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Predicting Vertical Connectivity Within an
Aquifer System

Margaret Short∗, Dave Higdon†, Laura Guadagnini‡,
Alberto Guadagnini§ and Daniel M. Tartakovsky¶

Abstract. The subsurface environment beneath the Municipality of Bologna,
Italy, is comprised of a series of alluvial deposits which constitute large and pro-
ductive aquifer systems. These are separated from the shallow, free surface aquifer
by a low permeability barrier called aquitard Alpha. The upper aquifer contains
water that shows relevant contamination from industrial pollutants. The deep
aquifers are relatively pristine and provide about 80% of all groundwater used
for drinking and industrial purposes in the area of Bologna. Hence, it is impera-
tive that planners understand where along aquitard Alpha there exists potential
direct connection between the upper and the deep aquifers, which could lead to
contamination of the city’s key water supply well fields.

In order to better assess the existence of preferential flow paths between these
aquifer systems, we carry out a statistical analysis in which the aquitard is repre-
sented as a bivariate spatial process, accounting for dependence between the two
spatial components. The first process models its effective thickness. The second
process is binary, modeling the presence or absence of direct vertical connections
between the aquifers. This map is then cross referenced with other forms of data
regarding the hydrology of the region.

Keywords: Markov chain Monte Carlo, Gaussian process, subjective likelihood,
spatial model

1 Introduction

The key geological units beneath the Municipality of Bologna, Italy, host large and
productive aquifers, which are separated vertically from the upper, free surface aquifer
by a low permeability barrier called aquitard Alpha (Figure 1). The upper aquifer
contains water that shows evidence of contamination by industrial pollutants. The
lower aquifers are relatively pristine and provide about 80% of all groundwater used
for drinking and industrial purposes in the area of Bologna. Therefore, the integrity of
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aquitard Alpha is crucial for the health of the lower aquifers.

Relatively fast migration of contaminants between the upper and deep aquifers is
possible through highly permeable inclusions (e.g. fractures, cracks, lenses of coarse ma-
terial, etc.) embedded in aquitard Alpha. The ability to ascertain the locations and
spatial extent of such inclusions which constitute preferential flow paths for contam-
inants is paramount for ensuring the safe and environmentally sound exploitation of
groundwater resources in the region.

The goal of the analysis presented here is to assess the likelihood that Alpha contains
such preferential pathways for contaminants. Our analysis makes use of sedimentological
data, spatial modeling and expert judgment. It leads to the construction of a spatial
map depicting the probability of occurrence of vertical connections between the upper
ad lower aquifers. These connections are typically associated with discontinuities within
aquitard Alpha. The latter are in turn related to the occurrence of large fractions of
coarse material mixed with fine particle sizes within Alpha or small (local) thicknesses
of the aquitard. As an ancillary result, we provide an estimate of the spatial distribution
of the fine materials (clay and silt) within Alpha, which act as the primary barrier to
the vertical flow of contaminants. While the construction of this map is not our primary
goal, we show that it is a necessary step for the assessment of the occurrence of local
vertical connections between aquifers.

The spatial modeling uses two-dimensional representations. We are not attempt-
ing to pinpoint the precise location (trajectory) of preferential pathways through the
aquitard, which would be the case for a three-dimensional reconstruction, but rather to
infer the existence of such pathways and their (two-dimensional) spatial location. The
available data provide indirect information about connectivity between the aquifers.
Our modeling approach handles this indirectness through a subjective likelihood whose
form is guided by expert opinion.

The remainder of this section discusses in greater detail the study region and the
motivation for this study. Section 2 describes the data and introduces terminology that
will be used through the remainder of this paper. Section 3 spells out the primary
statistical model that was developed for this data. Section 4 discusses results and
cross-references with other types of hydrogeologic information. An alternative modeling
approach is outlined in Section 5. We end with some concluding remarks.

1.1 Description of the site and motivation of the study

The city of Bologna lies on the alluvial plain of the Reno river, in the Emilia Romagna
region of Northern Italy. This study focuses on a nearby area (Figure 1a) of about
50km2, which contains three major well fields whose combined yield accounts for about
80% of the municipality’s groundwater supply. The most important environmental
problem suffered by the municipality of Bologna is groundwater contamination. In
recent decades, industrial development has produced many sources of pollutants; these
include organohalogenatic compounds such as perchloroethylene (used as an industrial
solvent, for example, in dry-cleaning) and nitrates (mainly associated with agricultural
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Figure 1: Locations of the municipality of Bologna, the study area (the square region
in the insert) and data points within the study area and its vicinity (a). A conceptual
representation of the main geological units in the vertical cross-section of the study area
(b). The wells shown in (b) are used by the municipality to pump drinking water; to
avoid a preferential flow path through the aquitards, the well bores are sealed. Vertical
units are meters. Our focus is on the analysis of the composition of an aquitard, Alpha,
that separates two aquifers in the Bologna aquifer system.

activities).

The geologic structure of the region’s subsurface has been the subject of numerous
investigations (e.g., (Ricci Lucchi 1984; Ricci Lucchi et al. 1982; Francavilla et al. 1980;
Amorosi and Farina 1994b,a, 1995)). These and other studies reveal that the Reno river
alluvial fan in the area has a wedge shape, increasing in thickness from south to north
(Figure 1b). The alluvial fan rests on sea clayey deposits, which are rich with saline
water. The water-bearing alluvial deposits in the Bologna area are more than 300m
thick (Francavilla et al. (1980)) and can be subdivided into three large-scale geological
units (also known as depositional cycles) denoted by A, B, and C in Figure 1b. These
depositional cycles, each about 100− 150m thick, are separated by the clayey deposits
denoted Delta and Epsilon, which form flow barriers and are commonly referred to as
aquitards. Depositional cycle A can be further subdivided into two major subunits
(denoted by A1 and A234 in Figure 1b), which are separated by the aquitard called
Alpha.

