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POLYNOMIAL CHAOS EXPANSIONS FOR STIFF RANDOM ODEs\ast 

WENJIE SHI\dagger AND DANIEL M. TARTAKOVSKY\ddagger 

Abstract. Generalized polynomial chaos (gPC), often combined with mono-implicit Runge--
Kutta (MIRK) methods, is widely used to solve random ODEs. We investigate the impact of stiffness
of random ODEs on the gPC performance. We start by extending pragmatic definitions of stiffness
used in deterministic ODEs to their random counterparts. Then we introduce gPC with parallel
MIRK schemes to solve random stiff ODEs, in which a suitable parallelism partially alleviates the
curse of dimensionality. Our stiffness analysis comprises two parts: (i) the relationship between Jaco-
bians of random ODEs and the corresponding gPC equations and (ii) stiffness of the gPC equations.
It provides a direct way to determine whether a random ODE and/or the corresponding gPC equa-
tions are stiff. This theoretical analysis plays a key role in designing numerical implementations not
only of gPC but also of other methods of stochastic computation, e.g., Monte Carlo simulations and
stochastic collocation. A series of computational experiments is used to demonstrate the agreement
between our theoretical analysis and numerical results and to establish gPC with parallel MIRK as
a feasible and effective tool for solving stiff random ODEs.
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1. Introduction. Stiff equations play an important role in various fields of
science and engineering. Stiffness can render explicit methods for solving differen-
tial equations unworkable [10, 19] and undermine the accuracy of forward integra-
tion [19, 30]. Even classic implicit Runge--Kutta methods (IRKs), possessing high
efficiency and stability, encounter reduction in the order of accuracy; e.g., an A-stable
IRK can produce highly unstable solutions, and its solution accuracy does not match
the order of a method used [6, 14, 15, 19, 28]. The numerical treatment of stiff equa-
tions engendered such concepts as A-stability [11], A(\alpha )-stability [40], A0-stability [9],
L-stability [12], and B-convergence [14, 15, 19]. When quantified probabilistically, in-
evitable uncertainty in parameterizations of stiff problems gives rise to stiff random
equations. To the best of our knowledge, theoretical analyses of stiff random ODEs
or PDEs are scarce.

Our study deals with stiff random ODEs,

dx

dt
(t, \omega ) = f(t, \bfitxi (\omega ),x(t, \omega )), t \in (0, T ], \omega \in \Omega ,(1.1a)

subject to an initial condition

x(0, \omega ) = \bfitvarphi (\bfitxi (\omega )), \omega \in \Omega .(1.1b)
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This problem is parameterized by a set of N random coefficients \bfitxi (\omega ) \triangleq (\xi 1(\omega ), \xi 2(\omega ),
. . . , \xi N (\omega )) defined on a complete probability space (\Omega ,\scrF ,\BbbP ), with the sample space
\Omega , the \sigma -algebra \scrF \subset 2\Omega , and the probability measure \BbbP . The deterministic functions
f \in \BbbR d and \bfitvarphi \in \BbbR d are such that the solution, x(t, \omega ) \in \BbbR d, exists almost surely
for any realization of the parameters \bfitxi (\omega ). The paucity of literature on the stiffness
of random ODEs is such that the very definition of stiffness of (1.1) appears to be
absent. Nevertheless, numerical solutions of (1.1) are routinely obtained with Monte
Carlo methods [13], the method of distributions [24, 39], generalized polynomial chaos
(gPC) [17, 32, 33, 34, 41], stochastic collocation [3, 4, 27, 34, 42], etc.

These and other techniques for stochastic computation have to contend with two
interconnected challenges. The first is often referred to as ``long-time integration prob-
lem"" and stems from an empirical observation that the structure of the randomness
becomes more complex as time increases. It can be ameliorated by, e.g., dynamic
modification of the gPC basis [16, 26]. The second challenge is due to the presence
of realizations of the random parameter set \bfitxi (\omega ), for which some state variables xi(t)
have much faster dynamics than others. The resulting stiffness has been tackled by,
e.g., introducing artificial ``time-stretching"" to align realizations of random trajecto-
ries [2, 5, 23] rather than by deploying specialized stiff solvers such as mono-implicit
Runge--Kutta (MIRK) schemes [6, 8, 38].

The gPC method is attractive because of its fast (often exponential) convergence
rate [17, 32, 33, 34, 41]. At the same time, gPC suffers from the curse of dimensional-
ity; i.e., its computational cost increases dramatically with the number of underlying
random variables, N [34, 41]. It stands to reason that possible stiffness of (1.1) affects
these key features of gPC. Specifically, the stiffness of (1.1) is expected to translate
into the stiffness of a system of ODEs for the coefficients of a gPC expansion (aka gPC
equations), an issue that remains largely unexplored. Likewise, the stiffness of (1.1)
might affect the performance of numerical strategies developed to tackle the curse of
dimensionality [3, 27, 34, 41, 42]. A goal of this study is to address these issues in
a systematic way that facilitates the design of efficient parallelizable gPC algorithms
for stiff random ODEs. Other numerical techniques of stochastic computation, such
as Monte Carlo simulations and stochastic collocation, also benefit from this analysis.

In section 2, we extend some pragmatic definitions of stiffness of deterministic
ODEs to the random case. Section 3 contains a description of our strategy to solve stiff
random ODEs like (1.1), in which the gPC equations are solved with a parallel MIRK
scheme. Our theoretical analysis, presented in section 4, consists of two parts. The
first relies on our definition of stiff random ODEs to determine whether (1.1) is stiff.
The second part relies on the Jacobian matrices of a linearized version of (1.1) used
to construct the gPC equations to determine whether the latter are stiff. In section 5,
we demonstrate our theoretical analysis on several ODEs in the form of (1.1). These
examples also highlight the effectiveness of the gPC with parallel MIRK method.
Major conclusions drawn from our study are summarized in section 6.

2. Definitions of stiffness. A practical way to identify the stiffness of an ODE
is to compare the costs of obtaining its solution with stiff and nonstiff ODE solvers. A
mathematically rigorous definition of stiffness is more elusive, even for deterministic
ODEs [1, 7, 19, 21, 29]. Our aim here is not to contribute to this debate but rather
to extend existing pragmatic definitions of stiffness of deterministic ODEs to the
random case. To be specific, we provide a few such definitions for deterministic ODEs
in section 2.1 and reformulate them for the random setting in section 2.2.
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2.1. Stiffness of deterministic ODEs. Consider a deterministic analog of
stochastic ODEs (1.1),

(2.1)

\left\{  d\=x

dt
(t) = \=f(t, \=x(t)), t \in (0, T ],

\=x(0) = \=x0,

where \=f is a vector function nonlinear in \=x(t) \in \BbbR d and \=x0 \in \BbbR d is the initial value
of \=x(t). A first-order Taylor expansion around a particular solution, \=xp(t), of (2.1)
approximates the latter with

(2.2)

\left\{  d\=x

dt
=

d\=xp

dt
+ \=J(t)(\=x - \=xp), t \in (0, T ],

\=x(0) = \=x0.

Eigenvalues \=\lambda (t) of the Jacobian matrix,

(2.3) \=J(t) \triangleq [\nabla \bfy 
\=f(t,y)]\bfy =\=\bfx p

,

can be used to define the stiffness of ODEs (2.1) as follows [28].

Definition 2.1. ODEs (2.1) are stiff if the real parts of eigenvalues \=\lambda (t) of the
Jacobian \=J(t) satisfy the condition

(2.4) max
\=\lambda 

\{ \Re ( - \=\lambda (t))\} \gg max
\=\lambda 

\{ \Re (\=\lambda (t))\} 

for every t in (a subinterval of) [0, T ].

Since the Jacobian matrix \=J(t) in (2.3) depends on the particular solution \=xp,
it might not be unique. An alternative definition is given in terms of the (readily
computable) stiffness ratio,

\=s(t) =
max\=\lambda \{ | \Re (\=\lambda (t))| \} 
min\=\lambda \{ | \Re (\=\lambda (t))| \} 

.

