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a b s t r a c t 
Carrier-facilitated solute transport in heterogeneous aquifers is studied within a Lagrangian 
framework. Dissolved solutes and carriers are advected by steady random groundwater 
flow, which is modeled by Darcy’s law with uncertain hydraulic conductivity that is treated 
as a stationary random space function. We derive general expressions for the spatial mo- 
ments of the dissolved concentration and the concentration associated with the carrier 
phase. In order to reduce the computational effort, we use previously derived solutions for 
the flow field. This enables us to obtain closed-form solutions for the spatial moments 
of the two concentration fields. The mass and center of gravity of the two propagat- 
ing plumes depend only on the mean velocity field and chemical/degradation processes. 
The higher (second and third) moments are affected by the coupling between reactions 
(sorption/desorption and degradation) among the three phases (i.e., dissolved, carrier and 
sorbed concentrations) and the aquifer’s heterogeneity. We investigate the potentially en- 
hancing effect of carriers by comparing spatial moments of the two propagating plumes. 
The forward/backward mass transfer rates between the liquid and carrier phases, and the 
degradation coefficients are identified as critical parameters. The carrier’s role is most 
prominent when detachment from carrier sites is slow, provided that degradation on the 
carriers is smaller than that in the liquid phase. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 
Numerous particles freely moving in aquifers may act as carriers for many solutes. Groundwater contamination as a 

result of the widespread use of industrial chemicals as well as of the geological media for final disposal of spent nuclear 
materials has attracted the attention of hydrologists (a recent overview on the topic can be found in [2] ). Their interest is 
particularly motivated by the fact that carriers can facilitate transport of strongly sorbing contaminants (e.g., [3,4] ). Dissolved 
pollutants may “sorb” on the carriers, whose advection can significantly enhance pollutant transport in the subsurface [5] . 
Transport of pesticides and hydrophobic chemicals mediated by the presence of carriers has been documented in [6] . In 
other cases carriers (such as pathogenic bacteria and viruses) are contaminants themselves (e.g., [7,8] ). Thus, simulation 
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models accounting for mobility enhancement of dissolved solutes have been extensively studied in the past (a review can 
be found in [9] and references therein). 

Generally, contaminant concentration(s) are predicted by accounting simultaneously for the relevant physico-chemical 
processes. As a consequence, carrier-facilitated transport involves a large number of equations and parameters. After their 
release, solutes may undergo a number of physical/chemical transformations (e.g., sorption, desorption, degradation, filtra- 
tion, removal, etc). The governing equations for mass transfer between phases are generally very difficult to parametrize 
because of the data scarcity and difficulty of carrying out batch experiments [10] . Several mathematical models have been 
developed to describe mass exchanges between the species, and the majority of them assume equilibrium conditions be- 
tween the carrier and liquid phase (e.g., [5] and references therein). Such models predict a reduction of the retardation 
depending on both the carrier concentration and the partition coefficient on the carrier sites. If equilibrium is applicable, as 
carriers bearing solutes move into a solute-free porous medium, they are rapidly stripped of solutes due to the high sorp- 
tion capacity of the matrix. In contrast, if desorption kinetics from carriers is slow, the assumption of equilibrium would 
underestimate the impact of carriers on enhancing transport [4] . 

In addition to the above mentioned complexity, one has to account for spatial heterogeneity of the transport parameters. 
This observed heterogeneity is mainly reflected in the erratic spatial variations of the hydraulic conductivity (a wide expo- 
sition can be found in [11] ). In principle, one could adopt a “detailed” description of the observed variations, but in practice 
the cost and time of obtaining the necessary field data would be unrealistic. Furthermore, such an approach is excessive 
if one is interested in global quantities (like the plume moments or mean contaminant fluxes) instead of local concentra- 
tion values. Hence, carrier-facilitated solute transport in natural porous media can be realistically modeled by means of a 
stochastic approach. In absence of carriers a considerable work has been done (e.g., [12,13] and references therein) by apply- 
ing the Lagrangian approach [14] . Despite the enormous achievements obtained in this case, very little has been done when 
dealing with three (or more) moving phases under the same field uncertainties. A mathematical formulation of colloid- 
facilitated solute transport in heterogeneous porous formations (which represents an important case of carriers facilitated 
solute transport) has been presented in [5] . 

The present paper aims at investigating carrier-enhanced solute transport in heterogenous porous formations. Unlike 
[5] , we study carrier-facilitated solute transport by means of spatial moments similarly to Severino et al. [4] . We gen- 
eralize their analysis in several respects: i) we incorporate the impact of solute degradation (within both the liquid and 
carrier phase) and illustrate how this mechanism combines with chemical reactions and heterogeneity; ii) we analytically 
compute transverse moments (lateral dispersion), iii) we provide a closed-form expression for the longitudinal third mo- 
ment (to quantify the departure from Gaussianity), and iv) we derive asymptotic results which are of utility in the practical 
applications. 
2. Phenomenological assumptions and mathematical statement 

In heterogeneous porous media, both the conductivity K ( x ) and porosity ϑ( x ) vary in space x ∈ R 3 . However, our analysis 
focuses on transport in aquifers where K ( x ) often varies by orders of magnitude, and is heavily under-sampled (e.g., [15,16] ). 
It is common (see [11,14] and references therein) to characterize this uncertainty by treating K ( x ) as a random space func- 
tion ( rsf ). In particular, the log-conductivity Y = ln K is modeled as a second-order stationary (statistically homogeneous), 
multi-variate Gaussian field with given mean ⟨ Y ⟩ (hereafter ⟨⟩ represents the ensemble average operator), variance σ 2 

Y and 
autocorrelation function ρY ≡ ρY ( r ). We choose 

ρY (r) = exp 
( 

−

√ 
r 2 1 + r 2 2 

I 2 + r 2 3 
I 2 v 

) 
r ≡ (r 1 , r 2 , r 3 ) , (1) 

where I and I v are the horizontal and vertical integral scales, respectively. The statistical anisotropy arising from the fact 
that I ̸ = I v is a salient feature of many aquifers (reflecting the formation processes), and it influences to a great ex- 
tent the flow field (e.g., [17–20] ). The spatial variability of porosity ϑ is often much smaller than that of Y (e.g., [15] ), 
and therefore can be neglected. In the present study, we follow this trend as well, and regard ϑ as a deterministic 
constant. 