The alluvial deposits A234 and B form large and productive aquifer systems, which
are heavily used by the municipality of Bologna as a major source of fresh water.
Groundwater from the upper aquifer A1 shows signs of local contamination. Aquitard
Alpha plays a major role as the natural barrier between the upper contaminated aquifer
system A1 and the deeper aquifer systems A234 and B; its reconstruction is the primary
objective of this study.
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Figure 2: Spatial distribution of well core samples corresponding to aquitard Alpha.
Shape indicates proportion of coarse material (sand and gravel) in the well core. Color
and hatching indicate the thickness of fine material (silt and clay). A dark circle thus
indicates the greatest potential for contamination to pass from upper aquifer to lower:
little or no fine material, and a high proportion of coarse material. Of the 123 core
samples, 85 contained no coarse material.

2 Sedimentological Data

A total of 39 logs of geognostical boreholes and 183 well logs were used to characterize the
subsurface structure of the Reno river alluvial fan within the municipality of Bologna.
Their locations are shown by the dots in Figure 1a. Of these, 123 well logs fall within
the area under investigation — the region identified by the dashed-line square in the
insert of Figure 1a — and are used in this analysis. From each of these well logs,
two attributes of aquitard Alpha were extracted: its local thickness and the volumetric
fraction (percentage) of the embedded coarse materials. These are reported as the
cumulative thickness of fine materials (silt and clay) and the fraction (0.0–1.0) occupied
by coarse materials (sand and gravel), respectively. Figure 2 depicts spatial locations
of the well core data over the study region.

The data show that aquitard Alpha is composed mainly of fine (silty-clayey) material
with local interbedding of coarse (sand and gravel) material. The dominance of the fine
material defines the ability of aquitard Alpha to act as a natural barrier, which prevents
flow and migration of contaminants between the upper aquifer and the deep groundwater
reservoirs. The inclusions of coarse material are highly permeable and can effectively
act as locations of preferential flow paths in the otherwise impermeable aquitard.

Aquitard Alpha is most likely to pose environmental problems (i.e., to display con-
taminant pathways) at locations where it is thin and contains relatively large fractions
of the coarse geomaterial. From each of the n = 123 well core samples the bivariate
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Figure 3: Proportion of coarse material (sand and gravel) vs. the thickness of imper-
meable material (silt and clay) in the well core samples of aquitard Alpha.

measurement

y(si) =
(

yT (si)
yF (si)

)
=

(
thickness of fine material at si

fraction of coarse material at si

)
, i = 1, . . . , n (1)

was recorded. The data are shown spatially in Figure 2 and as a scatterplot in Figure 3.
The shape and orientation of the plotting symbols indicate the fraction of coarse mate-
rial; the color (darkness) and hatching indicate the thickness of the fine material. The
measurements showing aquitard Alpha to be locally thin as well as having a high pro-
portion of coarse material suggest possible discontinuities within the impervious matrix
of the aquitard. Sites of Figure 2 where this occurs are depicted using plotting symbols
that are both round – indicating little or no fine material – and dark – indicating a high
proportion of coarse material. Likewise, these same environmentally critical locations
correspond to points in the lower right corner of Figure 3.

3 Statistical modeling

The statistical modeling for this application requires us to specify a spatial prior model
for aquitard Alpha as well as a likelihood which determines how the observed data
informs about the aquitard. In this section we describe our final model, which explic-
itly models the thickness of aquitard Alpha. This model uses a subjective likelihood,
constructed with the aid of hydrogeologists involved with this analysis. The resulting
inference relies heavily on this construction.
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3.1 Spatial prior model for aquitard Alpha

Over the study region S we focus on two features of aquitard Alpha: the total thickness
of the fine materials, and the presence or absence of contaminant pathways through
the aquitard. We specify a prior bivariate spatial process (zT (s), zP (s)), s ∈ S, for
aquitard Alpha. The first component, zT (s), which we call clay thickness, denotes the
total thickness of impermeable material (clay and silt) within Alpha. It is a positive,
continuous field over the spatial region S. The binary process zP (s) we call permeability.
It denotes the presence (zP (s) = 1) or absence (zP (s) = 0) of contaminant pathways
through aquitard Alpha at spatial location s. Both of these fields are non-Gaussian,
but are constructed using latent Gaussian process models.

The clay thickness is derived by taking the positive part of a standard Gaussian
process uT (s) so that

zT (s) =
{

uT (s) if uT (s) ≥ 0
0 if uT (s) < 0.

The underlying Gaussian process uT (s) has a mean function µ0 + µ1s2 that depends
on the north-south spatial coordinate s2. The random part of uT is constructed using
a discrete representation given in Higdon (2002), which we define as follows. Let S be
the spatial region defined by the study region in this application, and let xT

1 , . . . , xT
K be

iid N(0, λ−1
T ) random variables (“knot values”) associated with sites w1, . . . , wK ∈ S.

The knot locations wj are taken to be an equally spaced 25 × 25 array over the study
region S. The spatial process uT (s) for s ∈ S is constructed using the representation

uT (s) = µ0 + µ1s2 +
K∑

j=1

xT
j k(s− wj ; σT ),

where we take k(·; σT ) to be a circular, bivariate normal density with standard deviation
σT . The precision parameter λT controls the precision of the xT

j ’s, which in turn controls
the marginal variance of the uT (s) process. A Γ(aT = 1, bT = .001) prior is specified for
λT . The parameter µ0 is given a U(0, 40) prior; µ1 is given a U(−30, 30) prior. Finally,
the kernel width parameter σT controls the range of spatial dependence for the uT (s)
process. We specify a U(.04, 1) prior distribution for σT , after rescaling S to the unit
square, [0, 1]× [0, 1]. The lower bound of 0.04 is equal to the minimum knot spacings in
the underlying knot locations. Allowing σT to take values significantly lower than this
will result in “dead” regions in uT (s) that take values near the mean value µ0. If smaller
values of σT are needed, a finer grid of knot locations may be used. For the application
here, the 25×25 grid is sufficient. Note that increasing the knot density has very little
effect, since λT can be correspondingly increased, leaving the induced distribution for
the latent process uT (s) essentially unchanged.