This workable definition of stiffness reads as follows [21].

Definition 2.2. ODEs (2.1) are stiff if eigenvalues \=\lambda (t) of the Jacobian \=J(t)
satisfy the conditions

(2.5) \Re (\=\lambda (t)) < 0 \forall \=\lambda (t) and \=s(t) \gg 1.

Yet another way to define the stiffness of ODEs (2.1) is in terms of a Lipschitz
constant \=L [21]. Let us assume that the function \=f(t, \=x(t)) in (2.1) satisfies the
Lipschitz condition,

(2.6) \| \=f(t, \=u) - \=f(t, \=v)\| \leq \=L\| \=u - \=v\| \forall \=u, \=v \in \BbbR d,

where \| \cdot \| is a vector norm in \BbbR d. Choose \=L as

(2.7) \=L = \| \=J(t)\| \geq \rho (\=J(t)) \triangleq max
\=\lambda 

\{ | \=\lambda (t)| \} ,

where \| \cdot \| denotes the induced operator norm when applied to a matrix and \rho (\cdot ) is
the spectral radius. The phrase ``systems with large Lipschitz constants"" refers to the
following definition of stiffness [21].

Definition 2.3. ODEs (2.1) are stiff if the Lipschitz constant \=L is large enough.
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2.2. Stiffness of random ODEs. An intuitive, albeit unworkable, definition
of stiffness of a random ODE is as follows [28].

Definition 2.4. Random ODEs (1.1) are stiff with probability P0 > 0 if

\BbbP \{ \omega : Deterministic realizations of (1.1) corresponding to \omega \in \Omega are stiff\} = P0.

We use the above to formulate computable analogs of Definitions 2.1--2.4 in terms of
the random Jacobian matrix,

(2.8) J(t, \omega ) \triangleq [\nabla \bfy f(t, \bfitxi (\omega ),y)]\bfy =\bfx p(t,\omega )
.

Similar to (2.1), the latter arises in the course of linearization of (1.1a) around xp(t, \omega ),
a particular solution of (1.1) under an appropriate measure,

(2.9)
dx

dt
(t, \omega ) =

dxp

dt
(t, \omega ) + J(t, \omega )(x - xp), t \in (0, T ].

As in the deterministic case, the random Jacobian matrix J(t) in (2.9) depends on
the particular solution xp and, hence, might not be unique.

Definition 2.5. Random ODEs (1.1) are stiff with probability P0 > 0 if eigen-
values \lambda (t, \omega ) of the Jacobian J(t, \omega ) satisfy

(2.10) \BbbP \{ max
\lambda 

[\Re ( - \lambda )] \gg max
\lambda 

[\Re (\lambda )]\} = P0

for every t in (a subinterval of) [0, T ].

Definition 2.6. Random ODEs (1.1) are stiff with probability P0 > 0 if eigen-
values \lambda (t, \omega ) of the Jacobian J(t, \omega ) satisfy

(2.11) \BbbP \{ \Re (\lambda (t)) < 0 \forall \lambda and s(t, \omega ) \gg 1\} = P0,

where the random stiffness ratio s(t, \omega ) is defined in analogy with its deterministic
counterpart.

Definition 2.7. Assume that the deterministic vector function f in random ODEs
(1.1) satisfies the Lipschitz condition

(2.12) \| f(t, \bfitxi (\omega ),u) - f(t, \bfitxi (\omega ),v)\| \leq L(\omega ) (\| u - v\| ) , \omega \in \Omega ,

for all u,v \in \BbbR d in every realization \omega \in \Omega . Then random ODEs (1.1) are stiff with
probability P0 > 0 if the Lipschitz constant L(\omega ) is large with probability P0 > 0.

Remark 2.1. Given the lack of a universally accepted definition of stiffness even
in the deterministic setting [7, 19, 21, 22, 29], it is futile, if not outright impossible,
to choose the most adequate one among Definitions 2.4--2.7. Some of their known
weaknesses are as follows. A limitation of Definition 2.1---and, hence, of Definition
2.5---is that the eigenvalues of the Jacobian matrix \=J(t) in (2.3)---or of the Jacobian
matrix J(t, \omega ) in (2.8)---do not provide a complete description of an exact solution
to the original problem [29]. A shortcoming of Definition 2.2---and, hence, of Def-
inition 2.6---is that a system might be stiff yet have the stiffness ratio \=s = 1 [22];
conversely, the stiffness ratio \=s can be arbitrarily large (e.g., if the real part of the
smallest eigenvalue is close to 0) even when a system is not stiff [21, 29]. A weakness
of Definition 2.3---and, hence, of Definition 2.7---stems from the ambiguity of the ad-
jective ``large enough"" used to characterize the Lipschitz constant \=L in (2.7) or its
random counterpart L(\omega ) in (2.12) [21].
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Remark 2.2. Definitions 2.1--2.7 rely on local linearization of a nonlinear system
and involve a local particular solution. The veracity of these definitions is subject
to ongoing debate even for linear problems (Remark 2.1) and more so for nonlinear
problems.

3. gPC with MIRK for stiff random ODEs. In section 3.1, we formulate
a probabilistic model for the parameters \bfitxi (\omega ) in (1.1). Sections 3.2 and 3.3 contain
a brief overview of the gPC method for solving random ODEs (1.1) and the MIRK
scheme for solving the resulting gPC equations, respectively.

3.1. Random parameters. Random variables \bfitxi (\omega ) in (1.1) can represent un-
certain model parameters and are characterized by a joint probability density function
(PDF) \rho \bfitxi : \BbbR N \rightarrow [0,+\infty ). Alternatively, they can arise from a representation of a
temporally varying model parameter \gamma (t, \omega ) via, e.g., a truncated Karhunen--Lo\`eve
expansion [3, 17, 34, 41],

(3.1) \gamma (t, \omega ) \approx \BbbE \{ \gamma \} +
N\sum 
i=1

\surd 
\mu i\phi i(t)\xi i(\omega ).

Here, \BbbE \{ \cdot \} denotes the ensemble mean operator defined below, and \mu i and \phi i are the
eigenvalues and eigenfunctions of a covariance function C(t, \tau ) \triangleq cov(\gamma (t, \omega ), \gamma (\tau , \omega )),
respectively. In this setting, \bfitxi (\omega ) = \{ \xi 1, . . . , \xi N\} are mutually uncorrelated identically
distributed random variables with

(3.2) \BbbE \{ \xi i\} \triangleq 
\int 

\Xi i \rho \bfitxi (\Xi ) d\Xi = 0, \BbbE \{ \xi i\xi j\} \triangleq 
\int 

\Xi i\Xi j \rho \bfitxi (\Xi ) d\Xi = \delta ij ,

where \delta ij is the Kronecker delta function.
In the former case, wherein random variables \bfitxi (\omega ) are correlated model parame-

ters, one can use the Rosenblatt transform (e.g., section 4.1 in [35]) to map \bfitxi (\omega ) onto
a set of independent, identically distributed random variables \{ \xi \prime 1, . . . , \xi \prime N\} . Conse-
quently, without loss of generality, we take random variables \bfitxi (\omega ) in (1.1) to be mu-
tually uncorrelated and to satisfy (3.2). The PDF \rho \xi i(\Xi i) of the ith random variable
\xi i is computed as the marginal of the joint PDF \rho \bfitxi (\Xi ).

3.2. gPC approximation. Let \psi \alpha i
(\xi n) be a univariate orthogonal polynomial

of degree \alpha i \in \BbbN + \cup \{ 0\} in \xi n, i.e.,

(3.3)

\int 
\psi \alpha i

(\Xi n)\psi \alpha j
(\Xi n)\rho \xi n(\Xi n)d\Xi n = \delta ij .