We consider steady groundwater flow driven by a constant gradient ∇# of the hydraulic head # into an unbounded 
aquifer (such that one may neglect the impact of the boundary conditions). The velocity V ≡ ( V 1 , V 2 , V 3 ) ⊤ is related to 
the hydraulic conductivity, the porosity and the head via Darcy’s law V = − K 

ϑ ∇#. Since Y is regarded as a rsf , the velocity 
will also be a rsf , and we shall assume that its mean value ⟨ V ⟩ is uniform and aligned to the x 1 -axis, i.e. ⟨ V ⟩ = (U, 0 , 0) ⊤ . 
A dissolvable solute injected into an aquifer through an “injection plane” ( Fig. 1 ). We assume that carriers are advected 
by groundwater, and may bind part of the dissolved solute as a result of complex chemical processes, such as sorp- 
tion/desorption. Thus, the retention due to possible sorption on the soil matrix is reduced (as compared with the case 
where carriers are supposed not to exist), or equivalently the solute mobility is enhanced . Our aim here is to provide a model 
for carrier facilitated solute transport accounting for the aquifer heterogeneity on one hand, and physico-chemical involved 
processes on the other in order to build up a simple as well as reliable tool for quick assessment of the potential impact of 
carriers on the migration of solute(s) in the subsurface. 
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Fig. 1. Definition sketch of a particle path starting at the injection area A with velocity V 1 ( a ), and arriving to the control plane with velocity V 1 ( x 1 , η, ζ ). 
In line with the existing literature on the topic (e.g., [21] ), we assume that the concentration C c (mass of carrier per 

volume of liquid) of the advected carriers does not drastically change with the time t (quasi steady state regime), and 
consequently the mass balance equation for the carrier phase can be written as 

V i ∂C c 
∂x i = −ε C c + µ, (2) 

(hereafter Einstein’s summation convention is adopted), where ε and µ quantify the irreversible removal and generation of 
carriers, respectively. Estimating the pair ( ε, µ) is difficult since field scale data are limited. In the case of colloidal particles, 
it is customary (e.g., [1,5,10,22] ) to assume that removal is compensated by generation, i.e., ε C c ≈ µ. Based on this, we shall 
regard the carrier concentration as uniform. Generally, it is more likely to be that ε C c > µ, i.e., carrier removal dominates 
generation, and therefore the enhancing impact of carriers upon solute transport might be reduced. Nevertheless, even 
when this is the real case, our assumptions would lead to an upper bound for carrier facilitated transport, thus leading to a 
conservative prediction. This aspect is quite important when the solute is a contaminant. 

We define the fluid concentration, hereafter denoted by C ( X ) , as mass of dissolved solute per volume of liquid, and the 
carrier concentration, hereafter denoted by C ( Y ) , as mass (per volume of liquid) of solute bound to the carrier. Generally, the 
change in time and space of C ( m ) (in what follows m ≡ X , Y ) is assumed to be controlled by: i) groundwater advection, ii) 
chemical processes, and iii) pore scale dispersion ( PSD ). This latter in general impacts both moments [23] and concentra- 
tion(s) [24–26] . However, moments are significantly influenced by the PSD when the plume is originated by a point-like 
source [27] , a typical configuration of flows from/toward wells (for details, see [28,29] ). Instead, in the case of a mean uni- 
form flow (typical of groundwater flows) the plume is generated by a relatively (as compared to the heterogeneity scale of 
Y ) large source for which PSD has a very minor effect. Since this is the case in the problem at stake, hereafter we neglect 
the PSD . 

Characterization of any mass transfer process requires specification of the thermodynamic kinetics, and a relation to 
represent the dynamics of approaching the equilibrium. Sorption/desorption reactions have received a significative atten- 
tion [30,31] . These reactions are associated with parameters that are very difficult to measure [10,32] . Hence, it is com- 
mon to treat them according to simplified models. In particular, we shall assume that solutes are in equilibrium with the 
porous matrix. Such an assumption seems reasonable as many solutes (such as Neptunium and Plutonium as well as some 
agro-chemicals) obey the linear equilibrium model [10,22,33] , and nevertheless even more complex reactions (like sorp- 
tion/desorption) may tend to the equilibrium on relatively short times (see [34,35] ). 

Let us denote by N ( X ) ≡ K d C ( X ) the solute concentration sorbed onto the matrix defined per unit of bulk volume. The 
mass balance equations then can be written as [4] 

∂ 
∂t 

[
C ( X ) + N ( X ) 

R c 
]

+ V i ∂C ( X ) 
∂x i = R −1 

c ψ (C ( X ) , C ( Y ) ) −
[

C ( X ) + N ( X ) 
R c 

]
λX (3a) 

∂C ( Y ) 
∂t + V i ∂C ( Y ) 

∂x i = −R −1 
c ψ (C ( X ) , C ( Y ) ) − λY C ( Y ) , N ( X ) = K d C ( X ) , (3b) 

where R c = 1 + K c is referred to as (carrier) retardation factor. The dimensionless parameters K c and K d are the linear par- 
titioning coefficients on the porous matrix and carrier sites, respectively. In addition, solutes may undergo reactions like 
precipitation (especially for organic compounds) or radioactive decay (typically of radionuclides). Modeling such type of re- 
actions is quite complex. Thus, we assume that the loss of mass in the liquid and carrier phase is regulated by a first-order 
decay law with degradation rates equal to λX and λY , respectively. 
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Fig. 2. Sketch of the liquid-carrier-porous matrix with indication of: i) forward, α, ii) backward, β , rates pertaining to the sorption/desorption (continuous), 
and iii) coefficients, K c – K d , showing the linear partitioning between each phase (dashed). In addition, λX and λY refer to the degradation in the liquid and 
carrier phase, respectively. 