This discrete representation allows the thickness field to be controlled by µ0, µ1,
and the K knot values xT . This is particularly useful for the MCMC approach used
to explore the complicated posterior distribution resulting from this application (see
Equation (5)).
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Conditional on the clay thickness field zT (s), the binary permeability field zP (s) is
constructed in a similar fashion using a latent, mean 0, Gaussian process uP (s) according
to the rule

zP (s) =
{

1 if β0 + β1zT (s) + uP (s) ≥ 0
0 if β0 + β1zT (s) + uP (s) < 0.

(2)

Conditional on zT (s), this is an example of a clipped Gaussian random field model from
De Oliveira (2000), where the mean function depends on the clay thickness zT (s). It
can also be considered a slight generalization of the latent multivariate probit model
given in (Agresti (1990),Johnson and Albert (1999)). Unconditionally, this formulation
results in a bivariate non-Gaussian spatial model. The process uP (s) is defined in a
manner analogous to that of uT (s):

uP (s) =
K∑

j=1

xP
j k(s− wj ; σP ),

where the knot locations are the same as those for uT (s). Here the underlying knot
values xP

1 , . . . , xP
K are given independent N(0, λ−1

P ) distributions a priori. The precision
parameter λP is fixed so that the resulting Gaussian process uP (s) has a nearly constant
marginal variance of 1. The variance is not exactly constant over S due to the discrete
representation. However, the fluctuations over S are small enough to be negligible.
Also, the kernel k(·;σP ) is controlled by its own scaling parameter σP . As with its clay
thickness counterpart, σP is assigned a U(.04, 1) prior.

In equation (2), β0 controls the mean connectivity (permeability) probability; β1

controls the dependence between the clay thickness and connectivity fields. We expect
that β1 will be negative, so that greater clay thickness at spatial location s makes it
less likely that there is a preferential pathway through aquitard Alpha (i.e. zP (s) = 1).
However, we specify wide U(−15, 15) priors for both β0 and β1 to allow the well core
data to inform about these parameters.

Figure 4 helps visualize how this model works, with the top row depicting aspects of
the clay thickness portion of the model (uT (s) and zT (s)) and the bottom row for the
permeability components of the model (uP (s) and zP (s)). The left column shows the
grids used to create the two processes, uP (s) and uT (s). Independent normal variates
are located at the grid locations that are shown in the left hand column of plots; these
knot values are convolved by a normal kernel whose standard deviation is given by
the circles in these plots (for uT (s) in the top row, uP (s) in the bottom row). The
center column depicts realizations for uT (s) and uP (s), obtained by convolving knot
values by the kernels. The final column of this figure shows the corresponding induced
realization for the two dependent fields, zT (s) and zP (s). Note that the realization of
zT (s) is obtained by truncating the negative values in uT (s); locations where clipping
has occurred are painted red (flat gray). The realization of zP (s) is binary, constructed
by thresholding a linear combination of zT (s) and uP (s). For this realization, values for
the parameters xT = (xT

1 , . . . , xT
K)T , xP = (xP

1 , . . . , xP
K)T , σT , σP , µ0, µ1, β0, and β1

were taken from a posterior realization used in the eventual analysis of aquitard Alpha.
This figure is discussed further in Section 4.



564 Predicting Vertical Connectivity Within an Aquifer System

Figure 4: Construction of the bivariate spatial model. The top row refers to the clay
portion of the process (uT and zT ), the bottom row to the permeability portion of the
process (uP and zP ). Independent normal variates are located at the grid locations
shown in the left hand column of plots; these knot values are convolved by a normal
kernel whose standard deviation is given by the overlaid circles. The induced fields
uT (s) and uP (s) are shown in the middle columns. The right hand columns show the
two spatial fields: the clay thickness zT (s) and the binary connectivity field zP (s). The
red (flat gray) portion of the top right image shows where zT (s) = 0, i.e. where clay
thickness is 0m. The dark portion of the bottom right image shows where zP (s) is 1,
i.e. where aquitard Alpha is permeable.

3.2 Likelihood specification

The physical measurements (yT (si), yF (si)), i = 1, . . . n, give the thickness and propor-
tion (fraction) of coarse material of aquitard Alpha at the n = 123 spatial locations.
However, we wish to infer about the connectivity of Alpha over the entire study area S,
which is never directly observed. The data inform about the underlying processes zT (s)
and zP (s) through the likelihood, which factors into two terms: one involving the clay
thickness, and one involving the connectivity field.

The first term is a standard likelihood for a spatial model where the observed clay
depth is a noisy version of the true depth. The observed clay depth is not expected to
be exact, since the well core data typically carries a fair bit of uncertainty. In addition,
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we expect this noise term to absorb some of the small scale variability in the actual clay
depth. Taking yT = (yT (s1), . . . , yT (sn))T to be the n-vector of clay depth observations,
and zT = (zT (s1), . . . , zT (sn))T to be the clay depth process at the observation sites,
this component of the likelihood becomes

LT (yT |zT , λy) ∝ λn/2
y exp

{
−λy

2
(yT − zT )T (yT − zT )

}
,

where the parameter λy controls the observation precision. Note that this is not a mul-
tivariate truncated normal distribution, but rather a multivariate normal distribution
in which the means are non-negative. This is a modeling choice that allows for the
possibility of contiguous regions having clay thickness zT (s) equal to 0. In addition, it
greatly facilitates computations.

