2 + (dz/λz)2,

where σ2 is the variance, dx and dz are the horizontal and vertical distances between two
points, and λx and λz denote the horizontal and vertical correlation lengths.

Computation of QoIs. Solving (2.1)–(2.3) yields realizations of the state variable θ(x, z, t).
Realizations of the QoIs, infiltration depths zf(t;x) and the amount of infiltrated water Q(t),
are then computed as

(2.5) zf(t;x) =

∫ ∞

0

θ(x, z, t)− θinit
φ− θinit

dz and Q(t) = (φ− θinit)

∫ L

−L
zf(t;x) dx.

2.2. Green–Ampt model. The Green–Ampt model provides a simplified description of
infiltration. It assumes (i) homogeneity of the soil parameters in the z direction; (ii) one-
dimensional vertical flow from the soil surface downwards; and (iii) the existence of a sharp
wetting front zf(t), which separates the dry soil (θ = θinit) ahead of the front from the wet
(θ = φ) behind it, such that

(2.6) θ(z, t) =

{
θwet = φ for z < zf(t),

θdry = θinit for z ≥ zf(t).

For the problem under consideration, the Green–Ampt model yields an implicit solution for
the infiltration front zf(t) [17, 28, 29],

(2.7) zf − (ψ0 − ψf) ln

(
1 +

zf
ψ0 − ψf

)
=

Ks

φ− θi
t,

where the pressure head at the infiltration front, ψf , is set to a capillary drive [17, 28],

(2.8) ψf = −
∫ 0

ψi

Kr(ψ) dψ.

The pressure head in the dry soil, ψi, is related to the corresponding irreducible water content
θi by (2.2).

Probabilistic model parameterization. The foundational assumptions of the Green–Ampt
solution (2.7) preclude the direct use of the input soil parameters described in section 2.1.
The vertical flow assumption replaces the two-dimensional flow field with a collection of one-
dimensional isolated flow tubes labeled by x, in a manner consistent with the Dagan–Bresler
parameterization [7]. The vertical homogeneity assumption requires one to average out the
vertical variability of the soil properties. These spatial averages must be computed over the
a priori unknown interval 0 ≤ z ≤ zf(t;x).

To estimate the averaging intervals at a point x, we sample Ks and α from their respective
PDFs and insert them into the Green–Ampt solution (2.7). The resulting ensemble of infil-
tration depths zf(t;x) is then used to construct an empirical cumulative distribution function
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(CDF) F (z) = P(zf < z) for any z. Finally, the parameters are averaged using a weighted
mean with weights proportional to 1−F (z). The conductivity Ks is averaged with a harmonic
mean (analogous to multiple resistors in a series connection) [25]. The shape parameter α is
averaged arithmetically.

3. Data assimilation. We use the solution PDFs computed with the two alternative
models to assimilate the state variable’s measurements into model predictions. We adopt
a Bayesian updating strategy, in which these PDFs serve as prior distributions and the data-
informed (improved) model predictions are given by posterior PDFs.

3.1. Data acquisition and processing. Soil-moisture sensors provide pointwise measure-
ments of the water content θ(x, z, t). While these data can be assimilated into predictions
of θ(x, z, t) obtained with the Richards equation (section 2.1), the Green–Ampt model (sec-
tion 2.2) predicts only the QoI zf(t;x). To guarantee a meaningful comparison between the
two models, and to isolate the model error’s impact on posterior distributions, we compare
the probabilistic predictions of the QoI zf(t;x) obtained with the two models described in
section 2. This requires one to convert measurements of the state variable θ(x, z, t) into
“measurements” of the QoI zf(t;x).

Let (x, z) denote a sensor’s position. We model the sensor’s output as

(3.1) s(x, z) =

{
dry if zf(x) < ε z,

wet otherwise,

where ε represents a (small) measurement error. It is assumed to have a log-normal distri-
bution, such that ln ε ∼ N (0,σε). This allows the measurements to be wrong in some cases,
especially if the sensor is very close to the wetting front (z ≈ zf(x)). In the numerical examples
presented below, we set σε = 0.1.

Solving for ε and inserting the result into the normal CDF (normcdf), we express the
conditional probability of getting the measurement “wet” in terms of the sensor’s position
(x, z), given a wetting front zf , as

(3.2a) P[s(x, z) = wet | zf ] = normcdf

(
σ−1
ε ln

zf(x)

z

)
.