Mass transfer (generically represented by the function ψ) from/toward the carrier and liquid phase is a mechanism of 
central importance. While the equilibrium assumption has been a common assumption at laboratory scale, at field scale the 
experimental observations do not usually support its validity [22] , and therefore kinetic effects have to be considered. A 
fairly general kinematical model is that of Langmuir which accounts for the fact that the number of binding sites upon the 
carrier surface is limited. However, the concentrations C ( m ) relevant in the applications are often relatively low, and therefore 
the Langmuir model can be linearized, i.e., 

ψ (C ( X ) , C ( Y ) ) ≈ −α C ( X ) + β C ( Y ) , (4) 
α and β being the forward and backward rate, respectively ( Fig. 2 ). In the discussion below, we shall refer to (4) as sorp- 
tion/desorption between C ( X ) and C ( Y ) . When there is no kinetically controlled mechanism between the two phases, one has 
ψ ≡ 0, and consequently the concentrations C ( m ) change due to advection combined with pure equilibrium, solely. 

We rewrite (3) a Lagrangian framework. Following [36] , we replace the independent variables x i with variables ξ i , which 
are defined as 

ξ1 = τ ( x 1 ; a ) , ξ2 = x 2 − η( x 1 ; a ) , ξ3 = x 3 − ζ ( x 1 ; a ) , a ∈ A, (5) 
where τ represents the “travel time” of a fluid particle starting at a given position on the injection area A and reaching 
a given accessible environment (termed as control plane ) located at x 1 ( Fig. 1 ). The Lagrangian coordinates η and ζ fix the 
position of the fluid particle at the control plane, i.e., x 2 = η(x 1 ; a ) and x 3 = ζ (x 1 ; a ) . The functions τ , η, and ζ depend upon 
the velocity field V through the system of equations [36] 

d τ
d x 1 = 1 

V 1 (ξ) , d η
d x 1 = V 2 ( ξ ) 

V 1 ( ξ ) , d ζ
d x 1 = V 3 ( ξ ) 

V 1 ( ξ ) . (6) 
Application of the chain rule of derivation and accounting for (6) yields: 

∂ 
∂x 1 = 1 

V 1 ( ξ ) ∂ 
∂ξ1 , ∂ 

∂x i = 1 
V i ( x ) 

[
V i ( x ) − V i ( ξ ) V 1 ( x ) 

V 1 ( ξ ) 
]

∂ 
∂ξi (i = 2 , 3) , (7) 

so that (3) can be written as 
R ∂C ( X ) 

∂t + V 1 ( x ) 
V 1 ( ξ ) ∂C ( X ) 

∂ξ1 + [V i ( x ) − V i ( ξ ) V 1 ( x ) 
V 1 ( ξ ) 

]
∂C ( X ) 
∂ξi = ψ 

R c − R λX C ( X ) (8a) 
∂C ( Y ) 
∂t + V 1 ( x ) 

V 1 ( ξ ) ∂C ( Y ) 
∂ξ1 + [V i ( x ) − V i ( ξ ) V 1 ( x ) 

V 1 ( ξ ) 
]
∂C ( Y ) 
∂ξi = −ψ 

R c − λY C ( Y ) , (8b) 
where R = 1 + K d /R c . By setting ξ2 = ξ3 = 0 , i.e., for x 2 = η and x 3 = ζ (see Eq. (5) ), one has V ( x ) ≡ V ( ξ) and (8a) and 
(8b) become (see (4) ) 

R ∂C ( X ) 
∂t + ∂C ( X ) 

∂τ
= −(

R λX + α
R c 

)
C ( X ) + β

R c C ( Y ) (9a) 
∂C ( Y ) 
∂t + ∂C ( Y ) 

∂τ
= α

R c C ( X ) −
(

λY + β
R c 

)
C ( Y ) . (9b) 

Summarizing, adoption of the Lagrangian parametrization (5) enables us to convert system (3a) and (3b) (with a three 
dimensional nature) into one-dimensional system (9a) and (9b) . The advantage of such a methodology (for details, see [36] ) 
is that one can significantly reduce the computational burden. In particular, one may use just one (i.e., Laplace) integral 
transform to fully solve the transport problem. 
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3. Spatial moments 

We wish to characterize the evolution of the propagating plumes originated at the injection plane by means of spatial 
moments. In order to compute spatial moments we consider a pulse-injection of solute, 

C ( X ) ( a , t ) = ρ0 ( a ) 
V 1 ( a ) δ( t ) , C ( Y ) ( a , t ) = 0 ( a ∈ A ) , (10) 

(where ρ0 is the injected solute mass per unit area A ) into an aquifer which is initially solute free, C ( m ) ( x , 0 ) = 0 . Starting 
from the reaction functions γ m , the Lagrangian concentration associated with a solute particle started at a given position a 
over the injecting plane can be written as 

1C ( m ) = ϑ ρ0 ( a ) 
V 1 ( x 1 , η, ζ ) γm ( τ, t ) δ( x 2 − η) δ( x 3 − ζ ) . (11) 

Therefore the entire field C ( m ) is obtained by integrating over A , i.e., 
C ( m ) ( x , t ) = ϑ ∫ 

A d a ρ0 ( a ) γm ( τ, t ) 
V 1 ( x 1 , η, ζ ) δ( x 2 − η) δ( x 3 − ζ ) . (12) 

For the Lagrangian concentration (12) spatial moments are defined as 
M ( m ) 

pqr ( t ) = ∫ d x x p 1 x q 2 x r 3 C ( m ) ( x , t ) = ϑ ∫ 
A d a ρ0 ( a ) ∫ ∞ 

0 d x 1 x p 1 ηq ζ r 
V 1 ( x 1 , η, ζ ) γm ( τ, t ) . (13) 

The key to computing M ( m ) 
pqr is to exchange the variable x 1 with τ with the aid of V 1 = d x 1 /d τ, i.e., 

M ( m ) 
pqr ( t ) = ϑ ∫ 

A d a ρ0 (a ) ∫ ∞ 
0 d τ X p 1 (τ ; a ) X q 2 (τ ; a ) X r 3 (τ ; a ) γm ( τ, t ) , (14) 

where X ( τ ; a ) ≡ ( x 1 ( τ ; a ), η( τ ; a ), ζ ( τ ; a )) is the Lagrangian trajectory of a fluid particle starting at the injection plane 
at t = 0 , and crossing the control plane at x 1 in the point ( η, ζ ) at t ≡ τ ( Fig. 1 ). Since the fluid velocity V is assumed to 
be a rsf , ( τ , η, ζ ) are also rsf s, as are the spatial moments M ( m ) 

pqr . Assuming that both the liquid and the carrier plumes 
are “ergodic”, we restrict our analysis to the ensemble average of (14) . Before going further, it is worth recalling that Fiori 
and Bellin [37] have shown that the attainment of ergodic conditions is favored by the presence of the sorption/desorption 
reaction. Moreover, the validity of the ergodic argument is further corroborated by the fact that the characteristic length 
of the source is significantly larger than the horizontal heterogeneity scale of Y (i.e. A ≫ I 2 ), which corresponds to the 
requirement suggested by Dagan [38] to regard transport of a passive scalar (i.e., inert) as ergodic. As a consequence, either 
when transport is dominated by the ongoing chemical/physical reactions or when reactions are rapidly exhausted (and 
therefore solutes behave like inert), in the present study transport can be considered as ergodic. 