Then the N -variate orthogonal polynomials of degree up to p are defined as

(3.4) \Psi \alpha (\bfitxi ) =
N\prod 
i=1

\psi \alpha i(\xi i), \alpha 1 + \alpha 2 + \cdot \cdot \cdot + \alpha N \leq p,

where \alpha = (\alpha 1, \alpha 2, \cdot \cdot \cdot , \alpha N ) is a multi-index. The isotropic total degree set of order p,
\{ \Psi \alpha (\bfitxi )\} M\alpha =1, forms a gPC basis. The number of the gPC basis functions is determined
by

(3.5) M =
(N + p)!

N !p!
.
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The PDF \rho \bfitxi (\Xi ) determines the type of gPC; a proper choice of polynomials often
yields an exponential convergence rate [32, 33, 34, 41].

The coefficients x1(t), . . . ,xM (t) of a gPC approximation,

(3.6) \u x(t, \bfitxi ) =
M\sum 
i=1

xi(t)\Psi i(\bfitxi ),

to the solution x(t, \omega ) of random stiff ODEs (1.1) are obtained by replacing x(t, \omega )
with \u x(t, \bfitxi ) in (1.1) and projecting the result onto the gPC basis.1 This procedure
yields the gPC equations (a system of coupled deterministic ODEs)

(3.7)

\left\{ 
dxk

dt
= \BbbE 

\biggl\{ 
\Psi k(\bfitxi )f

\biggl( 
t, \bfitxi ,

M\sum 
i=1

xi(t)\Psi i(\bfitxi )

\biggr) \biggr\} 
, t \in (0, T ],

xk(0) = \BbbE \{ \Psi k(\bfitxi )\varphi (\bfitxi )\} 

for k = 1, . . . ,M . Let y(t) = (x1, . . . ,xM )\top with y(0) = y0 and

y0 = [\BbbE \{ \Psi 1(\bfitxi )\varphi (\bfitxi )\} , . . . ,\BbbE \{ \Psi M (\bfitxi )\varphi (\bfitxi )\} ]\top .

Furthermore, let z(t,y) = (z1, . . . , zM )\top with

zk(t,y) = \BbbE 

\Biggl\{ 
\Psi k(\bfitxi )f

\Biggl( 
t, \bfitxi ,

M\sum 
i=1

xi(t)\Psi i(\bfitxi )

\Biggr) \Biggr\} 
.

Then a compact form of (3.7) is

(3.8)

\left\{  dy

dt
= z(t,y), t \in (0, T ],

y(0) = y0.

Given the stiffness of (1.1), it is necessary to analyze the stiffness of the gPC equa-
tions (3.8). Before carrying out such an analysis, we describe a class of numerical
techniques---parallel MIRK schemes---that can efficiently handle the possible stiffness
of the gPC equations (3.8).

3.3. Parallel MIRK schemes. The size of the vectors in the gPC equations
(3.8) is equal to d \cdot M . It increases with both the number of the random variables, N ,
and the highest order of the gPC basis, p. When N and p reach a certain threshold,
the gPC method becomes more expensive than standard Monte Carlo; this perfor-
mance degradation is referred to as the curse of dimensionality of gPC. Parallel MIRK
schemes can be used to alleviate the potentially high cost of solving both the gPC
equations (3.8) and Monte Carlo realizations of the random ODE (1.1).

In application to (3.8), a MIRK scheme of stage St takes the form

yn+1 = yn + h
St\sum 
r=1

brz(tn + crh,Yr), n \geq 0,(3.9)

1Other possible choices of the total degree multi-index set include an anisotropic total degree set
or a hyperbolic cross set.
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where yn is an approximation of y(t) at time tn = nh, h is the step size, cr =

vr +
\sum St

j=1 xr,j , xi,j are elements of an St\times St strictly lower triangular matrix, and

(3.10) Yr = (1 - vr)yn + vryn+1 + h
r - 1\sum 
j=1

xr,jz(tn + cjh,Yj).

A choice of the constants \{ br, cr, vr, xi,j\} determines a particular MIRK scheme. The
implicit scheme (3.9) for yn+1 is solved via the Newton iteration,

(3.11a) y
(l+1)
n+1 = y

(l)
n+1 +\bigtriangleup y

(l)
n+1, l = 0, 1, . . . ,

in which the increment \bigtriangleup y
(l)
n+1 is determined from the relation

(3.11b) JF (y
(l)
n+1)\bigtriangleup y

(l)
n+1 =  - F(y

(l)
n+1),

with

F(yn+1) \triangleq yn+1  - yn  - h
St\sum 
r=1

brz(tn + crh,Yr)(3.11c)

and the Jacobian matrix

(3.11d) JF (y
(l)
n+1) \triangleq [\nabla \bfy F(y)]\bfy =\bfy 

(l)
n+1

.

A parallel implementation of the MIRK schemes represents the inverse of JF (y
(l)
n+1)

as a partial fraction expansion [38],

(3.12a) J - 1
F (y

(l)
n+1) =

St\sum 
i=1

Ci(I - BihJz(y
(l)
n+1))

 - 1,

where I is the identity matrix,

(3.12b) Jz(y
(l)
n+1) \triangleq [\nabla \bfy z(tn+1,y)]\bfy =\bfy 

(l)
n+1

,

and

(3.12c) Ci =
BSt - 1

i\prod s
j=1,j \not =i(Bi  - Bj)

.

A choice of the constants \{ Bi\} depends on the stability function of a parallel MIRK
scheme. For example, the MIRK332L scheme is characterized by [38]

c1 v1 x1,1 \cdot \cdot \cdot x1,s

...
...

...
...

...
cs vs xs,1 \cdot \cdot \cdot xs,s

b1 \cdot \cdot \cdot bs

\Rightarrow 

1 1 0 0 0

5
24

215
576

 - 95
576

0 0

7
9

241
81

 - 1414
1539

 - 656
513

0

1
76

384
779

81
164

and B1 = 1, B2 = 1/4, B3 = 5/12. This scheme has St = 3 stages, of order 3 (i.e., its
local error is \scrO (h4)) and stage order 2; it is L-stable.
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Using (3.12) in the Newton iteration (3.11) gives

(3.13) y
(l+1)
n+1 = y

(l)
n+1 +

St\sum 
i=1

Ci\bigtriangleup iy
(l)
n+1, l = 0, 1, . . . ,

with the increments \bigtriangleup iy
(l)
n+1 computed from

(3.14) (I - BihJz(y
(l)
n+1))\bigtriangleup iy

(l)
n+1 =  - F(y

(l)
n+1), i = 1, . . . ,St.

The resulting Newton iteration for obtaining yn+1 in (3.9)---the main computational
task of a MIRK scheme---can now be done in parallel on St processors.

Given the potential stiffness of the gPC equations (3.8), we will use the par-
allel MIRK family that has a desirable stability, e.g., A-stability or L-stability, to
solve (3.8). The choice of a stability type is problem dependent. Efficiency, stability,
and order accuracy of various parallel MIRK schemes are discussed in [6, 25, 38].

Remark 3.1. MIRK schemes, introduced in [8, 25], strive to achieve a balance
between the high accuracy and efficiency of IRKs. Order results for and a brief
overview of MIRK schemes can be found in [6]. A subclass of parallelizable MIRK
schemes was investigated in [36]; having stage order 1, these methods are susceptible
to order reduction [6, 28] (see also the results of our numerical experiments in sec-
tions 5.1 and 5.2). Subsequent improvements of parallel MIRK methods [38] resulted
in schemes with stage order 2 or 3 (see [37] for a survey of parallel MIRK schemes).
We investigate the parallel MIRK schemes [38] because they can ultimately be used
in high-performance computing.

4. Analysis of stiffness. A theoretical analysis of the stiffness of random ODEs
is presented in section 4.1. In section 4.2, we establish a relationship between the
Jacobian of random ODEs and the corresponding gPC equations. In section 4.3, this
relationship is used to predict the stiffness of the gPC equations, allowing one to
design an appropriate numerical scheme for the latter.

4.1. Stiffness analysis of random ODEs. Following Definition 2.7, we con-
sider random ODEs (1.1) whose Lipschitz constant L(\omega ) \triangleq \| J(t, \omega )\| is sufficiently
large with probability P0.

