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The method of distributions is developed for systems that are governed by hyperbolic conservation laws with stochastic
forcing. The method yields a deterministic equation for the cumulative distribution function (CDF) of a system state,
e.g., for flow velocity governed by an inviscid Burgers equation with random source coefficients. This is achieved
without recourse to any closure approximation. The CDF model is verified against Monte Carlo (MC) simulations
using spectral numerical approximations. Our analysis demonstrates that the CDF model accurately predicts the mean
and standard deviation of the system state for Gaussian, normal, and beta distributions of the random coefficients.
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1. INTRODUCTION

Deterministic predictions of models that couple multiphysics through source terms, such as chemically reactive, and
multiphase and/or multimaterial flows, are notoriously difficult. A typical system involves many dependent variables,
for which the exact coupling may not be known a priori. The coupling may also be imprecise because of measure-
ment and/or numerical errors, and sparsity of experimental data. To improve upon the accuracy of the model, it is
necessary to understand how uncertainty of these critical parameters propagates to a quantity of interest (QoI). Un-
certainty quantification has become an integral component of computational models of chemically reacting [1–4, and
the references therein] and particle-laden [5–7] flows. Given uncertainty distribution in the parameter space, the areas
for improvement of the dependent variables can be identified.

If uncertainty is treated within the probabilistic framework, uncertain predictions of the QoI are fully captured
by its probability density function (PDF) or cumulative ditribution function (CDF). The latter can be estimated via
Monte Carlo (MC) simulations, but these converge slowly (∼ 1/

√
Ns, with Ns the number of samples) and, hence,

are computationally inefficient. More efficient sampling techniques, e.g., multilevel MC [8] and Latin hypercube
sampling (LHS) [9], may not alleviate computational cost. For example, the variance of LHS output samples can be
larger than that obtained with normal sampling [10, Chap. 10].

Generalized polynomial chaos (gPC) [11] provides a nonsampling alternative to MC. It expresses uncertain pa-
rameters in terms of orthogonal polynomials of standard random variables. These expansions can be used to obtain
a spectral description of the uncertain parameters and are used in stochastic finite element methods (SFEMs) [12].
SFEMs have been used to model a variety of phenomena, such as transport in porous media, solid mechanics, struc-
tural applications, and reacting flow (see [3] for a review). The multielement generalized polynomial chaos method
[13,14] can handle discontinuities in the stochastic space. Unfortunately, intrusiveness is a significant downside; i.e., a
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standard numerical method requires modifications for gPC that result in a high-dimensional coupled linearized system
of equations, which is computationally taxing [15]. In fact, SFEM is computationally more expensive as compared to
MC when a large number of random variables are considered.

Stochastic collocation methods (see [16] for an overview) are nonintrusive and require only a few repetitive calls
to a deterministic solver, similar to MC. Adaptive sparse grid collocation [17] handles discontinuities in the stochastic
space. However, stochastic collocation can be slower than MC, e.g., for nonlinear parabolic equations with random
coefficients with high variances [18].

Statistical moment equations and the method of distributions provide yet another alternative to sampling methods.
These approaches derive deterministic equations for statistical moments (typically, mean and variance) or PDF/CDF
of a system state, respectively. Moment equations are derived through ensemble averaging, but they require a closure
approximation. The closure is typically done through perturbation expansions or gradient models, which require
empiricism and/or homogenization of higher fidelity data. Either way, major concessions are made to model accuracy
through closure. Equally important is the inability of the method of moments to deal with highly non-Gaussian system
states, whose dynamics cannot be fully captured with their mean and variance. The method of distributions provides
the full (joint) PDF/CDF of the solution and the random inputs, including the tail behavior. PDF methods were
first developed for applications in turbulence and combustion (see [19], for a review), but later extended to quantify
parametric uncertainty in a variety of problems [20–26]. Applications to Burgers’ equation can be found in, e.g.,
[27,28]. Crucially, PDF methods obviate the need for linearization of nonlinear terms. A drawback is the challenging
definition of unique boundary conditions in stochastic space.

We develop a CDF method for systems with stochastic sources as they may appear in multiphysics environments
such as particle-laden flow and chemically reacting flow. By way of example, we consider a Burgers’ equation with
random source, which renders the system stochastic. An equation for the joint CDF of the flow velocity and source
coefficients is derived. The marginal PDF for the uncertain velocity can then be extracted from this joint CDF. The
main advantages of this method are its simplicity, accuracy, and computational efficiency. Moreover, this method leads
to an unambiguous closed system of equations. High dimensionality of the PDF equations would pose a computational
challenge to the method’s performance. While dealing with this problem lies outside the scope of this study, a potential
strategy is to deploy parallel tensor methods [29]. A simplified version of the CDF equation is solved using spectral
methods, assuming the source consists of only one random coefficient and a steady smooth source. Solutions to the
simplified CDF equation are shown to be in good agreement with MC results.