The second component of the likelihood determines how the observed data inform
about the binary connectivity process zP (s). Here it is standard to specify a sampling
model for which observations y(si) = (yT (si), yF (si))T , i = 1, . . . , n, are independent
given the underlying spatial field, so that

LP (y|zP ) =
n∏

i=1

LP (y(si)|zP (si)), (3)

where y = (y(s1)T , . . . , y(sn)T )T and zP = (zP (s1), . . . , zP (sn))T . Similar binary clas-
sification applications from spatial and image applications typically specify a normal
sampling model where the mean of y(s) depends on the state of zP (s) (Besag et al.
1991; Hurn 1998). However, the nature of the bivariate measurements taken here, along
with their spread – evident in Figure 3 – are incompatible with a normal sampling model
for the y(si)’s.

We assume the product form of the sampling model in equation (3); this, together
with the fact that each zP (si) is binary, means that the likelihood depends only on the
ratios

r(y(si)) =
LP (y(si)|zP (si) = 1)
LP (y(si)|zP (si) = 0)

, i = 1, . . . , n,

since (3) can be rewritten as

LP (y|z(s)) =
n∏

i=1

r(y(si))zP (si) LP (y(si)|zP (si) = 0) ∝
n∏

i=1

r(y(si))zP (si). (4)

Hence the data only inform about zP (s) through the specification of the odds map
r(y(s)).

It remains to specify r(y) as a function of possible bivariate outcomes y(s) ∈ {[0,∞)×
[0, 1]}. In fact, we need only consider thicknesses between 0 and 50 meters since it is
unlikely aquitard Alpha is thicker than 50 meters within the study region. In specifying
the odds map, it is convenient to interpret r(y(s)) as the odds that the underlying
zP (s) = 1 at the spatial location s, independent of spatial information encoded into the
prior for zP (s).
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We rely on expert knowledge from hydrogeologists familiar with the study region
to determine the odds map r(y(s)). We model log r(y(s)) as a linear function of the
observed clay thickness yT (s) and the observed proportion of coarse material in Alpha
yF (s),

log(r(y(s)) = γ0 + γ1yT (s) + γ2yF (s). (5)

The expert knowledge is used to specify a line for which the odds are equal to 1, and
a slope which determines how quickly the odds change as the data move away from
the r(y(s)) = 1 line. This, equivalently, determines γ0,γ1, and γ2. Considerations for
determining this map include the following points.

• For the very small local thickness of aquitard Alpha (< 10m), even a very large
fraction of fine material does not guarantee the spatial continuity (impermeability)
of the aquitard.

• An intermediate thickness guarantees the continuity only for a relatively small
fraction of coarse material. This is because coarse materials within a clearly
identifiable aquitard manifest themselves as a sequence of interbedding structures,
so that a porous pathway through the aquitard is possible.

• A very large fraction of coarse materials tends to be indicative of local disconti-
nuities, unless the thickness of an aquitard is very large (> 20m).

With these points in mind, we see that γ1 < 0 (the odds of permeability decrease
as clay thickness increases) and that γ2 > 0 (the odds of permeability increase as
the proportion of coarse material increases). These are consistent with our best de-
termination of this function, shown in the central frame of Figure 7 and given by
(γ0, γ1, γ2) = (2.30,−.461, 4.61).

We digress briefly to discuss this likelihood, as it is somewhat subjective. Our
rationale in developing its general form was driven, in part, by the following. First
the modeling of the clay thickness process is relatively straightforward, and the strong
north-south trend in clay thickness provides a considerable amount of information about
the permeability of aquitard Alpha. We therefore choose to include it in our model.
Secondly, we consider it sensible and in fact desirable to use the bivariate observations
(yT , yF ) to inform about zP , because doing so allows us to incorporate expert opinion
in tying these together through the log-odds map. We believe these strengths outweigh
the complexity of the model, as well as the fact that the clay thickness observations
are being used twice: once in specifying LT (yT |zT ) and again in specifying LP (y|zP ),
recalling that zP is partly determined by zT .

To help solidify these ideas, let us examine how the spatial priors and likelihood fit
together, by describing how one might simulate a data set, y = (y(s1), y(s2), . . . , y(sn)).
Assuming known values for the model parameters (knot values, precision parameters,
etc.), we construct a realization of the spatial prior processes, zT (s) and zP (s) by con-
volving knot values by the kernel, as illustrated in Figure 4. Observations y(si) can then
be simulated, first by simulating yT , the clay thickness, from its marginal distribution,
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then simulating from yF ’s distribution given yT . It is straightforward to verify that the
marginal density for yT (si) is given by

f(yT |zT (si), zP (si)) ∝ exp
(
−λy

2
(yT − zT )2

)
× g(yT |zP )× I(0 ≤ yT ≤ 50),

where

g(yT |zP ) =





log
(

1+exp(γ0+γ1yT +γ2)
1+exp(γ0+γ1yT )

)
if zP = 1

γ2 − log
(

1+exp(γ0+γ1yT +γ2)
1+exp(γ0+γ1yT )

)
if zP = 0

The effect of multiplying g(yT ) against the density exp(−λy

2 (yT − zT )2) can be seen in
Figure 5, which shows the marginal densities f(yT ) = f(yT |zT , zP ) under four scenarios
(zP ∈ {0, 1} and zT ∈ {5m, 25m}). In each panel, the values of γ0, γ1, and γ2 are
those from our final model, and λy is set equal to its posterior median. In this figure,
the factor g(yT ) has little effect when zT and zP are aligned similarly (zT large and
zP = 0, or zT small and zP = 1). If, however, zT is small and zP = 0, i.e. little clay
yet impermeable, multiplying g(yT ) against exp(−λy