Remark 4.1. Some authors find the phrase ``systems with large Lipschitz con-
stants"" and, hence, Definitions 2.3 and 2.7 to be not entirely satisfactory [1, 7, 19,
21, 29]. Considering that all existing definitions of stiffness are somewhat arbitrary
[1, 7, 19, 21, 29], we will use Definition 2.7 as a working albeit imperfect definition of
stiffness.

Let Jij with i, j = 1, . . . , d denote components of the random Jacobian matrix
J(t, \omega ) in (2.8). For the sake of simplicity, we consider the matrix norm induced by
the \ell 1 norm.2 A useful property of the Jacobian J(t, \omega ) is given by the following
lemma.

Lemma 4.1. Let the d\times d Jacobian matrix J(t, \omega ) be such that

(4.1) \BbbP \{ \Omega 1\} > 0, \Omega 1 \triangleq \{ \omega : \| J(t, \omega )\| 1 \geq L1\} ,

2The reliance on the l1 norm facilitates the straightforward calculation of the norms of the relevant
Jacobian matrices. Our analysis and conclusions are readily portable to the l\infty norm; extensions to
other norms, e.g., the l2 norm, are more challenging.
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where L1 is a positive constant. Then, for any \omega \in \Omega 1, there exists an element
Ji0j0(t, \omega ) of J(t, \omega ) for which

(4.2) | Ji0j0 | \geq L1/d;

the values of i0 and j0 depend on \omega .

Proof. For any \omega \in \Omega 1,

(4.3) \| J(t, \omega )\| 1 = max
1\leq j\leq d

d\sum 
i=1

| Jij | \geq L1.

Hence, there exists a column j0 : 1 \leq j0 \leq d such that

(4.4)
d\sum 

i=1

| Jij0 | \geq L1,

where j0 depends on \omega . It therefore follows that there exists an index i0 : 1 \leq i0 \leq d
for which

(4.5) | Ji0j0 | \geq L1/d,

where i0 depends on \omega . This completes the proof.

Lemma 4.1 implies that if random ODEs (1.1) were stiff with nonzero probability
in the sense of Definition 2.7, then the event ``the Jacobian matrix J has an element
whose absolute value is sufficiently large"" occurs with nonzero probability. If one
picks the constant L1 in (4.1) to be sufficiently large for L1/d to be sufficiently large
as well, then Ji0j0 is the element of the Jacobian of (1.1), whose absolute value is
large enough. This occurs for any \omega : \| J(t, \omega )\| 1 \geq L1, i.e., with probability no less
than \BbbP \{ \omega : \| J(t, \omega )\| 1 \geq L1\} . The following theorem provides a probabilistic lower
bound on the Jacobian \| J(t, \omega )\| 1.

Theorem 4.1. Assume that the Jacobian J(t, \omega ) has an element Ji0j0 for which

(4.6) \BbbP \{ \Omega 2\} > 0, \Omega 2 \triangleq \{ \omega : | Ji0j0 | \geq L2\} ,

where L2 is a positive number. Then

(4.7) \BbbP \{ \omega : \| J(t, \omega )\| 1 \geq L2\} \geq \BbbP \{ \Omega 2\} .

Proof. It follows from (4.6) that, for all \omega \in \Omega 2,

(4.8) | Ji0j0 | \geq L2.

According to the definition of the matrix norm induced by the \ell 1 norm,

(4.9) \| J(t, \omega )\| 1 = max
1\leq j\leq d

d\sum 
i=1

| Jij | .

Hence, for every time t, the inequality

(4.10) \| J(t, \omega )\| 1 = max
1\leq j\leq d

d\sum 
i=1

| Jij | \geq 
d\sum 

i=1

| Jij | 
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holds for any index j : 1 \leq j \leq d. It follows from (4.10) that, for every time t, the
inequalities

(4.11) \| J(t, \omega )\| 1 = max
1\leq j\leq d

d\sum 
i=1

| Jij | \geq 
d\sum 

i=1

| Jij | \geq | Jij | 

hold for any index i : 1 \leq i \leq d. Accounting for (4.8),

(4.12) \| J(t, \omega )\| 1 = max
1\leq j\leq d

d\sum 
i=1

| Jij | \geq 
d\sum 

i=1

| Jij0 | \geq | Ji0j0 | \geq L2 \forall \omega \in \Omega 2.

This yields

(4.13) \BbbP \{ \omega : \| J(t, \omega )\| 1 \geq L2\} \geq \BbbP \{ \Omega 2\} ,

which completes the proof.

Remark 4.2. Theorem 4.1 implies that if one finds an element of the Jacobian
J whose absolute value is sufficiently large with probability P1 > 0, then random
ODEs (1.1) are stiff with probability no less than P1 in the sense of Definition 2.7.
This result provides a simple and direct way to determine whether random ODEs are
stiff. Theorem 4.1 also states that if the Jacobian norm \| J(t, \omega )\| 1 is sufficiently large
with probability no less than P1, then it can serve as the Lipschitz constant in (2.12),
thus ensuring that random ODEs (1.1) are stiff with probability no less than P1.

Remark 4.3. A priori determination of the stiffness of random ODEs like (1.1)
is important for the selection of an appropriate numerical method. While much of
our analysis centers on gPC, this observation is equally valid for other approaches
such as Monte Carlo methods and stochastic collocation on sparse grids. If (1.1) were
stiff, these and other sampling methods of stochastic computation call for the use of
a proper stiff solver in each deterministic realization of (1.1). Doing otherwise would
lead to erroneous results, e.g., highly unstable solutions obtained from an A-stable
method [6, 14, 15, 19, 28].

4.2. Relation between Jacobians of random ODEs and gPC equations.
A first-order Taylor series expansion of (3.8) is

(4.14)

\left\{  dy

dt
=

dyp

dt
+ \~J(t)(y  - yp), t \in (0, T ],

y(0, \omega ) = y0(\omega ),

where yp(t, \omega ) is a particular solution of (3.8) and \~J(t) \triangleq [\nabla \bfy z(t,y)]\bfy =\bfy p \in \BbbR (Md)\times (Md)

is the Jacobian matrix written as

(4.15a) \~J(t) \triangleq 

\left( \~J11
\~J12 \cdot \cdot \cdot \~J1M

\~J21
\~J22 \cdot \cdot \cdot \~J2M

...
...

. . .
...

\~JM1
\~JM2 \cdot \cdot \cdot \~JMM

\right) 
, \~Jij(t, \omega ) \in \BbbR d\times d.

Accounting for (3.7) and (3.8), the matrices \~Jij are given by

(4.15b) \~Jij = \BbbE \{ \Psi i(\bfitxi )J(t, \omega )\Psi j(\bfitxi )\} , 1 \leq i, j \leq M.
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Relation (4.15) links the Jacobian of random ODE (1.1), J(t, \omega ) first introduced
in (2.8), and the Jacobian of the corresponding gPC equations (3.8), \~J(t). Prop-
erties of the matrix norm induced by the \ell 1 norm give rise to the following lemma.

Lemma 4.2. The Jacobians of random ODEs (1.1) and the corresponding gPC
equations (3.8), J(t, \omega ) and \~J(t), respectively, satisfy the condition

(4.16) \| \~J(t)\| 1 \geq | \BbbE \{ Jij(t, \omega )\} | \forall i, j : 1 \leq i, j \leq d.

Proof. The properties of the matrix norm induced by the \ell 1 norm yield

\| \~J\| 1 = max
1\leq n\leq Md

Md\sum 
m=1

| \kappa mn| \geq max
(l - 1)d+1\leq n\leq ld

kd\sum 
m=(k - 1)d+1

| \kappa mn| 

= \| \~Jkl\| 1 \forall k, l : 1 \leq k, l \leq M,(4.17)

where \kappa mn is the element in the mth row and nth column of \~J(t). Choosing k = 1
and l = 1 in (4.17),

(4.18) \| \~J(t)\| 1 \geq \| \~J11\| 1.