The paper is structured as follows. Section 2 describes the governing equations and the numerical methods. Spe-
cial attention is given to the regularization of (singular) source terms that appear in problems with deterministic initial
conditions. In Section 3, results are shown and discussed for the simplified CDF equation, assuming a uniform, nor-
mal, or beta distribution for the random source coefficient. The influence of relevant parameters (e.g., grid resolution)
is considered, and a thorough comparison is made with MC results. Conclusions and directions for future work are
given in Section 4.

2. GOVERNING EQUATIONS AND METHODOLOGY

2.1 Burgers Equations with a Stochastic Source

Let a state variable, flow velocityv(x, t), defined on(x, t) ∈ [xmin, xmax]× R+, satisfy an inviscid Burgers equation
with stochastic source,

∂v

∂t
+ v

∂v

∂x
= gs(u− v) · (u− v). (1)

The source term accounts for the relative velocity difference of the state variablev and a (deterministic or random)
background velocityu, and the functional form ofgs(·) is unknown/uncertain. Such a formulation is common in cou-
pled multiphysics systems, whereu andv represent the solution for two coupled physics environments, respectively
(e.g., particle/gas flow, chemistry/gas flow).

Equation (1) is subject to a deterministic initial conditionv(x, 0) = vin(x) and a deterministic boundary condition
v(xmin, t) = v0(t). The unknown (random) functiongs(·) is represented via a polynomial with orthogonal basis
functions Ti(·),
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gs(·) =
∞∑

i=0

aiTi(·) ≈
Ng∑

i=0

aiTi(·). (2)

We assume thatgs has a compact support and choose Ti(·) to be Chebyshev polynomials of the first kind, scaled from
the interval[−1, 1] to [xmin, xmax]. The polynomial coefficients are uncertain and treated as (correlated or not) random
variables with the (joint) PDFfa(A1, . . . , ANg

). Combining (1) and (2) yields a PDE with random coefficients,

∂v

∂t
+ v

∂v

∂x
= (u− v)

Ng∑

i=0

aiTi(u− v), (3)

whose solution is given in terms offv(V ;x, t), the PDF of the random state variablev(x, t). Equation (3) can be
solved with MC simulations, i.e., by repeatedly sampling the random coefficients and solving the corresponding
deterministic PDEs.

2.2 CDF Equations

2.2.1 Positive Source

In Appendix A we show that the joint CDFFav(A, V ;x, t) of the set of input parametersa = {a0, . . . , aNg
} and the

state variablev at any space-time point(x, t) satisfies a deterministic integro-differential equation

∂Fav

∂t
+ V

∂Fav

∂x
= −(u− V )

Ng∑

i=0

Ti(u− V )
∂

∂V


AiFav −

Ai∫

−∞
Fav(A\Ai, A

′
i, V ;x, t)dA′i


, (4)

where
A\Ai =

(
A1, . . . , Ai−1, Ai+1, . . . , ANg

)
. (5)

The CDF of random velocityv at point(x, t), i.e.,Fv(V ;x, t), is the marginal ofFav,

Fv(V ; x, t) = Fav(Amax, V ;x, t). (6)

Likewise,
Faiv(A′i, V ; x, t) = Fav(Amax\Ai, A

′
i, V ;x, t). (7)

Hence, the marginalFv satisfies a CDF equation,

∂Fv

∂t
+ V

∂Fv

∂x
= −(u− V )

Ng∑

i=0

Ti(u− V )
∂

∂V


Amax,iFv −

Amax,i∫

−∞
Faiv(A′i, V ; x, t)dA′i


. (8)

However, we found it more convenient to solve the equation for the joint CDF. For now, we assume the initial velocity
to be deterministic. This leads to the following initial conditions:

Faiv(Ai, V ; x, 0) = Fai
(Ai)Fv(V ;x, 0) = Fai

(Ai)H(V − vin(x)), i = 0, . . . , Ng, (9)

whereH denotes the Heaviside function. Basic properties of probability yield boundary conditions

Faiv(Amin,i, V ;x, t) = 0, Faiv(Amax,i, V ;x, t) = Fv(V ;x, t),
Faiv(Ai, Vmin;x, t) = 0, Faiv(Ai, Vmax;x, t) = Fai

(Ai), (10)

wherei = 0, . . . , Ng. The support ofA andV can be either infinite or finite. In numerical simulations, the infinite
support has to be restricted to sufficiently small finite intervals in order to reduce the computational cost. The support
for V should be sufficiently large to ensure that (i) the initial regularized boundary condition lies within the interval,
and (ii) the nonzero part of the solution does not advect out of the interval during the simulation time.
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2.2.2 Negative Source

While the CDF equation is applicable for arbitrary smooth sources with compact support, the numerical method
described in the next section turns out to be unstable for negative sources. This is likely due to undershoots leading
to negative CDFs and steepening of the CDF. As a workaround, we solve the CDF equation,