Let us define auxiliary functions 
2( m ) 

n ( t ) = ∫ ∞ 
0 d τ τ n γm ( τ, t ) ( n = 0 , 1 , 2 , . . . ) , (15) 

that are computed as 
2( m ) 

n ( b, t ) = ( −1 ) n d n 
d s n ̂ γm ( s, t ) ∣∣∣∣

s = b , (16) 
where ̂ γm ( s, t ) is the Laplace transform of γ m (over the travel time τ ). 

The zero-order moment (mass) of the liquid and carrier phase is computed by setting p = q = r = 0 in (14) and taking 
the ensemble average, 

M ( m ) ( t ) = M 0 2( m ) 
0 ( 0 , t ) , M 0 = ϑ ∫ 

A d a ρ0 ( a ) . (17) 
The center of gravity R ( m ) is computed by setting p = q = r = 1 in (14) and normalizing by (17) to account for the effective 
mass confined into the m -phase (recall that, due to the ongoing physical/chemical reactions, the mass in each phase is 
changing at any t ): 

R (m ) (t) = ϑ 
M (m ) (t) 

∫ 
A d a ρ0 (a ) ∫ ∞ 

0 d τ X (τ ; a ) γm ( τ, t ) . (18) 
The ensemble average of (18) is 

〈
R ( m ) 

i ( t ) 〉 = R ( m ) 
i ( 0 ) + U 2( m ) 

1 ( 0 , t ) 
2( m ) 

0 ( 0 , t ) δ1 i (i = 1 , 2 , 3) , (19) 
where we have used the fact that for the considered problem one has: X (t) = X (0) + ⟨ V ⟩ t + X ′ (t) [14] , with X ′ the fluctua- 
tion of the trajectory X . It is seen that the zero, (17) , and first, (19) , moments do not depend upon the heterogeneity. Instead, 
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they are influenced only by the chemical/physical reactions (through the presence of the 2-functions), and by the mean flow 
(via the velocity U ). The second and third moments are computed in a similar fashion. Thus, the second longitudinal central 
moment reads as 

〈
S ( m ) 

11 ( t ) 〉 = 3 ( m ) 
11 ( t ) + 1 

2( m ) 
0 ( 0 , t ) 

∫ ∞ 
0 d τX 11 ( τ ) γm ( τ, t ) , (20a) 

3 ( m ) 
11 ( t ) = S ( m ) 

11 ( 0 ) + U 2 
{ 

2( m ) 
2 ( 0 , t ) 

2( m ) 
0 ( 0 , t ) −

[
2( m ) 

1 ( 0 , t ) 
2( m ) 

0 ( 0 , t ) 
]2 } 

, (20b) 
whereas the transverse ones are 

〈
S ( m ) 

ii ( t ) 〉 = S ( m ) 
ii ( 0 ) + 1 

2( m ) 
0 ( 0 , t ) 

∫ ∞ 
0 d τX ii ( τ ) γm ( τ, t ) (i = 2 , 3) . (21) 

In (20a) and (21) X ii ( t ) ≡ ⟨ X ′ 2 
i (t) ⟩ represents the variance of the trajectory X ≡ ( X 1 , X 2 , X 3 ) whose expression has been 

derived at the first-order of approximation in the variance σ 2 
Y , i.e., 

X ii (t) = 2 ∫ t 
0 d τ (t − τ ) u ii (τ ) (i = 1 , 2 , 3) , (22) 

where u ii is the velocity covariance (for details, see [14] ). Finally, the longitudinal third central moments are given by 
〈
S ( m ) 

111 ( t ) 〉 = 3 ( m ) 
111 ( t ) + 3 U 

2( m ) 
0 ( 0 , t ) 

∫ ∞ 
0 d τX 11 ( τ ) γm ( τ, t ) [τ −

2( m ) 
1 ( 0 , t ) 

2( m ) 
0 ( 0 , t ) 

]
, (23a) 

3 ( m ) 
111 ( t ) = S ( m ) 

111 ( 0 ) + U 3 
{ 

2( m ) 
3 ( 0 , t ) 

2( m ) 
0 ( 0 , t ) − 3 2( m ) 

2 ( 0 , t ) 
2( m ) 

0 ( 0 , t ) 2( m ) 
1 ( 0 , t ) + 2 [2( m ) 

1 ( 0 , t ) 
2( m ) 

0 ( 0 , t ) 
]3 } 

. (23b) 
It is seen from (20a), (21) and (23a) that to evaluate the second and third longitudinal moments the γ m -functions are 

also needed. Generally, system (3a) and (3b) can be solved only numerically. Alternatively, one can analytically solve such a 
system in the Laplace domain, and subsequently, by a numerical inversion of Laplace transform, compute γ m . Even if such a 
numerical inversion can be in principle carried out, it does not represent an easy task, and it poses many problems in terms 
of stability as well as convergence [39] . In order to avoid any numerical steps, we propose a different approach which leads 
to very simple (closed form) solutions. More precisely, we take advantage approximate expressions for X ii , 

X ii (t ′ ) = 2 (σY I) 2 u ii ( 0 ) 
⎧ 
⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎩ 

1 
u 11 ( 0 ) 