The conditional probability of measuring “dry” is, of course, the complement

(3.2b) P[s(x, z) = dry | zf ] = 1− P[s(x, z) = wet | zf ].

In the presence of multiple sensors, we assume their measurement errors to be independent.
That means that the noise ε is different for each sensor. The probability of measuring values
at multiple sensors is then the product of the probabilities of the individual measurements.
For a number of sensor positions (x1, z1), . . . , (xn, zn) and measurement values d1, . . . , dn, with
di ∈ {dry,wet}, we obtain

(3.3) P [s = d | zf ] = P [s(x1, z1) = d1, . . . , s(xn, zn) = dn | zf ] =
n∏

i=1

P [s(xi, zi) = di | zf ] .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

IMPACT OF DATA ON MODEL SELECTION 959

3.2. Bayesian filtering. We use the Smith and Gelfand implementation [22] of Bayes’ the-
orem to assimilate a set of binary data into model predictions. The representation of all un-
certain quantities is sample-based. After running Monte Carlo simulations for N realizations

of the soil parameters, we obtain N wetting fronts {z(1)f (t), . . . , z(N)
f (t)}. This (unweighted)

sample is a representation of the prior distribution. A prior sample of the total water content
{Q(1)(t), . . . , Q(N)(t)} is obtained by inserting each realization into (2.5).

To generate the posterior, each realization is assigned a weight proportional to its likeli-
hood of measuring the data. The likelihood l(i) of the ith realization is

(3.4) l(i) := P[s = d | z(i)f ],

where P[s = d | z(i)f ] is given by (3.3). The weights of the posterior sample are computed as

(3.5) w(i) =
l(i)

∑N
j=1 l

(j)
.

The posterior distribution is then represented by a weighted sample {z(1)f , w(1); . . . ; z(N)
f , w(N)}

and {Q(1), w(1); . . . ;Q(N), w(N)}. More details are given in [22].
The above implementation of Bayes’ theorem is slower than other methods, such as Markov

Chain Monte Carlo methods [9], but it has an important advantage. Sampling independently
from the data allows one to control which realizations of the input are inserted into the models.
This ensures that both the high-fidelity and the reduced-complexity models are run with the
same input. If we define a finite sample of the input parameters as the reference, then all of
the discrepancy in the output is due to the model errors. In that case, there is no sampling
(Monte Carlo) error, even with a finite sample size.

3.3. Statistical distance. The Monte Carlo simulations and Bayesian updating described
above yield the prior and posterior distributions of the total water content. To compare
the distributions obtained with the two alternative models, we employ the Earth Mover’s
distance (EMD) [20]. If a distribution is thought of as a pile of earth, the EMD between two
distributions is the minimal work required to turn one distribution into the other one. In one
dimension, the EMD is computed as the area between the two CDFs FX(x) and FY (y) of
random variables X and Y [6],

(3.6) D(FX , FY ) =

∫
|FX(x)− FY (x)| dx.

The EMD is preferred over other error measures, such as the Kullback–Leibler divergence [14]
or Hellinger distance [26], because it does not require a PDF estimate.

4. Simulation results. In the numerical experiments reported below, all soil properties are
taken from [21]: statistical properties of the uncertain soil propertiesKs and α are summarized
in Table 1; the remaining parameters are set to n = 1.81, φ = 0.42, θi = 0.13, and ψ0 = 0.01m.
The initial soil moisture content is set to θinit = 0.2. This value is different from θi to avoid
numerical instabilities.
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The simulations are carried out on a 2.0m × 2.0m rectangular domain. The horizontal
length of the domain was chosen to exceed 2λ⋆x, where λ⋆x is the largest of the horizontal
correlation lengths in Table 1. This ensures that the considered domain is representative of
the full variability in the soil. The vertical size of the domain was determined after preliminary
simulations to ensure that no water leaves the domain at the bottom boundary during the
considered simulation time.

A solution of the Richards equation is treated as a reference model, which does not in-
troduce any model error. An error of the Green–Ampt model is reported with respect to
solutions of the Richards equation.

The stochastic reference is a sample of 10, 000 realizations of the soil properties, called the
base sample. Using them to parameterize the Richards equation yields the overall reference
solution, which is assumed to have no model error and no sampling error.