2 (yT − zT )2) increases the marginal
mean of yT , which is as we desire; and when zT is large and zP = 1, the multiplication
by g(yT ) decreases the marginal mean of yT , also the desired effect.
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Figure 5: The marginal density f(yT ) is plotted in each panel (solid line), along with
the density exp(−λy

2 (yT − zT )2) (dashed line); the gray curve shows the ratio of these,
denoted in the text by g(yT ). The panels illustrate four scenarios, in which zP ∈ {0, 1},
and zT ∈ {5m, 25m} (corresponding to estimated mean clay thickness at southern and
northern ends of the study region). The values of γ0, γ1, and γ2 are those from our final
model, and λy is set equal to its posterior median. The factor g(yT ) has little effect
when zT is large and zP = 0 (clay thickness is large and Alpha is not permeable), and
when zT is small and zP = 1 (little clay and Alpha is permeable). If, however, zP = 0
and zT is small, the marginal mean of yT is greater than zT , which indicates that the
model prefers larger observations yT in accordance with Alpha being impermeable.
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Once simulated values for yT have been obtained, the fraction of coarse material,
yF (si), i = 1, . . . n, can be simulated from its conditional density,

fi(yF ) ∝
{

pi(yF )× I(0 ≤ yF ≤ 1) if zP (si) = 1
(1− pi(yF ))× I(0 ≤ yF ≤ 1) if zP (si) = 0 ,

where

pi(yF |yT (si) = yT ) =
exp(γ0 + γ1yT + γ2yF )

1 + exp(γ0 + γ1yT + γ2yF )
× I(0 ≤ yF ≤ 1).

One can verify that this method of simulating data is consistent with the likelihood
description provided above.

Returning to the main thread of our discussion, we note that the data provide
essentially no information about the values of γ0, γ1 or γ2, as we convinced ourselves
by examining output from lengthy MCMC runs (plots omitted). Thus we eventually
restricted our analysis to several combinations of these parameters, as shown in the
various frames of Figure 7. The hydrogeologists believe these cases bound the plausible
relationships between the data and the connectivity field. In particular, combinations of
the γs lying far outside this range of possibilities resulted in estimated maps considered
completely implausible – in their judgment, roughly 1/4 of the study region is believed
consistent with vertical connections between the relevant aquifers. In Section 4, we
investigate sensitivity of results to our choice of odds map.

3.3 Posterior distribution

After specifying common, independent gamma priors for the precisions λy, λT and λP ,
and common uniform priors for the kernel width parameters σT and σP , the resulting
posterior distribution has the form:

π(θ|y) ∝ λ
n
2
y exp

{
−λy

2
||yT − zT ||2

}
×

n∏

i=1

r(y(si))zP (si) (6)

× exp{−.001λy}
×λ

K
2

T exp{−1
2
λT ||xT ||2} × exp{−.001λT }

×λ
K
2

P exp{−1
2
λP ||xP ||2} × exp{−.001λP }

×I[.04 ≤ σT , σP ≤ 1]× I[−15 ≤ β0, β1 ≤ 15]
×I[0 ≤ µ0 ≤ 40]× I[−30 ≤ µ1 ≤ 30],

where θ = (λy, xT , λT , xP , λP , β0, β1, µ0, µ1, σT , σP ).

The posterior distribution is sampled using standard single site MCMC. Random
walk Metropolis updates are used for the majority of the parameter components. Be-
cause the full conditionals for the precision parameters λy and λT are gamma, these
parameters can be updated using Gibbs updates.
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Figure 6: Posterior mean estimates for binary connectivity process zP (s). Bright red
denotes the spatial region for which the probability of connectivity is greater that .95;
dark red denotes area for which the probability of connectivity is greater than .90. The
nominal odds map corresponding to the central frame of Figure 7 was used.

The MCMC was carried out by running four chains of length 106 and thinning by
250, for a posterior sample of size 16,000; each chain required roughly three days on a
2.5GHz quad-core desktop PC. This procedure results in an effective sample size that is
no worse than 400 for any of the parameter components. In fact, the effective sample size
for most parameters was far greater than 400; the mixing of (just) the mean parameters
µ0 and µ1 is quite slow. The resulting posterior mean estimate for zP (s) is shown in
Figure 6.

As the sampling is quite challenging, we devote the remainder of this subsection
to a discussion of some of the issues that arose. As with many other spatial models
fitted using a convolution approach, particularly those in which the knot values must
be sampled via Metropolis or Metropolis-Hastings steps, it takes a considerable amount
of time to run the MCMC code; each iteration is slow (at best, around 4-5 iterations
per second) and many iterations are required for the MCMC to converge. In fact,
convergence for the knot values xP and for most of the knot values xT is rapid. A small
subset of the knot values xT is problematic. In several locations in the study region,
clay thickness observations obtained in tightly clustered areas differed significantly from
one another, suggesting a fairly rough underlying process. The use of Gaussian kernels
in our convolution approach is best suited for smooth underlying processes, with two
resulting problems for fitting model to data:

The clay thickness kernel width attempts to shrink as much as its prior distribution
allows, and thus its sampled values are tightly clustered near the minimum value allowed
by the prior. At one point we experimented with a 30×30 grid of knot locations, and
still the kernel widths shrank to the smallest width we allowed (1/30, recalling that the
study area was rescaled to correspond to a unit square).