{ 
t ′ + exp [−u 11 ( 0 ) t ′ ] − 1 

u 11 ( 0 ) 
} 

i = 1 
b 2 ii 

[
1 − (

1 + t ′ 
b ii 

)
exp (− t ′ 

b ii 
)]

i = 2 , 3 
(
t ′ = t/t h ), (24) 

obtained by [1] by replacing in (22) the velocity covariance with 
u ii (r) = ( σY U ) 2 u ii (0) {exp [ −u 11 (0) r/I ] i = 1 

[ 1 − r/ (b ii I) ] exp [ −r/ ( b ii I) ] i = 2 , 3 , (25) 
where t h = I/U is the characteristic heterogeneity time scale, u ii (0) are the scaled exact σ 2 

Y -order velocity variances [40] : 
u 11 ( 0 ) = 1 + e 

16 (1 − e 2 )2 [(19 − 10 e 2 )e − (
13 − 4 e 2 )4]

, (26a) 

u 22 ( 0 ) = e 2 
16 (1 − e 2 )2 [ (1 − 4 e 2 )4

e + 1 + 2 e 2 ] , (26b) 
u 33 ( 0 ) = e 

4 (1 − e 2 )2 [(1 + 2 e 2 )4 − 3 e ], (26c) 



G. Severino et al. / Applied Mathematical Modelling 44 (2017) 261–273 267 
and 

4 = arcsin √ 
1 − e 2 √ 

1 − e 2 , b ii = 
⎧ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 
√ (

1 − e 2 )[1 + (1 − 2 e 2 )4/e ]
(
1 − 4 e 2 )4/e + 1 + 2 e 2 i = 2 

√ 
2 (1 − e 2 )( 4 − e ) (
1 + 2 e 2 )4 − 3 e i = 3 . 

(27) 

In (26a) –(26c) e = I v /I ≤ 1 is the anisotropy ratio. The accuracy related to the adoption of the approximate expressions 
(24) has been assessed by Severino et al. [1] who quantified the relative error between the exact (first order) moments 
with the analytical expressions obtained by adopting (24) . In particular, these latter compare very well (with a relative error 
less than 0.1%) for t ′ ≤ 1 and t ′ ≥ 100. Instead, in the intermediate regime 1 < t ′ < 100, it is shown that the maximum 
relative error does not exceed 20%. Since in the present paper one is mainly interested into predictions over large times, the 
proposed approximate expressions lead to very robust results. 

We are now in position to demonstrate how Eq. (24) , combined with the Laplace transform of the reaction functions, en- 
able us to evaluate the second and third spatial moments. More specifically, insertion of (24) into (20a), (21) , and (23a) im- 
plies the evaluation of the following integrals: 

∫ ∞ 
0 d τX 11 ( τ ) τ n γm ( τ, t ) = U 

I λ11 { 
2( m ) 

n +1 ( 0 , t ) + c −1 
1 [ ∫ ∞ 

0 d τβi ( τ ) τ n γm ( τ, t ) − 2( m ) 
n ( t ) ] } 

, (28a) 
∫ ∞ 

0 d τX ii ( τ ) γm ( τ, t ) = λii [ 2( m ) 
0 ( 0 , t ) − ∫ ∞ 

0 d τ βi ( τ ) ( 1 + c i τ ) γm ( τ, t ) ] , (28b) 
with n = 0 , 1 , and, 

λ11 = 2 ( σY I ) 2 , λii = 2 u ii ( 0 ) ( σY I b ii ) 2 , βi ( τ ) = exp ( −c i τ ) , c 1 = U 
I u 11 ( 0 ) , c i = U 

I b ii , (29) 
(i = 2 , 3) . The integrals on the right hand side of (28a) - (28b) are now calculated by observing that 

∫ ∞ 
0 d τ exp [ −( b + s ) τ ] τ n γm ( τ, t ) = ( −1 ) n ∂ ( n ) 

∂s ̂ γm ( s + b, t ) , (30) 
which, after taking the limit s → 0 on both sides, leads to 

∫ ∞ 
0 d τ exp ( −b τ ) τ n γm ( τ, t ) = ( −1 ) n ∂ ( n ) 

∂s ̂ γm ( s + b, t ) ∣∣∣∣
s =0 = 2( m ) 

n ( b, t ) . (31) 
Summarizing, the second and third moments become 

〈
S ( m ) 

11 (t) 〉 = 3 ( m ) 
11 ( t ) + ( IσY ) 2 {R ( m ) 

1 ( t ) 
I − 1 

u 11 ( 0 ) 
[

1 − 2( m ) 
0 ( c 1 , t ) 

2( m ) 
0 ( 0 , t ) 

]}
, (32a) 

〈
S ( m ) 

ii ( t ) 〉 = S ( m ) 
ii ( 0 ) + 2 u ii (0) (IσY b ii ) 2 [c i 2( m ) 

1 ( c i , t ) 
2( m ) 

0 ( 0 , t ) + 1 − 2( m ) 
0 ( c i , t ) 

2( m ) 
0 ( 0 , t ) 

]
(i = 2 , 3) , (32b) 

〈
S ( m ) 

111 ( t ) 〉 = 3 ( m ) 
111 ( t ) + 6 I(UσY ) 2 5( m ) 

111 ( t ) , (32c) 
where 

5( m ) 
111 ( t ) = 2( m ) 

2 ( 0 , t ) 
2( m ) 

0 ( 0 , t ) −
[

2( m ) 
1 ( 0 , t ) 

2( m ) 
0 ( 0 , t ) 

]2 
− c −1 

1 2( m ) 
0 ( c 1 , t ) 

2( m ) 
0 ( 0 , t ) 

[
2( m ) 

1 ( 0 , t ) 
2( m ) 

0 ( 0 , t ) + 2( m ) 
1 ( c 1 , t ) 

2( m ) 
0 ( c 1 , t ) 

]
. (33) 

It follows from (32) that to evaluate spatial moments it is sufficient to find the Laplace transform ̂ γm ( s, t ) of the Lagrangian 
reaction functions γ m ( τ , t ). In particular, the longitudinal second and third moments are represented as the sum of two 
terms: i) one (of deterministic nature) depending only upon the chemical reactions, and ii) another that accounts for the 
coupling between the reactions and the heterogeneity of the porous formation. 
3.1. Analytical expression for the ̂ γm -functions 