Moisture sensors are located at depth zs = 0.1m; virtual measurements are taken at time
t = 30min. For that, one realization of the Richards equation is selected as the virtual truth
and inserted into (2.5), and then noise is added according to (3.1). Both the horizontal position
and the number of sensors differ from experiment to experiment. Whenever a quantity depends
on the number of moisture sensors, we equip it with an index for the number of sensors, e.g.,
T0 for a certain time in the prior and T7 for the same quantity in the posterior with data from
seven sensors.

Table 1
Statistical properties of Ks and α: mean µ, variance σ2, and correlation lengths λx, λz [21, Table 3a].

µ σ2 λx[m] λz[m]

lnKs –3.58 0.89 0.7840 0.2123

lnα –3.01 0.63 0.2554 0.1117

4.1. Notation. To emphasize the difference between the model error and sampling error,
all errors are written in the form DN

α,n. The subscript α ∈ {R,G} denotes either the Richards
equation (α = R) or the Green–Ampt model (α = G). The subscript n = 0, 1, . . . denotes
the number of soil moisture sensors used (n = 0 for the prior). Finally, N is the number of
realizations used in the Monte Carlo simulations. In the convergence analysis, N is varied
from 1 to 1, 000, 000 and samples are drawn with replacement. More details on this approach
are given in section 4.4. A special case is simulations with all 10, 000 realizations from the
base sample (without replacement): These calculations do not have a sampling error, so the
error represents the model error. Such cases are marked with the superscript star ⋆, e.g., D⋆

G,0
for the prior model error of the Green–Ampt model.

4.2. Numerical implementation. The Richards equation is solved using the USGS soft-
ware package vs2dt. Horizontally, the domain is discretized with 50 equally spaced cells.
Vertically, it is discretized with 30 cells and a grid refinement towards the top boundary.

The Green–Ampt model is solved using the MATLAB function fzero, which uses a com-
bination of bisection, secant, and inverse quadratic interpolation methods. One simulation
run solves (2.7) for all 50 soil columns defined by the discretization of the Richards equation.
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Richards Equation Green Ampt

0

0.1

0.2

Prior

z f
(x
)
[m

]

Richards Equation Green Ampt

x [m]
0 1 2

x [m]
0 1 2

0

0.1

0.2

Posterior(7)

z f
(x
)
[m

]

Figure 1. Prior and posterior statistics of the infiltration depth zf (x) at t = 30. Thick lines: ensemble
mean. Light colored areas: pointwise 0.1 and 0.9 percentiles. Black thin line: virtual truth. Circles: moisture
sensors, wet (black), dry (white). Both zf and x are displayed in [m]. All diagrams show the same part of the
domain.

4.3. Infiltration depth. Figure 1 shows the spatial variability of the prior and posterior
distributions of the infiltration depth zf(t;x). The posterior was calculated with data from
seven equidistant moisture sensors. The figure also shows the virtual truth from which the
data are generated via the measurement model; see (3.1). The plots were generated using
the full base sample. Therefore, there is no sampling error in these calculations, and all
discrepancies between the two results are due to the model error.

The prior computed with the Green–Ampt model overestimates the infiltration depths on
average by 0.005m, which corresponds to the relative error of about 5%. The distribution’s
width is slightly underestimated. In the posterior distributions, the Green–Ampt model again
underestimates the distribution’s width: The shaded area is smaller than its reference. The
virtual truth leaves the shaded area in about one third of the domain.

Figure 2 exhibits density estimates (using the MATLAB function ksdensity) of the total
amount of infiltrated water Q; see (2.5). Again, the full base sample was used. This plot
confirms the previous observations. In the prior, the reduced model slightly overestimates the
water content. In the posterior, the means of both models almost align. The model errors of
the Green–Ampt model are D⋆

G,0 = 1.87 · 10−3 m2 and D⋆
G,7 = 1.60 · 10−3 m2.
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Prior Q(30)
[
m2
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Richards
equation

Green Ampt

Posterior(7) Q(30)
[
m2

]

0 0.05 0.1 0.15

Richards
equation

Green Ampt

Figure 2. Prior and posterior density estimates of the total amount of infiltrated water Q(30) for the two
models.

4.4. Simulation times and convergence rates. We now return to the model-selection
problem: Given limited computational resources, which model has the smallest total error?
We compare the total errors (model error plus sampling error) of both models as a function
of calculation time.