Secondly, knot values corresponding to locations near the apparent clay discontinu-
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Figure 7: Odds maps based on expert judgment. The central figure corresponds to
the best estimate; the remaining figures show other plausible odds maps. The solid line
corresponds to data for which the odds of connectivity is 1. The dotted line corresponds
to an odds of 10. For each odds map, the posterior proportion of the study region that
is permeable is given. Above that are the posterior median estimates for (β0, β1).

ities converge slowly, exhibiting extremely high lag 1 autocorrelations. As part of our
standard approach to fitting models with MCMC, we begin all our chains with an ad-
justment phase in which the Metropolis proposal widths for all sampled parameters are
periodically recalculated so that the acceptance rates are in the 30-60% range. Individ-
ual knot values are given their own proposal widths, and the problematic locations have
far narrower proposal widths than their neighbors, yet the problems persist. Correlated
Metropolis-Hastings proposals might help (a proposed increase in one knot value could
be accompanied by an equal-sized decrease in the value at an adjoining knot); but based
on our attempts in earlier models to carry this out, we are not optimistic it would help
here.

We mention that these issues with fitting the clay thickness portion of our model
also arose in our separate attempts to fit a model for clay thickness only. We doubt the
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problems here are caused by or are particularly influenced by our attempts to model
simultaneously the proportion of coarse material.

In our efforts to construct an appropriate model for clay thickness – in particular, to
handle bumpiness (i.e. small scale variation) without dramatically increasing the number
of knots – we considered a likelihood function in which the clay thickness observations
were correlated, using an exponential covariance function; in a clay-thickness-only model
(results omitted), this resulted in marginally wider kernels, but had no noticeable effect
in our bivariate-process model. We also attempted a model with two resolution scales,
adding a much denser grid of knot locations over the subregion that we believed was
causing the worst of our problems (inset (c) of Figure 2). This was ineffective, likely
because the discontinuities in clay thickness appear in several other tightly clustered
observation groupings as well.

4 Results

Figure 8 shows the posterior median for the clay thickness of aquitard Alpha. In general
it is thinner near the south edge of the study region, as expected. Inference regarding
the clay thickness field zT (s) is fairly insensitive to the choice of odds map since nearly
all of the information regarding this field is contained in the thickness component of the
likelihood LT (yT (s)|zT (s), λy).

The posterior mean for the binary connectivity field is given in Figure 9. Here the
estimates vary depending on which odds map is used. Also given in Figure 7 are the
posterior median estimates for β0 and β1 as well as the total proportion of the study
site where possible interconnections between upper and deep aquifers are revealed under
each of the 9 different formulations.

The reconstructions of connected regions show an increased probability of connect-
edness (permeability) for the aquitard in the southern portion of the study region. The
magnitude of this probability varies depending on the odds map specified. All of the
analyses show potential for discontinuity (permeability) in Alpha in the middle of the
western side of the region. In Figure 9, dark red (flat medium gray) regions denote
permeability probability greater than 0.90; bright red (dark gray) regions denote prob-
ability greater than .95.

The posterior distribution favors a rather short spatial correlation distance for the
clay thickness field zT (s), and a large correlation distance for the process uP (s) used to
build the connectivity field zP (s). This can be seen in the leftmost panels in Figure 4,
which correspond to a single (yet fairly typical) posterior realization. The correlation
distance for zT (s) is driven almost entirely by the clay thickness portion of the model.
Extensive experimentation with a stand-alone model for clay thickness (using uT and zT

as defined in this paper) resulted in an estimated value of σT that is indistinguishable
from that obtained here. Evidently the roughness in zT (s) provides virtually all of
the roughness called for in the permeability field zP (s), resulting in extremely smooth
realizations for uP (s). Note that the north-south mean trend in zT (s) gives some larger
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Figure 8: Posterior median estimates for the clay thickness field zT (s). The nine pos-
terior maps correspond the odds maps given in Figure 7. The center panel corresponds
to our preferred odds map; note that this estimate is somewhat insensitive to the choice
of odds map. The red (medium gray) contours in the southern and west-central areas
of the study region correspond to an estimated clay thickness of 0.1m.

scale dependence to zP (s).

Residuals for the fitted model are shown in Figure 10. For clay thickness, the
residuals are simply yT (si) − ẑT (si), i = 1, . . . , n, where ẑT (si) denotes the posterior
mean of the thickness field at si. For connectivity, the residual is defined to be the
difference between the inferred probability from the local well core that the aquitard is
permeable at si, i.e. p(si) = r(si)/(1+r(si)), and the posterior probability that zP (si) =
1. The posterior mean for these two fields appears to match the data adequately.
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Figure 9: Pointwise posterior probability of connectivity for aquitard Alpha. The nine
posterior maps correspond to the posterior expectation of zP (s) using the corresponding
odds maps given in Figure 7. The center panel corresponds to our preferred odds map.

4.1 Comparing the reconstruction to other information sources

This analysis is complicated by the fact that the sedimentological data do not give
direct information on whether or not aquitard Alpha is permeable at any particular
spatial location. In this section we compare the estimated connectivity field with infor-
mation from piezometer readings from other municipal data sources. In addition, we
also see how results obtained in the previous section compare with qualitative recon-
structions which utilize sedimentological information along with the well cores used for
the statistical analysis.
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Figure 10: Residuals from the posterior mean for zT (si) and zP (si). For clay thickness
(left panel), the residuals are yT (si) − ẑT (si), i = 1, . . . , n. For connectivity (right
panel) the residual is defined to be the difference between the inferred probability that
the aquitard is permeable at si, p(si) = r(si)/(1 + r(si)), and the posterior probability
that zP (si) = 1. A red color (square symbol) indicates a negative residual.