In absence of carriers, solutions in the Laplace domain of transport equations are available [34,35] . Furthermore, in the 
case of colloid facilitated radionuclide transport [5] has derived analytical solutions for ̂ γm . In the following, we analytically 
calculate ̂ γm assuming linear non-equilibrium sorption (see (4) ) combined with degradation. Although the main steps of 
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such a procedure can be found in [4] , the latter is limited to the derivation of γ Y . Instead, we provide the full derivation 
leading to ̂ γm . Thus, the governing system of equations is derived from (9a) and (9b) as 

⎧ 
⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎩ 

R ∂γX 
∂t + ∂γX 

∂τ
= −(

R λX + α
R c 

)
γX + β

R c γY 
∂γY 
∂t + ∂γY 

∂τ
= α

R c γX − (
λY + β

R c 
)

γY , 
(34) 

which is solved subject to the homogeneous initial condition, γm ( τ, 0 ) = 0 , and solute pulse injection in the liquid phase, 
γX ( 0 , t ) = δ( t ) . The Laplace transforms ̂ γm (see the Appendix for detailed derivations) are ̂ γm (s, t ′′ ) = ̂  F (s, t ′′ )̂ F ( m ) (s, t ′′ ), 
where 

̂ F (s, t ′′ ) = exp { 
−
[ 
ω ( s ) + √ 

1 + χ2 ( s ) ] t ′′ } 
2 R √ 

1 + χ2 ( s ) , ̂ F ( Y ) (s, t ′′ ) = √ 
R α/β

[
1 − θ

(
s, t ′′ )], (35) 

̂ F ( X ) (s, t ′′ ) = √ 
1 + χ2 ( s ) + χ ( s ) + [ √ 

1 + χ2 ( s ) − χ ( s ) ] θ(
s, t ′′ ), (36) 

where t ′′ = t 
t r (the characteristic reaction timescale t r is defined in the Appendix)and 

χ ( s ) = χ + s t r (R − 1 
2 R 

)
, ω ( s ) = ω + s t r (R + 1 

2 R 
)
, (37) 

χ , ω = 1 
2 
√ 

R 
α β

(
β + R c λY ∓ α + R c λX 

R 
)

, θ
(
s, t ′′ ) = exp [ −2 √ 

1 + χ2 ( s ) t ′′ ] . (38) 
With ̂ γm ( s, t ) calculated in closed forms, we compute the spatial moments via (17), (19) , and (32) . 
4. Discussion 

We consider carrier-facilitated solute transport in a 3-D statistically anisotropic heterogeneous aquifer under the flow 
field conditions discussed above. We wish to assess the interplay between heterogeneity and chemical/physical processes 
and its effect on possible enhancement of solute transport. This will be accomplished with the aid of the spatial moments 
previously derived. The zeroth-moments M ( m ) ( t ′ ′ ) represent the most important quantities since they represent the solute 
mass associated with each phase. In order to asses the effect of sorption/desorption and degradation on solute partition 
between the two phases, we have calculated the ratio µ between M ( Y ) and M ( X ) , 

µ(t ′′ ) = M (Y ) (t ′′ ) 
M (X ) (t ′′ ) = √ 

R α/β
[
1 − θ (0 , t ′′ ) ]

√ 
1 + χ2 + χ + ( √ 

1 + χ2 − χ ) θ (0 , t ′′ ) . (39) 
The parameter 

χ = 1 
2 
√ 

R 
α β

(
β + R c λY − α + R c λX 

R 
)

, (40) 
is referred to as a modified Damköhler number ( mdn ); it combines the effects of degradation and sorption/desorption in the 
m -phases. More precisely, χ > 0 indicates that the solute release/degradation mechanisms acting in the carrier phase are 
quicker than the ones in the liquid phase, and viceversa ( χ < 0). The role of chemical processes and degradation is shown 
in Fig. 3 a where for positive values of mdn the corresponding part of the initial injected mass M 0 is fluid-advected for 
almost all the time. On the other hand, for negative mdn ( Fig. 3 b) the solute mass in the carrier concentration is at least 
10 times (provided that t > t r ) the solute mass present in the liquid phase. The lower is χ , the higher is the quantity of 
solute mass which is in the carrier phase. Thus, very slow desorption from the carrier concentration coupled with a very 
low degradation as compared with the same mechanisms acting in the fluid one ( Fig. 2 ), i.e., β + R c λY ≪ (α + R c λX ) /R, 
would result in “inert” transport. This feature has a profound impact on contaminant transport since it implies that even 
very strongly sorbing pollutants (like some radionuclides), which are expected to be very immobile in the groundwater, 
may behave like tracers. This would explain for instance why Noell et al. [41] recovered unretarded breakthrough curves 
of cesium in the presence of silica (acting as carriers). Similar results were observed by Saiers and Hornberger [42] who 
recovered early breakthrough curves of cesium in the presence of kaolinite particles. Even if the mass partition depends on 
both the mdn and time t , Figs. 3 a and b show that for t ′ ′ > 1 the quantity µ becomes practically constant implying that the 
mass partition between the two phases is at equilibrium. Thus, the value µ∞ ≡ lim 

t→∞ µ(t) represents an important parameter 
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Fig. 3. Scaled relative zeroth-order moment µ(t ′′ ) √ 
β/ (Rα) versus dimensionless time t ′′ ≡ t/t r = t √ 

αβ/ (R c √ 
R ) , for positive (a) and negative (b) values 

of the mdn χ . 
for applications (especially when estimating the long term fate of carrier-facilitated contaminant transport). It is calculated 
from (39) as 

µ∞ = lim 
t→∞ µ(t) = √ 

R α/β√ 
1 + χ2 + χ . (41) 

For very large mdn all the mass is confined in the liquid phase, and therefore we recover µ∞ ! 0. At the other extreme 
of very negative χ (41) yields µ∞ ≫ 1. Such behavior is due to the fact that the linear kinetic model (4) , as stated before, 
does not account for the fact that the number of binding carrier sites is limited. 