Since the gPC basis functions \{ \Psi k(\bfitxi )\} are orthonormal, \BbbE \{ \Psi 2
1(\bfitxi )\} = 1 or \Psi 1(\bfitxi ) = 1.

Hence, it follows from (4.15b) that

(4.19) \~J11 = \BbbE \{ J(t, \omega )\} .

According to (4.11),

(4.20) \| \~J11\| 1 = \| \BbbE \{ J(t, \omega )\} \| 1 = max
1\leq j\leq d

d\sum 
i=1

| \BbbE \{ Jij\} | \geq 
d\sum 

i=1

| \BbbE \{ Jij\} | \geq | \BbbE \{ Jij\} | 

for all i, j : 1 \leq i, j \leq d. Combining (4.18) with (4.20) yields (4.16), which completes
the proof.

4.3. Stiffness analysis of gPC equations. Definition 2.3 and Lemma 4.2 lead
to the following theorem.

Theorem 4.2. If the absolute expected value of a certain element, | \BbbE \{ Jij\} | , of
the Jacobian matrix J(t, \omega ) of random ODEs (1.1) is sufficiently large, then the cor-
responding gPC equations (3.8) are stiff.

Proof. According to Lemma 4.2, a sufficiently large | \BbbE \{ Jij\} | translates into a

sufficiently large \| \~J(t)\| 1. Choosing \| \~J(t)\| 1 to be the Lipschitz constant of gPC
equations (3.8), we conclude that the gPC equations (3.8) are stiff in the sense of
Definition 2.3.

Remark 4.4. Theorem 4.2 provides a direct means to determine whether the gPC
equations (3.8) are stiff.

Remark 4.5. If the gPC equations (3.8) are identified to be stiff, appropriate
numerical schemes must be used to solve them (see Remark 4.3).

The following corollary is a special case of Theorem 4.1 or Remark 4.2.

Corollary 4.1. Assume that a certain element Jij of the Jacobian matrix J(t, \omega )
of random ODEs (1.1) is such that

(4.21) \BbbP \{ \omega : Jij \leq  - L3\} = 1,
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where L3 is a sufficiently large positive number. Then random ODEs (1.1) are stiff
with probability 1, and the resulting gPC equations are stiff.

Proof. Theorem 4.1 or Remark 4.2 states that random ODEs (1.1) are stiff with
probability 1. It follows from (4.21) that

(4.22) | \BbbE \{ Jij\} | =
\bigm| \bigm| \bigm| \bigm| \int 

\{ \omega :Jij\leq  - L3\} 
Jijd\BbbP (\omega )

\bigm| \bigm| \bigm| \bigm| \geq L3.

According to Theorem 4.2, the resulting gPC equations are stiff. This completes the
proof.

5. Numerical experiments. We consider several linear and nonlinear examples
to illustrate both the stiffness of random ODEs and the effectiveness of the gPC with
parallel MIRK methods. Unless specified otherwise, we use the parallel MIRK332L
scheme [38] with step size h = 0.0001. When an exact analytical solution x(t, \omega )
is available, its mean and variance are computed via the Gauss quadrature with 15
Gauss points, e.g., [29]. A gPC approximation of the exact solution x(t, \omega ) is

(5.1) \^x(tk, \bfitxi ) =
M\sum 
k=1

yk\Psi k(\bfitxi ),

where \{ yk\} are obtained from (3.9). Error measures for the mean and variance of the
gPC solution are, respectively, defined as

(5.2) \epsilon m \triangleq max
tk

\| \BbbE \{ x(tk, \omega )\}  - \BbbE \{ \^x(tk, \bfitxi )\} \| 1

and

(5.3) \epsilon v \triangleq max
tk

\| \BbbE \{ (x(tk, \omega ) - \BbbE \{ x(tk, \omega )\} )2\}  - \BbbE \{ (\^x(tk, \bfitxi ) - \BbbE \{ \^x(tk, \bfitxi )\} )2\} \| 1.

In lieu of the stiffness ratio \=s(t) for the gPC equations, first defined in Defini-
tion 2.2, we use a modified stiffness ratio,

(5.4) \~s(t) \triangleq 
max\lambda \{ | \Re (\lambda (t))| \} 
min\lambda \{ | \Re (\lambda (t))| \} 

regardless of whether \Re (\lambda (t)) is negative or not. Here, \{ \lambda (t)\} are eigenvalues of the
Jacobian matrix, \~J(t) in (4.15), of gPC equations (3.8).

5.1. System of linear ODEs. We consider a random counterpart of the Pro-
thero--Robinson problem that is often used to study the order-reduction phenome-
non of Runge--Kutta (RK) methods for stiff differential equations [28, 38]. A vector
x(t, \omega ) \in \BbbR 6 satisfies a system of random ODEs subject to a random initial condition,

(5.5a)

\left\{  dx

dt
=

dxp

dt
+A \cdot (x - xp), t \in (0, 1],

x(0, \omega ) = xp(0, \omega ).

Here,

(5.5b) A = diag\{  - 100, - 101, - 102, - 103, - 104, - 105\} 
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and

(5.5c) xp(t, \omega ) = 1+ 0.2[sin(t+ 0.05\xi 1), sin(2t+ 0.05\xi 2) . . . , sin(6t+ 0.05\xi 6)]
\top ,

where 1 is the six-dimensional vector of 1s and \bfitxi = \{ \xi 1, . . . , \xi 6\} are independent
random variables with either uniform distribution on [ - 1, 1] or standard normal dis-
tribution. The exact solution of (5.5) is x(t, \omega ) = xp(t, \omega ).

The Jacobian of (5.5) is J = A. The element J66 of the matrix J in (5.5b) is such
that

(5.6) \BbbP \{ \omega : J66 \leq  - 105\} = 1.

Hence, according to Theorem 4.1, Remark 4.2, or Corollary 4.1, random ODEs (5.5)
are stiff with probability 1. In solving these equations with gPC, we use Legendre
polynomials for uniformly distributed \bfitxi and Hermite polynomials for standard Gauss-
ian \bfitxi . Theorem 4.2 or Corollary 4.1 identifies the corresponding gPC equations (3.8)
as stiff.

For the random variables \bfitxi distributed uniformly on [ - 1, 1], gPC equations (3.8)
have the modified stiffness ratio \~s(t) = 105 and the Lipschitz constant \| \~J(t)\| 1 = 105

for the Legendre chaos of highest order P = 0, 1, 2, or 3. Such large numbers imply
that the gPC equations are stiff, as predicted by Corollary 4.1.

The errors in the mean (\epsilon m) and variance (\epsilon v) of the gPC solution, \^x(t, \bfitxi ), are
shown in Figure 5.1 as function of the polynomial order P . The error for the mean is
\epsilon m \sim \scrO (10 - 12). Its insensitivity to the considered values of P is due to the limit of the
accuracy of the employed numerical scheme; Table 5.1 elaborates this point further by
demonstrating that \epsilon m decreases further as the step size h is reduced. The error for
the solution variance, \epsilon v, decreases quickly as P increases, showing the effectiveness
of the gPC with parallel MIRK methods.

Fig. 5.1. Errors in the mean, \epsilon m, and variance, \epsilon v, of the gPC solution to (5.5) obtained via
either Legendre or Hermite chaos of order P with the parallel MIRK332L scheme. The choice of
the polynomial type is dictated by the PDF of model inputs \bfitxi .
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Table 5.1
Error, \epsilon m, in computing the mean solution \BbbE \{ x(t, \omega )\} with Legendre and Hermite chaos of

order P as function of step size h. The results are identical for P = 0, . . . , 3.

h = 0.1 h = 0.01 h = 0.001 h = 0.0001
Legendre 9.533\times 10 - 5 3.038\times 10 - 7 8.176\times 10 - 10 1.755\times 10 - 12

Hermite 9.526\times 10 - 5 3.036\times 10 - 7 8.169\times 10 - 10 1.756\times 10 - 12

Table 5.2
Errors in the mean, \epsilon m, and variance, \epsilon v, of the gPC solution to (5.5) obtained via either

Legendre or Hermite chaos of order P = 3 with the classical explicit RK method of order 4 as function
of step size h. The symbol NaN indicates that the corresponding numerical result is erroneous.