Comparison to piezometer readings

If aquitard Alpha allows a connection between the upper and lower aquifers, then the
water pressure (hydraulic head) should be the same in both aquifers at the location of
this connection. This can be ascertained by piezometers which are capable of measuring
hydraulic head in the upper and lower aquifers at (approximately) the same locations.
Even though the regional network of Bologna comprises a large number of piezometers
(Regione Emilia Romagna (1998)), only two pairs of piezometers satisfy this require-
ment. Their locations are denoted by the symbols 1 and 2 in Figure 11. We analyzed
the average difference between hydraulic heads in the upper and lower aquifers 4h at
these two locations over the period of 1999 – 2000. The first pair of piezometers (symbol
1, designated by 4030P and 4028P in the data base of the municipality of Bologna) gives
4h = 27.53m. The second pair (symbol 2, designated by 5261Pa and 5261Pb in the
data base of the municipality of Bologna) gives 4h = 35.37m. Such large differences
in hydraulic heads, combined with the remaining piezometric readings, strongly sup-
port the continuity of aquitard Alpha at these two locations. This is consistent with
the central reconstruction of Figure 9 (as well as the others) which gives a posterior
probability of .08 and .41 at those two locations. These data can also be incorporated
into the data analysis by enforcing the condition zP (s) = 0 at these two locations. The
resulting connectivity estimate – computed via importance sampling using the original
MCMC sample – is given in the right hand frame of Figure 11.

In addition to providing partial validation of our results, the piezometer data helps
suggest another and perhaps more intuitive way our model might have arisen:

• Had we directly observed zP (s) so that the data yB(si) were 1’s (permeable) and
0’s (not permeable), we could have created a simple binary spatial model where
uP (s) is a mean 0 gaussian process with some spatial dependence. The resulting
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Posterior probability (in %) of connectivity in Aquitard Alpha
using well core data only also using piezometer data
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Figure 11: Posterior mean estimate of the connectivity field along with the spatial
locations of the piezometers (denoted by the numerals 1 and 2). The left hand figure
is based only on the well core data; the right hand figure also incorporates information
from the piezometers, both of which suggest impermeability (no connectivity) at those
locations.

formulation would be:

L(yB |zP (s)) ∝
n∏

i=1

I[zP (si) = yB(si)]

zP (s) = I[uP (s) > 0]
uP (s) ∼ GP (0, CP (s, s′))

• Now, if the clay thickness process zT (s) were measured (with error) at spatial
locations, we have a standard likelihood for the thickness data yT (s). We build
in dependence between zP (s) and zT (s) and let the data determine the strength
of this dependence, by adjusting the mean of the latent GP:

L(yB |zP (s)) ∝
n∏

i=1

I[zP (si) = yB(si)]

zP (s) = I[uP (s) > 0]
uP (s) ∼ GP (β0 + β1zT (s), CP (s, s′))

(7)

L(yT |zT (s)) ∝ exp(−λy

2
||yT − zT ||2)

zT (s) = max(0, uT (s))
uT (s) ∼ GP (µ0 + µ1s2, CT (s, s′)).

This is where we would find ourselves if our data consisted of clay thickness and
piezometer data measured jointly at multiple locations. In this case, the for-
mulation is rather straightforward. Here the dependence of zP (s) on zT (s) is



576 Predicting Vertical Connectivity Within an Aquifer System

appropriate. In fact, from a modeling standpoint, it is a bad idea not to account
for this dependence. Knowing the thickness of the aquitard at s should inform us
about its permeability at s.

• This formulation becomes more unwieldy because we have to replace the likelihood
L(yB |zP (s)), in which the zP (si) are measured directly, with a weaker, subjective
likelihood based on the bivariate data y(si) = (yT (si), yP (si)), i.e. the thickness of
fine material and proportion of coarse material in the core sample. The formulation
now becomes:

L(y|zP (s)) ∝
n∏

i=1

r(y(si))zP (si)

zP (s) = I[uP (s) > 0]
uP (s) ∼ GP (β0 + β1zT (s), CP (s, s′))

The quantities L(yT |zT (s)), uT (s) and zP (s) are specified as above. The likelihood
terms r(y(si))zP (si) allow the possibility that zP (si) may be either 1 or 0, and the
data, (yT (si), yP (si)), determine the relative odds of these two outcomes through
the specification of γ0, γ1 and γ2. This results in the form of our final model.

Comparison to qualitative geological cross-sections

The geological data set consists of the complete 123 well logs (stratigraphic columns),
from which the sedimentological data described in Section 2 have been extracted. By
supplementing this with the knowledge of the dynamics of depositional processes over
the geological time scale, qualitative, expert-based reconstructions of geological cross-
sections are produced, as we discuss momentarily. Six of these are shown in Figure 12.
In these cross-sections, the dark color indicates the fine material inclusions into the
coarse material depositional structures. The central figure shows the posterior mean
connectivity field, along with the spatial locations of these cross-sections. Darker colors
indicate greater probability of vertical connectivity between the aquifers. The red ovals
indicate the approximate location and extent of aquitard Alpha.

Construction of the cross sections is performed upon identifying boreholes which are
more-or-less aligned and then connecting (“correlating”) segments between the bore-
holes where similar materials are found. These connections are constrained by the
knowledge of depositional sequence. For instance, if one knows that it is unlikely that
an aquitard deepens along a given direction (e.g. N-S), then he/she does not connect
regions of fine materials that are at different elevations in two wells. These reconstruc-
tions are not performed by any formal interpolation techniques, but rather on the basis
of the information just described.