In varying the sample size, we follow a bootstrapping approach. This means that the
samples are drawn from the initial base sample with replacement. This procedure allows one
to extend the analysis to sample sizes larger than the base sample and still obtain the typical
Monte Carlo convergence rate of O(N−1/2); see, e.g., [16]. Additionally, for each data point
the procedure is repeated 250 times with different random samples and averaged to ensure
that the results are robust against sampling artifacts.

We employ the setup with seven soil moisture sensors and use the same measurements as
in the previous section. Figure 3 shows the convergence plot of DN

G,n for sample sizes between
N = 1 (first data point of each line) and N = 1, 000, 000 (last data point). One realization of
the Richards equation takes about 56 s to compute, while one realization of the Green–Ampt
model takes 0.087 s. This is a ratio of more than 600 : 1.

Since the Richards equation represents the reference model, its error converges to zero,
D⋆

R,n = 0, by definition. The convergence rate is O(N−1/2), as expected. The error of the
Green–Ampt model solution does not converge to zero, but to D⋆

G,0 and D⋆
G,7, respectively.

The model-selection problem can be solved directly from the convergence plot. For both
the prior and the posterior there exists a computation time threshold T , which marks the time
after which the models should be switched. If the modeler has less than this time available, the
Green–Ampt model should be used; otherwise the Richards equation yields better results. For
the prior this threshold is T0 = 1.1 · 104 s ≈ 3 h; for the posterior it is T7 = 6.3 · 105 s ≈ 174 h.
This means that if the available computation time is between T0 and T7, then the model
selection depends on whether the prior or the posterior is to be calculated. The availability
of data favors the use of the reduced model.

A comparison of the two convergence plots in Figure 3 suggests that this result could be
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Figure 3. Convergence of the prior and posterior distributions of the total amount of infiltrated water.
Dashed horizontal lines: model errors D∗

G,0 and D∗
G,7. Dashed vertical lines: time thresholds T0 and T7.

caused by two effects:
1. Available data reduce the model error, D⋆

G,7 < D⋆
G,0.

2. Available data increase the sampling error. While the asymptotic convergence behavior
of the Richards equation is C/

√
n in both cases, the posterior convergence starts with

a larger multiplicative constant C and therefore reaches the same accuracy later than
the prior does.

In the following two sections we investigate these two effects in more detail.

4.5. Impact of data on the model error. To check the extent to which measurements
can reduce the model error, we vary the sampling density (i.e., the number of sensors n) and
calculate the model error D⋆

G,n. One would expect the influence of the prior to diminish and
the model error to decrease as the number of sensors increases.

Horizontal positions of the sensors (the experimental designs) are shown in Figure 4(left).
Each row represents one design, and each design is created by adding one more sensor to
the previous design (the newly added sensors are shown in red). The sensors are spread out
equidistantly as much as possible. This is achieved by using the Hammersley sampling [12].

Figure 4(right) shows the model error D⋆
G,n as a function of the number of sensors n =
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Figure 4. Left: experimental designs (horizontal positions of the sensors). Each row shows one design,
and each design contains the previous design and one additional sensor (shown in red). Right: model error as
a function of the number of sensors.

1, . . . , 31. The error is averaged over 100 repetitions, in which a different realization was
selected to represent the reality for generating the measurement data. One can see that the
model error decreases at first until a minimum is reached with three sensors. Then the error
gradually increases. The error with seven sensors is on average larger than the error without
measurements. The decrease observed in section 4.4 was specific to the precise data used in
that section and cannot be expected on average.

The increase in the model error for a large number of sensors shows that, among the base
sample of 10, 000 Green–Ampt solutions, there are no realizations that fully resemble the true
wetting front. In the situation with data from more than five sensors, the model complexity
of the Green–Ampt model is too low to keep up with the increasing sampling density. An
exact point of the minimal model error is, of course, problem dependent. A sampling density
of 31 sensors on a domain of 2m long would not be practical.

We conclude that the initial conjecture was incorrect: Additional measurements do not,
in general, lower the model error.

4.6. Impact of data on the sampling error. Finally, we investigate the extent to which
sampling density affects the sampling error. Figure 5(left) shows the convergence of the Monte
Carlo solution of the Richards equation with 0 to 16 moisture sensors. At the right end of
the plot, where the asymptotic convergence behavior is attained, the individual data lines are
perfectly ordered according to the number of sensors.