Similarly to the previous case, we study the relative distance between the centers of gravity of the two moving plumes 
by computing the quantity ϱ = R (Y ) 1 − R (X ) 

1 , 
ϱ(t ′′ ) = I r (R − 1) 

2 R √ 
1 + χ2 

[ √ 
1 + χ2 + χ − ( √ 

1 + χ2 − χ )(1 + 2 χ t ′′ ) θ (0 , t ′′ ) √ 
1 + χ2 + χ + ( √ 

1 + χ2 − χ ) θ (0 , t ′′ ) − 2 χ t ′′ θ ( 0 , t ′′ ) 
1 − θ (0 , t ′′ ) 

] 
, (42) 

where I r = Ut r = UR c √ 
R/ (αβ) is the reaction characteristic length. When there is no sorption on the matrix ( R = 1 ), we 

recover ϱ ≡ 0, i.e., the two centroids occupy the same position at each time (irrespective of the chemical/degradation pro- 
cesses). When R > 1 the center of gravity of the liquid phase always trails that of the carrier phase ( ϱ > 0 at any t ). This is 
to be expected since linear partitioning on the matrix implies a retardation in the dissolved solute migration but not on the 
carriers (and hence on the solute bound to them). The dimensionless relative distance R ϱ(t ′′ ) 

I r (R − 1) is depicted in Figs. 4 a and 
b versus t ′ ′ , for several values of χ . At t ′ ′ ≪ 1 the behavior of ϱ is assessed by expanding (42) in a power series: 

ϱ(t ′′ ) = I r (R − 1) 
2 R t ′′ + O (t ′′ 2 ). (43) 

Since both the kinematic and degradation effects are “time-dependent”, it follows from (43) that at the very early times 
the relative distance ϱ does not depend upon χ . For larger times (and provided that t ′ ′ < 0.01), R (Y ) 1 moves at a velocity 
higher than that of R (X ) 

1 (i.e., ˙ ϱ > 0 ). For t ′ ′ ≥ 0.01 the behavior of ϱ at positive values of the mdn is significantly different 
from that at negative values. More precisely, for χ > 0 ( Fig. 4 a) retardation due to the linear partitioning is dominant (since 
positive χ-values imply that most of the solute mass is confined in the liquid phase), and therefore the distance between 
R (Y ) 1 and R (X ) 

1 increases until equilibrium conditions (both in the liquid and carrier phase) are reached. From here on the 
relative distance stabilizes, and consequently ϱ does not change with time. In particular, the faster the sorption/desorption 
(large χ-values), the sooner the attainment of such stable conditions. 

For χ < 0 ( Fig. 4 b) a reduction in the velocity is observed at certain time (depending on χ ). This is attributed to the 
fact that the very strong sorption on carrier sites causes a very high retardation, and thus after an initial period in which ϱ
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Fig. 4. Scaled first-order moment R ϱ(t ′′ ) 
(R −1) I r versus the dimensionless time, t ′′ ≡ t/t r = t √ 

αβ/ (R c √ 
R ) , for positive (a) and negative (b) values of the mdn χ . 

increases (since most of the solute mass is being transferred to the carrier phase), the center of gravity R (Y ) 1 advances with 
a velocity less than that of R (X ) 

1 . 
In order to analyze the asymptotic behavior of ϱ( t ′ ′ ), we neglect O( exp (−t ′′ )) -terms in (42) , to obtain 

ϱ ∞ = lim 
t→∞ ϱ(t) = I r ( R − 1 ) 

2 R √ 
1 + χ2 . (44) 

The first important feature of the asymptotic relative distance is that it is “finite”. Furthermore, ϱ∞ is maximum at χ = 1 , 
and it does not depend upon the the sign of χ , i.e., upon the dominant direction of the reaction/degradation processes. Even 
if ϱ∞ may be relatively high, we have to account for the solute mass which is going to be really carried. Thus, it is clear 
that the case χ < 0 is the most critical one especially when the solute is a contaminant. 

The second-order spatial moments (32a) and (32b) depend on two different timescales: t h and t r . Various particular 
cases may be considered depending on the ratio t r / t h . In particular, if t is much larger than the rescaled characteristic 
heterogeneity time t h and simultaneously t = O ( t r ) , then t h ≪ t r . Such a condition is known as the Fickian regime (e.g., [36] ) 
for which the trajectory variances (24) can be approximated by 

X ii ( t ) ≈ 2 ( I σY ) 2 {t i = 1 
u ii (0) b 2 ii i = 2 , 3 . (45) 

It is worth noting that (45) accounts also for the asymptotic behavior of the second-order moments of a passive (i.e., 
inert) solute. However, in the case of reactive transport this is not anymore the case (although X ii are involved in the 
computation of moments, as shown below). 

Inspection of the first expansion in (45) shows that in the Fickian regime the anisotropy does not impact the longitudinal 
dispersion ⟨ S (m ) 

11 ⟩ . Substituting (45) into (20) and (21) yields 
〈
S ( m ) 

11 ( t ) 〉 ≈ 3 ( m ) 
11 ( t ) + 2 Iσ 2 

Y 〈R ( m ) 
1 ( t ) 〉, (46a) 

〈
S ( m ) 

ii ( t ) 〉 ≈ ( IσY ) 2 
⎧ 
⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎩ 

e [e + (1 − 2 e 2 )4]

2 (1 − e 2 ) i = 2 
e ( 4 − e ) 

1 − e 2 i = 3 , 
(46b) 

where for simplicity we set R ( m ) 
i ( 0 ) = S ( m ) 

ii ( 0 ) ≡ 0 . The first term on the right hand side of (46a) is deterministic (see 
(20b) ), and depends upon reactions and the mean velocity. Instead, the second term is related to the heterogeneity, and is 
identical to the one obtained when carriers are not accounted for, provided that Ut is replaced with 〈 R ( m ) 

1 〉 
. The transverse 
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Fig. 5. Nondimensional parameter A versus the mdn χ , for three values of the retardation factor R . 
moments (46b) do not depend on reactions, and are identical for both phases. Thus, as far as the transverse dispersion is 
accounted for in the Fickian regime, the two plumes behave like “noninteracting” solute bodies [43] . To complete the large- 
time analysis, we computed the nondimensional quantity A ≡ lim 

t→∞ ⟨ S (X ) 
111 (t) ⟩ / ⟨ R (X ) 

1 (t) ⟩ 3 in order to assess the deviation from 
the Gaussianity in the Fickian regime. By omitting the very lengthy algebraic derivations, the final result reads as 

A = −(
2 + β3 

β3 
1 
)