Cross-sections S1–S4 located in the southern part of the study area show little or
no fine materials at the depths where aquitard Alpha should be. In each of these cases,
the cross-sections are consistent with our final reconstructed map in showing a high
probability of connectivity (permeability) between the aquifers immediately above and
below Alpha.
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Figure 12: Qualitative geological sections. The posterior mean estimate of the con-
nectivity field (center) along with qualitatively estimated cross-sections of the geology.
These qualitative cross-sections were constructed using the well cores described in Sec-
tion 2 along with consideration of the dynamics of depositional processes over the geo-
logical time scale. Dark regions in the cross-sections denote fine-scale (low-conductivity)
inclusions and/or aquitard bodies. In the central connectivity map, darker regions de-
note areas where aquitard Alpha is likely to be more permeable, thus offering a less
effective separation between the upper and lower aquifers. Red ovals indicate the ap-
proximate location and extent of aquitard Alpha.
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The northern cross-sections S5 and S6 show very noticeable dark regions in the
shallow depths where aquitard Alpha is located. Again, this is consistent with our re-
construction, which estimates a small probability of connectivity in Alpha near those
locations. In all cross-sections, S1–S6, the vertical extent of the reconstruction is limited
to the depths of the well cores used for that figure. Thus the seeming gaps in aquitard
Alpha in S5 and S6 are due to missing, or inadequate, data; in all wells in the north-
ern part of the study region which reach sufficient depths there is evidence of Alpha.
Contrast this with the gaps seen in S1–S4.

5 An alternative modeling approach

One of the reviewers suggested an alternative approach we might have taken in modeling
these data. In this section, we briefly describe this approach, along with our assessment
of its strengths and weaknesses. The ultimate assessment of the relative merits of this
alternative requires an actual fitting of the model to this data. This is beyond the scope
of this paper.

Define two latent processes, zT (s) (clay thickness process, the same as zT (s) else-
where in this paper) and zcoarse(s), reflecting the proportion of coarse material. The
data are just noisy measurements of these fields at the n spatial measurement locations.
The critical latent unknown, namely connectivity, could then be a third process, zP (s)
that is related to a functional, g(zT (s), zcoarse(s)), of the values of zT (s) and zcoarse(s).
The function g would be a modification of the subjective odds models (5), substituting
latent process values for the observations, such as g(zT , zcoarse) = γ0 + γ1zT + γ2zcoarse.

As in any prior elicitation, one could use real examples of well measurements to elicit
the prior on connectivity as a function of thickness and proportion of coarse material
(as has been done here), and then in the actual model have the probit (or logit) of the
probability of connectivity be g(zT , zcoarse). This is in keeping with standard statistical
formulations. Figuring out the posterior for connectivity would then be a matter of
calculating a functional of well-defined latent processes, zT (·) and zcoarse(·). These
latent processes are related directly to the analogous observables in a standard modeling
fashion. So the elicitation of g would then play out in the posterior as a subjective
functional rather than a subjective likelihood.

The suggestion of formulating the spatial distribution of zP (s) as a function of
g(zT (s), zcoarse(s)) is appealing since it directly connects zT (s) and zcoarse(s) to the
observations. However linking zP (s) to these (partially) observed processes seems, to
us, to be more complicated than it first appears. Recall that we need zP (s) to be a binary
spatial process over the continuous 2-d space S. So having g(zT (s), zcoarse(s)), which
gives a pointwise probability of connectivity at s, is not sufficient to produce binary,
realizations of zP (s). One obvious candidate is a spatial extension of the standard probit
model:

uP (s) = γ0 + γ1zT (s) + γ2zcoarse(s) + ε(s)
ε(s) ∼ GP (0, Cε(s, s′))

zP (s) = I[uP (s) > 0].
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As stated by the reviewer who suggested this alternative approach, the advantage
here is that the data inform about zcoarse in a standard way. The price paid is that the
model now requires three spatial processes to be estimated: zT (s), zcoarse(s), and ε(s).

Note that with this approach, we must still use expert judgment to determine γ0,
γ1 and γ2 as we did with our approach. Furthermore, expert judgement is also re-
quired to specify ε(s). Setting ε(s) ≡ 0, makes zP (s) a deterministic function of zT (s)
and zcoarse(s); we feel this does not allow enough flexibility in using the experts’ judg-
ment. Hence we think the approach we’ve presented in this paper is sensible, and we
doubt there are substantial gains in simplicity to be had by switching to this suggested
alternative approach.

6 Discussion

This analysis has identified locations in the study region for which there is cause for
concern regarding the ability of aquitard Alpha to protect the deep aquifers system
from contaminants. Although the quantitative results of this analysis depend on the
subjective odds map, the qualitative nature of the estimated permeable inclusions is
fairly stable for a range of odds maps shown in Figure 7. The southern region, along with
the central part of the western edge of the study area, shows potential for connectivity
between the upper and lower aquifers. The likelihood specification is typically somewhat
subjective in spatial, binary classification problems – Besag et al. (1991), Hurn (1997)
and Higdon (1998) give examples of this. We note out that a linear odds map could have
been induced by assuming the data arise from two normal populations with different
means, but a common covariance, as in linear discriminant analysis. However, in this
application, our focus is on how the odds change with the data, not the means of these
two normal distributions. More recently Rappold et al. (2007) use a subjective likelihood
to identify the mixing layer boundary in an oceanographic application.

This study led us to a new, non-Gaussian, bivariate spatial model that links a
continuous, non-negative field with a binary field. We originally tried a single binary
spatial model for the permeability field, but its behavior in the northern region of the
study area, where Alpha is thick, was not satisfactory. We feel that coupling the clay
thickness and permeability gives more realistic results.

We used normal kernels in the convolution representation of both latent fields, uT (s)
and uP (s), for computational reasons. The nonstandard model formulations of Sec-
tion 3.1, as well as the need for predictions over a fine grid of spatial locations, require
that zT (s) and zP (s) can be quickly produced given the model parameters. The convo-
lution construction of the latent processes answers both of these needs. The resulting
processes uT (s) and uP (s) are, to a close approximation, stationary zero mean Gaussian
processes with a Gaussian covariogram. A limitation of such representations is that they
do not attempt to model very small scale variation. Since the residuals and the small
kernel widths for zT (s) hint that small scale variation may be present, future research
will focus on developing practical ways to incorporate this effect in such nonstandard
models.
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