Figure 5(right) shows the rightmost data points in Figure 5(left) (the data points for
sample sizes of 1, 000, 000) as a function of the number of sensors. This figure confirms the
previous observation that the sampling error increases with the sampling density.

5. An approach to model selection. In this section, we recap the findings from the
previous section and formulate a possible approach to the model-selection problem. Solving
the model-selection problem is a matter of determining the time threshold T . Once it is
known, the modeler can decide which model to use.

The convergence behavior shown in Figure 3 gives rise to two observations.
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Figure 5. Left: convergence of the Monte Carlo simulations of the Richards equation for different numbers
of sensors. Since the Richards equation is the reference, the error shown is a pure sampling error. Right: the

last data point from the left plot (D106

R,n), shown as a function of the number of sensors.

1. If a reduced-complexity model is much faster to solve than its high-fidelity counterpart,
then, given sufficient simulation time T , the sampling error in the solution of the
reduced-complexity model is negligible relative to its model error. In other words, the
total error of the reduced-complexity model at the time threshold T is constant and
equal to D := D⋆

G,n.
2. The simulation time T is sufficient to enable the high-fidelity model to reach the

asymptotic convergence behavior of the form C/
√
N (see, e.g., [16]).

Let tc denote the simulation time necessary to solve one realization of the high-fidelity model.
Then, the time threshold T is found by equating the two errors, D = C/

√
N , which yields

(5.1) T = tcN = tc

(
C

D

)2

.

This general result holds for any QoI and any error measure, as long as the QoI estimate
converges with the rate of O(N−1/2).

Figure 6 exhibits the dependence of the simulation time threshold T estimated with (5.1)
on the number of sensors n. The increase in the sampling error, quantified by the factor
C (Figure 5), outweighs the increase in the model error D (Figure 4), such that the time
threshold T increases with the sampling density. These results are averaged over the data
from 100 different “virtual truths.” Therefore, the effect is not as strong as in the example
given in section 4.4, which represented a single realization of the “ground truth.”

Equation (5.1) reveals the difficulty in solving the model-selection problem a priori. To
do so, one needs to determine both the model error of the reduced model, D, and the multi-
plicative constant C in the convergence behavior of the complex model. These two quantities
depend on the amount of available measurements, as shown in the previous two sections.

The constant C could be estimated using the reduced model if one assumes that the
reduced model converges to its limit with the same constant as the complex model does (in
terms of number of realizations, not in terms of computer time). We are not able to provide
a general approach for estimation of D: While in the absence of measurements one could
compare a small number of realizations of both models to get an estimate of D, the presence
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Figure 6. Dependence of the time threshold Tn, predicted with (5.1), on the number of sensors n.

of QoI measurements changes the model error; this change is nonmonotonic in the amount of
available data (Figure 4). This makes it difficult, if not impossible, to get an a priori estimate
of the model error.

6. Conclusions. We investigated the impact of data assimilation on model selection in the
presence of uncertainty. Two models with different degrees of fidelity were considered in the
context of infiltration into heterogeneous porous media with uncertain hydraulic properties.
We found that Bayesian assimilation of data (water content measurements) changes both the
posterior representational (model) error of the reduced-complexity (low-fidelity) model relative
to its prior counterpart and the sampling error of the high-fidelity model. These changes in
the two errors shift the optimal model selection towards the reduced-complexity model. There
are situations in which the best result for the prior is calculated using the high-fidelity model,
while for the posterior the best result is obtained with the reduced-complexity model.

This effect becomes most apparent when considering the limited amount of computational
resources. The latter is expressed in terms of the simulation time threshold T . The use of the
high-fidelity model is beneficial only if the available simulation time exceeds T . In our study,
the time threshold T increased almost monotonically with the amount of QoI measurements.
This increase is rather drastic, changing by a factor of 8.

The study elucidates the relationship between measurements of state variables and the
model-selection problem. The two factors that influence the model selection are (i) the model
error of the low-fidelity model and (ii) the sampling error of the high-fidelity model. Both
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factors strongly depend on the amount of available data. Our analysis suggests that the
availability of data favors the use of reduced models. The generality of this finding for other
phenomena remains an open question.
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