, (47) 
where 

β1 = (1 + χ2 ) 
[ 

R + 1 + (R − 1) χ√ 
1 + χ2 

] 
, (48) 

β3 = (R + 1) 3 + 4(R 3 − 1) χ6 + 3(R + 1) χ2 [2(R 2 + 1)(1 + χ2 ) + (R − 1) 2 χ2 ] 
+ (R − 1) χ (1 + χ2 ) 3 / 2 [3(R + 1) 2 + 4(R 2 + R + 1) χ2 ]. (49) 

The striking result is that in the Ficikian regime the chemical/physical processes completely overtake the heterogeneity. 
Such behavior was already observed in transport of both linearly [36] and nonlinearly [44] reacting solutes. Fig. 5 depicts 
the dependence of A on the mdn , and a few values of the retardation factor R . Asymptotically the solute plume always 
displays a negative asymmetry, since the following bounds hold: 

−3 ≡ A (0) ≤ A (χ ) ≤ A (−∞ ) ≡ −2 . (50) 
In particular, the higher value of A is attained for very negative mdn , since most of the solute is in the liquid phase as 
consequence of the strong retention on the carrier sites. On the other hand, for χ → 0 the solute mostly sorbs on the 
matrix due to the linear partitioning, and this produces a longer tail as manifested in the more negative asymmetry. The 
transition between these two limiting cases is regulated by the retardation coefficient R . Finally, we investigate the slight 
dependence of A on the retardation coefficient in the range χ ∈ [0 , + ∞ ) . Within this interval A is a monotonically increasing 
function of χ and satisfies the following bounds: 

−3 ≡ A (0) ≤ A (χ ) ≤ A (+ ∞ ) ≡ −3(1 − R −3 ) . (51) 
Since usually R ≫ 1, A ≃ −3 at any χ ≥ 0. 
5. Concluding remarks 

The main objective of the present study was to investigate transport of reactive solute by steady random groundwa- 
ter flow when potential carriers are accounted for. By adopting the Lagrangian procedure employed in the past for similar 
problems, we derive general expressions for spatial moments of the solute concentration dissolved in the liquid phase and 
the solute concentration attached to the moving carriers. In order to reduce the computational effort, we use approximate 
expressions for the fluid particles variances X ii obtained in [1] . Such approximate expressions for X ii enable one to obtain 
closed-form analytical solutions for the spatial moments of the moving plumes for a wide class of chemical/physical pro- 
cesses occurring between carriers and dissolved solutes. 
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The structure of spatial moments, and the mutual effect of chemical/degradation processes combined with heterogeneity 

is analyzed. In order to emphasize when the presence of carriers may drastically enhance solute transport, we focused 
mainly on the first two moments. The modified Damköhler number χ is shown to be the critical parameter. Positive values 
of χ imply that solute transport is taking place mostly in the liquid phase, and therefore the impact of carriers is modest. 
On the contrary, negative values of χ mean that the solute is mainly “located” on the moving carriers, and thus the most 
significant effect of carriers on transport is expected when sorption on carrier sites is irreversible, provided that degradation 
there is slower than in the other phase(s). Simple asymptotic results enabling one to assess the evolution of the propagating 
plumes in the Fickian (large time) regime are also analyzed. Useful bounds for the asymmetry of the solute plume are 
obtained, and its dependence upon the mdn is discussed. 

Finally we remark (in view of the practical applications) a few specific features of the present study: " the proposed 
methodology provides a relatively simple and robust tool for carrying out a contaminant risk assessment; " a comparison 
between the linear and nonlinear sorption/desorption models for carrier-facilitated transport (e.g., [22] ) indicates that the 
linear model provides a reasonable (upper bound) approximation even in cases where nonlinear effects are relevant. 
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Appendix. Analytical derivation of the ̂ γm functions 

Application of the Laplace transform (denoted with “hat” symbol) over τ (the corresponding complex variable is s ) to 
(34) yields 

⎧ 
⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎩ 

d 
d t ̂ γX + (s + α

R c + R λX )̂ γX = β
R c ̂ γY + δ(t )

R 
1 
R d 

d t ̂ γY + (s + β
R c + λY )̂ γY = α

R c ̂ γX 
̂ γm ( s, 0 ) = 0 , (A1) 

where retardation due to R is encapsulated in the scaledtime t = t/R . We apply again the Laplace transform (denoted with 
“tilde” symbol) over t (the corresponding complex variable is q ) to (A1) to obtain 

˜ ̂ γ X ( s, q ) = q + ξY 
R P 2 ( q ) , ˜ ̂ γ Y ( s, q ) = α

R c P 2 ( q ) , (A2) 
in which P 2 ( q ) = ( q + ξX ) ( q + ξY ) − α β R 

R 2 c , and 
ξX = s + α

R c + R λX , ξY = R (s + β
R c + λY ). (A3) 

By observing that 
˜ ̂ γ X ( s, q ) = R −1 

q 1 − q 2 
(

q 1 + ξY 
q − q 1 − q 2 + ξY 

q − q 2 
)

, ˜ ̂ γ Y ( s, q ) = α R −1 
c 

q 1 − q 2 
(

1 
q − q 1 − 1 

q − q 2 
)
, (A4) 

where q 1, 2 , 
q 1 , 2 = 1 

2 
[
−( ξY + ξX ) ± √ 

( ξY − ξX ) 2 + 4 α β R 
R 2 c 

]
, (A5) 

are the roots of P 2 ( q ), we calculate the inverse of tilde Laplace transform of (A4) , 
̂ γm ( s, t ) = ̂  F ( s, t ) ̂  F ( m ) ( s, t ) , ̂ F ( s, t ) = 1 

q 1 − q 2 exp (q 1 
R t 

)
(A6) 

̂ F ( X ) ( s, t ) = 1 
R 
[ 

q 1 + ξY − ( q 2 + ξY ) exp (−q 1 − q 2 
R t )] 

(A7) 
̂ F ( Y ) ( s, t ) = α

R c 
[ 

1 − exp (−q 1 − q 2 
R t )] 

. (A8) 
Normalizing the current time t by the characteristic timescale t r = R c √ 

R/ (αβ) , and accounting for (A5) , enables us to 
rewrite (A6) –(A8) as (35) –(36) . 
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