Polynomial Error h = 10 - 1 h = 10 - 2 h = 10 - 3 h = 10 - 4 h = 10 - 5

Legendre \epsilon m NaN NaN NaN NaN 1.21\times 10 - 11

Legendre \epsilon v NaN NaN NaN NaN 1.29\times 10 - 14

Hermite \epsilon m NaN NaN NaN NaN 1.21\times 10 - 11

Hermite \epsilon v NaN NaN NaN NaN 2.65\times 10 - 13

For the standard Gaussian input \bfitxi , we found the modified stiffness ratio \~s(t) = 105

and the Lipschitz constant \| \~J(t)\| 1 = 105 regardless of the Hermite polynomial order
P = 0, . . . , 3. Hence, the gPC equations are indeed stiff, as predicted a priori by
the theory. The errors in the mean and variance of the gPC solution are displayed
in Figure 5.1. Similar to the previous example, the error of the mean, \epsilon m, does not
decrease with P due to the limit of the accuracy of the numerical scheme employed.
That is verified by Table 5.1, which demonstrates the decay of \epsilon m with step size
h. Likewise, the error for the variance, \epsilon v, decreases nearly exponentially with P ,
demonstrating the efficiency of gPC with parallel MIRK methods.

To highlight the numerical challenges of random stiff problems, we compare our
MIRK332L solution to (5.5) with that obtained via the classical RK method with the
Butcher tableau [18],

0 0 0 0 0

1
2

1
2

0 0 0

1
2

0 1
2

0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

;

this explicit RK method is of order 4; i.e., its local error is \scrO (h5). In all cases,
depending on the PDF of model input \bfitxi , we rely on either Legendre or Hermite chaos
of the highest order P = 3. Table 5.2 shows that the third-order Legendre or Hermite
chaos with the fourth-order explicit RK method yields erroneous results, unless the
step size h is exceedingly small.

As another possible alternative, we replace the MIRK332L scheme with the Lo-
batto IIIB method of order 6 [19]. This IRK method has the local error of \scrO (h7); it
is A-stable but not B-convergent. We study \epsilon m and \epsilon v as functions of step size h, i.e.,
\epsilon m = \epsilon m(h) and \epsilon v = \epsilon v(h), and define empirical convergence orders of the Legendre
or Hermite chaos as

(5.7) pm \triangleq 
1

ln 2
ln

\biggl\{ \bigm| \bigm| \bigm| \bigm| \epsilon m(h)\epsilon m(h/2)

\bigm| \bigm| \bigm| \bigm| \biggr\} and pv \triangleq 
1

ln 2
ln

\biggl\{ \bigm| \bigm| \bigm| \bigm| \epsilon v(h)\epsilon v(h/2)

\bigm| \bigm| \bigm| \bigm| \biggr\} .
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Fig. 5.2. Errors in the mean, \epsilon m, and variance, \epsilon v, of the gPC solution to (5.5) obtained via
either Legendre or Hermite chaos of order P = 3 with the Lobatto IIIB method of order 6. These
errors are plotted as function of step size h.

Table 5.3
Empirical convergence orders, pm, and pv, of the solution to (5.5) obtained via either Legendre

or Hermite chaos of order P = 3 with the sixth-order Lobatto IIIB method as function of step size h.

Step size h 1
20

1
40

1
80

1
160

1
320

1
640

1
1280

1
2560

Legendre pm 3.992 4.008 4.020 4.038 4.070 4.127 4.227
Legendre pv 4.129 4.008 4.000 4.005 4.013 4.018 3.634
Hermite pm 3.992 4.008 4.020 4.038 4.070 4.127 4.227
Hermite pv 4.130 4.005 4.002 4.004 4.009 3.755 2.093

The errors \epsilon m = \epsilon m(h) and \epsilon v = \epsilon v(h) are shown in Figure 5.2 and the convergence
orders pm and pv in Table 5.3. These empirical results show the method's accuracy of
order about 4, a remarkable order reduction of the theoretical order 6. The numerical
challenges explored here are closely related to the problem's stiffness and, hence,
demonstrate the need for a proper stiff solver, as commented in Remark 4.3.

5.2. System of nonlinear ODEs. In a nonlinear extension of the randomized
Prothero--Robinson problem, x(t, \omega ) \in \BbbR 6 is a solution of

(5.8)

\left\{  dx

dt
=

dxp

dt
+A \cdot f(x), t \in (0, 1],

x(0, \omega ) = xp(0, \omega ),

where the vector xp(t, \omega ) \in \BbbR 6 and the matrix A \in \BbbR 6\times 6 are defined in (5.5) and

(5.9) f = (f1, . . . , f6)
\top with fi = x2i  - x2pi

, i = 1, . . . , 6.
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The random variables \bfitxi = (\xi 1, . . . , \xi 6)
\top that parameterize xp in (5.5c) are mutually

independent and have either uniform distribution on [ - 1, 1] or standard Gaussian
distribution. The exact solution of (5.8) is x(t, \omega ) = xp(t, \omega ).

The Jacobian matrix J(t, \omega ) for (5.8) has zero off-diagonal components, Jkn = 0
for k \not = n, and the diagonal components

Jkk =  - 2 \cdot 10k - 1 \cdot [1 + 0.2 sin(kt+ 0.05\xi k)], k = 1, . . . , 6.

Since  - 1 \leq sin(kt+ 0.05\xi k) \leq 1 holds with probability 1,

(5.10) \BbbP [J66 \leq  - 1.6\times 105] = 1.

According to Theorem 4.1 (or Remark 4.2 or Corollary 4.1), ODEs (5.8) are stiff with
probability 1. According to Theorem 4.2 (or Corollary 4.1), the corresponding gPC
equations are stiff.

Figure 5.3 confirms this theoretical observation by exhibiting the modified stiffness
ratio \~s(t) and the Lipschitz constant \| \~J(t)\| 1 of the gPC equations. Both quantities
are time dependent but sufficiently large at all times regardless of the PDF type of \bfitxi 
and the polynomial order P . The impact of P on both characteristics is slightly more
pronounced for the Hermite chaos than for the Legendre one.

Errors in the mean, \epsilon m, and variance \epsilon v, of the gPC solution to (5.8) are displayed
in Figure 5.4 for uniform and Gaussian \bfitxi . Both error measures decrease quickly with
the (Legendre or Hermite) polynomial order P . This demonstrates the effectiveness
of gPC with parallel MIRK methods in solving random nonlinear ODEs.

We contrast this performance with the failure of the corresponding solutions ob-
tained by replacing the parallel MIRK method with either the fourth-order explicit
RK method (Table 5.4) or the sixth-order Lobatto IIIB method (Figure 5.5 and Ta-
ble 5.5). The RK method requires a very small step size, h = 10 - 5, to obtain a
meaningful solution. As in the linear case considered previously, the order of the Lo-
batto IIIB method is reduced from 6 to 4 (as indicated by the empirical convergence
orders pm and pv in Table 5.5). These shortcomings of standard high-order methods
demonstrate the need for a proper stiff solver for random problems, as commented in
Remark 4.3.

5.3. ODEs of chemical kinetics. Next, we consider a random counterpart of
the Robertson problem [7, 19, 30] that is popular in the study of numerical methods
for stiff problems in chemical kinetics. The problem deals with slow, fast, and very
fast irreversible chemical reactions between species A, B, and C,

A
k1 - \rightarrow B, (slow)

B + C
k2 - \rightarrow A+ C, (fast)

B +B
k3 - \rightarrow C +B, (very fast).

The speed of these reactions is controlled by the rate constants, which we set to
k1 = 0.04, k2 = 104, and k3 = 3 \times 107, all defined in some consistent units. The
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Fig. 5.3. Modified stiffness ratio \~s(t) and the Lipschitz constant \| \~J(t)\| 1 of the gPC equations
for the Legendre (top row) or Hermite (bottom row) chaos of polynomial order P .

concentrations of species A, B, and C, denoted, respectively, by x1(t, \omega ), x2(t, \omega ) and
x3(t, \omega ), evolve according to a system of nonlinear ODEs\left\{   dx1

dt
=  - k1x1 + k2x2x3,

dx2
dt

= k1x1  - k2x2x3  - k3x
2
2,

dx3
dt

= k3x
2
2

(5.11a)
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Fig. 5.4. Errors in the mean, \epsilon m, and variance, \epsilon v, of the gPC solution to (5.8) obtained via
either Legendre or Hermite chaos of order P with the parallel MIRK332L scheme. The choice of
the polynomial type is dictated by the PDF of model inputs \bfitxi .

Table 5.4
Errors in the mean, \epsilon m, and variance, \epsilon v, of the gPC solution to (5.8) obtained via either

Legendre or Hermite chaos of order P = 3 with the classical fourth-order RK method. These errors
are presented for several values of step size h. The symbol NaN indicates that the corresponding
numerical result is erroneous.

h = 10 - 1 h = 10 - 2 h = 10 - 3 h = 10 - 4 h = 10 - 5

Legendre \epsilon m NaN NaN NaN NaN 2.35\times 10 - 10

Legendre \epsilon v NaN NaN NaN NaN 6.04\times 10 - 14

Hermite \epsilon m NaN NaN NaN NaN 2.35\times 10 - 10

Hermite \epsilon v NaN NaN NaN NaN 5.17\times 10 - 13

during the time interval t \in [0, 1]. These equations are subject to initial conditions\left\{ 
x1(0, \omega ) = 1 - 10 - 6(1 + 0.05\xi 1) - 0.2(1 + 0.05\xi 2),

x2(0, \omega ) = 10 - 6(1 + 0.05\xi 1),

x3(0, \omega ) = 0.2(1 + 0.05\xi 2),

(5.11b)

where \xi 1(\omega ) and \xi 2(\omega ) are independent random variables with either uniform dis-
tribution on [ - 1, 1] or standard normal distribution. The reference solution to this
problem is obtained via the gPC of order P = 4.

The Jacobian matrix J(t, \omega ) of (5.11a) is

J =

\left( 
 - k1 k2x3 k2x2
k1  - k2x3  - 2k3x2  - k2x2
0 2k3x2 0

\right) 
.(5.12)
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Fig. 5.5. Errors in the mean, \epsilon m, and variance, \epsilon v, of the gPC solution to (5.8) obtained via
either Legendre or Hermite chaos of order P = 3 with the sixth-order Lobatto IIIB method. These
are plotted as function of step size h. The choice of the polynomial type is dictated by the PDF of
model inputs \bfitxi .

Table 5.5
Empirical convergence orders, pm and pv, of the solution to (5.8) obtained via either Legendre

or Hermite chaos of order P = 3 with the sixth-order Lobatto IIIB method as function of step size h.

Step size h 1
20

1
40

1
80

1
160

1
320

1
640

1
1280

1
2560

Legendre pm 4.028 4.020 4.026 4.026 4.041 4.072 4.127
Legendre pv 4.237 4.080 3.997 4.086 4.139 4.008 3.832
Hermite pm 4.028 4.020 4.026 4.026 4.041 4.072 4.127
Hermite pv 4.238 4.080 3.996 4.087 4.136 3.830 2.305

According to the Chebyshev inequality [20], the element J22 \triangleq  - k2x3  - 2k3x2 of this
matrix satisfies the condition

(5.13) \BbbP \{ | J22  - \BbbE \{ J22\} | < 2\sigma \} \geq 1 - \sigma 2

4\sigma 2
=

3

4
\forall t \in [0.1],

where \sigma 2 \triangleq \BbbE \{ (J22  - \BbbE \{ J22\} )2\} . Hence,

(5.14) P\{ \BbbE \{ J22\}  - 2\sigma < J22 < \BbbE \{ J22\} + 2\sigma \} \geq 3

4
\forall t \in [0.1].

We use Monte Carlo simulations consisting of 1000 realizations of (5.11) solved with
the 3-stage Radau IIA scheme---it is A-stable, L-stable, and B-convergent of order
3 [19]---to compute \BbbE \{ J22\} and \sigma . For the uniform or Gaussian \bfitxi (\omega ) = \{ \xi 1, \xi 2\} and
for all t \in [0, 1], this procedure results in

uniform \bfitxi :

\left\{ 
 - 2.835\times 103 \leq \BbbE \{ J22(t)\} \leq  - 2.062\times 103,

 - 2.904\times 103 \leq \BbbE \{ J22(t)\}  - 2\sigma (t) \leq  - 2.176\times 103,

 - 2.765\times 103 \leq \BbbE \{ J22(t)\} + 2\sigma (t) \leq  - 1.948\times 103
(5.15)



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1040 WENJIE SHI AND DANIEL M. TARTAKOVSKY

or

Gaussian \bfitxi :

\left\{ 
 - 2.836\times 103 \leq \BbbE \{ J22(t)\} \leq  - 2.064\times 103,

 - 2.958\times 103 \leq \BbbE \{ J22(t)\}  - 2\sigma (t) \leq  - 2.263\times 103,

 - 2.714\times 103 \leq \BbbE \{ J22(t)\} + 2\sigma (t) \leq  - 1.864\times 103,

(5.16)

respectively. According to (5.14) and Theorem 4.1 (or Remark 4.2), random ODEs
(5.11a) are stiff with probability no less than 3/4. According to Theorem 4.2, the
corresponding gPC equations are stiff as well.

For the mutually independent random inputs \xi 1(\omega ) and \xi 2(\omega ) distributed uni-
formly on [ - 1, 1], the mean and variance of the solution to (5.11) obtained via Le-
gendre chaos of the highest order P = 3 are shown in Figure 5.6. Given the vast
disparity between the rate constants k1, k2, and k3, these statistics for the concentra-
tions x1(t, \omega ) and x3(t, \omega ) change with time significantly faster than their counterparts
for x2(t, \omega ).

The modified stiffness ratio \~s(t) and the Lipschitz constant \| \~J(t)\| 1 of the gPC
equations for this problem are plotted in Figure 5.7 for several values of P ; both of
these quantities are large, signaling the stiffness of the gPC equations, which is in
agreement with the theoretical prediction above. Finally, Figure 5.8 demonstrates
that the errors of the solution's mean and variance decay quickly as P increases,
illustrating the effectiveness of the gPC with parallel MIRK methods.

Although not shown here, the results for the normally distributed inputs \xi 1(\omega )
and \xi 2(\omega ) are qualitatively identical. The modified stiffness ratio \~s(t) and the Lip-
schitz constant \| \~J(t)\| 1 of the Hermite chaos equations are of the same order as their

Fig. 5.6. Mean, mi(t) \triangleq \BbbE \{ \^xi(tk, \omega )\} , and variance, vi(t) \triangleq \BbbE \{ (\^xi(tk, \omega )  - mi)
2\} , of the

solution to (5.11), \^xi(t, \omega ) (i = 1, 2, 3), obtained via Legendre chaos of the highest order P = 3.
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Fig. 5.7. Modified stiffness ratio \~s(t) and the Lipschitz constant \| \~J(t)\| 1 of the gPC equations
for problem (5.11) with uniformly distributed \bfitxi . The results are shown for several values of the
highest order of Legendre chaos, P .

Fig. 5.8. Errors of the mean, \epsilon m, and variance, \epsilon v, of the gPC solution to (5.11) as function
of the highest order of Legendre or Hermite chaos, P . The choice of the polynomial type is dictated
by the PDF of model inputs \bfitxi .
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counterparts in Figure 5.7. The errors \epsilon m and \epsilon v decay appreciably faster with P
than they do in the case of Legendre chaos (Figure 5.8).

5.4. ODEs from discretized parabolic equations. Finally, we consider a
state variable u(x, t, \omega ), whose spatiotemporal evolution is described by a parabolic
(diffusion) equation,

\partial u

\partial t
 - \partial 2u

\partial x2
= q(x, t, \omega ), 0 < x < 1, 0 < t \leq 1,(5.17a)

subject to initial and boundary conditions

u(x, 0, \omega ) = 0, u(0, t, \omega ) = u(1, t, \omega ) = 0.(5.17b)

The random source term q(x, t, \omega ) has the form

(5.18) q(x, t, \omega ) = x(1 - x) + e1+\sigma \gamma (t,\omega ), \gamma (t, \omega ) =
1

\pi 2

N\sum 
n=1

1

n2
sin(2\pi nt)\xi n(\omega ),

where \bfitxi (\omega ) \triangleq (\xi 1, . . . , \xi N )\top is a vector of mutually independent random variables,
each of which is either uniformly distributed on [ - 1, 1] or standard Gaussian. The
series in (5.18) can be viewed as a truncated (after N terms) Karhunen--Lo\`eve ex-
pansion of the random process \gamma (t, \omega ) whose covariance function has eigenvalues
1/(2\pi 4n4) [42].

Solving (5.17) with the method of lines [7, 38, 31]---e.g., via the central finite-
difference discretization of the spatial derivatives on a uniform gird with mesh size
\Delta x = 1/(m + 1), where m is a positive integer---gives rise to a system of random
ODEs, \left\{  dU

dt
= B \cdot U+Q, t \in (0, 1],

U(0) = 0,

(5.19)

where U \in \BbbR m, B is a tridiagonal matrix

(5.20) B =
1

(\Delta x)2

\left( 
 - 2 1
1  - 2 1

. . .
. . .

. . .

1  - 2 1
1  - 2

\right) 

m\times m

,

and the vector Q = (Q1, . . . , Qm)\top has components

(5.21) Qk = xk(1 - xk) + exp

\Biggl\{ 
1 +

\sigma 

\pi 2

N\sum 
n=1

1

n2
sin(2\pi nt)\xi n

\Biggr\} 
, 1 \leq k \leq m.

For any \omega \in \Omega , the Jacobian of (5.19) is J = B. Its eigenvalues are [7]

\lambda k =  - 2

(\Delta x)2

\biggl[ 
1 + cos

\Bigl( k\pi 

m+ 1

\Bigr) \biggr] 
, 1 \leq k \leq m.(5.22)
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It follows from (5.22) that the stiffness ratio is

\=s(t) =
maxk\{ | \lambda k| \} 
mink\{ | \lambda k| \} 

\approx 4m2

\pi 2
if m is large.(5.23)

According to Definition 2.6, (5.19) with large m is a system of stiff random ODEs.
Our stiffness analysis in section 4 confirms this result. Indeed, the element J11 of

the Jacobian matrix J in (5.19) is

(5.24) J11 =  - 2

(\Delta x)2
=  - 2(m+ 1)2.

Hence, for large m, | J11| is sufficiently large with probability 1. According to Theo-
rem 4.1 (or Remark 4.2 or Corollary 4.1), random ODEs (5.19) with large m are stiff
with probability 1. According to Theorem 4.2 (or Corollary 4.1), the corresponding
gPC equations are stiff as well.

The derivations similar to those for \=s(t) in (5.23) yield the modified stiffness ratio
for the gPC equations (3.8),

(5.25) \~s(t) \approx 4m2

\pi 2
for large m,

and the Lipschitz constant,

(5.26) \| \~J(t)\| 1 =
4

(\Delta x)2
= 4(m+ 1)2.

For large m, \~s(t) and \| \~J(t)\| 1 are large, which implies that the gPC equations are
stiff, in agreement with the theoretic considerations above. These results hold for
both uniform and Gaussian distributions of the random variables \bfitxi and for both
Legendre and Hermite chaos expansions of the highest order P = 0, 1, 2, or 3.

The theoretical considerations reported in Appendix A reveal that error of the
mean of the gPC solution to (5.19), \epsilon m, is independent of P and depends on the
accuracy of the numerical scheme employed. Error of the variance of the gPC solution
to (5.19), \epsilon v, is displayed in Figure 5.9. It demonstrates an exponential convergence
rate, illustrating the effectiveness of the gPC with parallel MIRK methods. In these
calculations, we used \Delta x = 0.02 and N = 10 random variables \bfitxi and employed the
gPC solution of the highest order P = 4 as the ground truth.

6. Summary. Stiff equations are ubiquitous in scientific computing. In the
deterministic setting, considerable advancements have been made in their analysis
and numerical treatment; similar studies of stiff random equations are scarce. We fill
this void by analyzing the gPC with parallel MIRK methods as a means of solving
stiff random ODEs.

The lack of literature on stiff random ODEs gave us impetus to generalize some
pragmatic definitions of stiffness of deterministic equations to the random setting. We
posit that this resulted in several reasonable and computable mathematical descrip-
tions of stiff random ODEs.

We presented a general framework for solving stiff random ODEs (1.1) via the
gPC with parallel MIRK methods. Our study demonstrates the importance of stiffness
analysis in stochastic problems and illustrates the advantages of the parallel MIRK
schemes.
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Fig. 5.9. Error in variance, \epsilon v, of the gPC solution to (5.19) as function of the highest order of
Legendre or Hermite chaos, P . The choice of the polynomial type is dictated by the PDF of model
inputs \bfitxi .

We introduced a series of workable strategies for an a priori identification of ran-
dom ODEs as stiff. We also identified a connection between the Jacobian matrices
of the random ODEs (1.1) and the resulting gPC equations (3.8). Exploiting this
connection, we established a direct computable way to determine whether these gPC
equations are stiff. This theoretical analysis is relevant to numerical treatment of ran-
dom ODEs and PDEs by methods other than gPC, e.g., by Monte Carlo simulations,
stochastic collocation on sparse grids, etc.

We presented four numerical experiments, dealing with systems of random ODEs
and a spatially discretized PDE. These numerical results confirm our theoretical analy-
sis of stiffness and serve to establish gPC with the parallel MIRK methods as a feasible
and effective tool for their solution. They also demonstrate the limitations of the stan-
dard high-order techniques, such as the fourth-order RK method and the sixth-order
Lobatto IIIB method, in this random setting.

More work remains to be done on the development of efficient methods for solving
stiff systems with random coefficients. While our study focused on the impact of
stiffness on the performance of gPC, this issue is relevant for multilevel Monte Carlo
and stochastic collocation on sparse grids. Another area of future research is the
deployment of parallel MIRK schemes on advanced computer architectures in order
to alleviate the curse of dimensionality, especially for stiff problems. Finally, the
development of dedicated numerical methods for stiff systems with random coefficients
remains an open challenge.

Appendix A. Error measure for mean gPC solution to linear ODEs.
Consider linear ODEs of the form\left\{  dU

dt
= A \cdot U+Q, t > 0,

U(0) = 0,

(A.1)
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where A is a constant matrix and Q is a function of N random variables \bfitxi (\omega ) \triangleq 
(\xi 1, . . . , \xi N )\top . Its gPC solution, truncated after M terms, is written as

(A.2) UgPC(t, \omega ) =
M\sum 
k=1

Uk(t)\Psi k(\bfitxi ),

where the deterministic vector-functions \{ Uk(t)\} are obtained from the corresponding
gPC equations (3.7). The ensemble mean of the gPC solution is

(A.3) \BbbE \{ UgPC\} = U1(t),

where U1(t) is a solution of\left\{  dU1

dt
= A \cdot U1 + \BbbE \{ Q\} , t > 0,

U1(0) = 0.

(A.4)

This solution U1 is independent of the highest order of gPC. Thus, the error measure
\epsilon m is independent of the highest order of gPC; it is affected by the accuracy of the
numerical scheme employed to solve (A.4).
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