∂Gav

∂t
+ V

∂Gav

∂x
= −(u− V )

∂

∂V


AGav −

A∫

−∞
Gav(A′, V ; x, t)dA′


, (11)

where
Gav(A, V ; x, t) = Fa(A)− Fav(A, V ;x, t). (12)

Here we have used the notationA = A1 for simplicity. Following the same steps as in Appendix A, but with
Π̃(A, a;V, v) = H(A − a) − Π(A, a;V, v), one can prove that the functionG, which is not a CDF, does satisfy
the CDF equation. It is subject to the following adjusted initial and boundary conditions:

Gav(A, V ;x, 0) = Fa(A)(1−H(V − 1)) = Fa(A)H(1− V ), (13)

and

Gav(Amin, V ;x, t) = 0, Gav(Amax, V ; x, t) = 1− Fv(V ;x, t),
Gav(A, Vmin;x, t) = Fa(A), Gav(A, Vmax; x, t) = 0, (14)

while Gav is not a CDF; it is, for example, no longer nondecreasing in each of its variables, and the corresponding
PDF can be determined as follows:

fv(V ; x, t) = − ∂2

∂A∂V
Gav(Amax, V ;x, t). (15)

For the sake of simplicity, we consider one random coefficienta, instead of a random vectora. The extension of the
result to multiple coefficients is straightforward.

2.3 Numerical Methods

Numerical solutions of the CDF equation are tested against solutions of Eq. (3) obtained by MC simulations. Both
Eqs. (3) and (4) admit solutions with singularities for several reasons. First, the deterministic initial condition (9)
contains a Heaviside function. Second, the Burgers equation is known to steepen solutions leading to discontinuities.
Finally, certain reduced-physics models can have singular sources [30]. To obtain accurate solutions and consistency
between MC and the CDF equation, we must be careful in selecting the numerical methods that we use to approximate
the governing systems. The spectral approximation is superior to lower-order alternatives for a formulation based on
a method of moments [5]. The solution of the CDF formulation is expected to also benefit from the low dispersion
and diffusion characteristic of the spectral methods. Therefore, we rely on a low-dispersive and low-diffusive single
domain Chebyshev collocation method and use some of the recently developed filtering and regularization techniques
to capture shocks and regularize sources [30,31]. In the following, we briefly summarize the Chebyshev collocation
method and the regularization techniques. For a detailed discussion the interested reader is referred to [30–33].

2.3.1 Chebyshev Collocation Method and Time Integration

The collocation method is based on polynomial interpolation of a functionu(x),

uNx(x) =
Nx∑

j=0

u(xj)lj(x), lj(x) =
Nx∏

k=0,k 6=j

x− xk

xj − xk
, j = 0, . . . , Nx, (16)
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wherexj , with j = 0, . . . , Nx, are collocation points; andlj(x) are the Lagrange interpolation polynomials of degree
Nx. The derivative,u′(xi), of the functionu(x) at collocation pointsxi is expressed in terms of the derivative of the
Lagrange interpolating polynomials as

∂u

∂x
(xi) ≈

Nx∑

j=0

u(xj)l′j(xi), (17)

or, written compactly in the matrix-vector multiplication form, as

u′ = Du, (18)

where the components of the differentiation matrixD areDi,j = l′j(xi). For the Chebyshev collocation method, the
collocation points are chosen at the Gauss-Lobatto quadrature points,

ξi = − cos(iπ/Nx), i = 0, . . . , Nx, (19)

such that theL∞ norm of the interpolant is minimized on its interval [–1,1]. Combining (3) and (18) yields a system
of ordinary differential equations (ODEs) on the collocation pointsx ⊆ [xmin, xmax]:

dv(t)
dt

= diag(u− v(t))
Ng∑

k=0

akTk(u− v(t))− diag(v(t))Dxv(t), (20)

in which

u = [u(x0), . . . , u(xNx)]>, v(t) = [v(x0, t), . . . , v(xNx , t)]>,

Tk(u− v(t)) = [Tk((u(x0)− v(x0, t)), . . . , Tk((u(xNx)− v(xNx , t))]>,

where diag(x) denotes a diagonal matrix with entriesxi, i = 0, . . . , Nx, andDx = ∂ξ/∂x×D = 2/(xmax−xmin)×D
is a scaled version ofD to account for the mapping of the spatial domain from the Chebyshev quadrature nodesξ to the
spatial domainx. To integrate the system of ODEs in time, we employ the fourth-order Runge-Kutta scheme [34] for
the MC equation. Using orthogonality of the Chebyshev polynomial, the CDF equation is similarly discretized on a
tensorial Gauss-Lobatto grid in (x, V ), and given for every point̃A on the tensorial uniformA-grid⊆ [Amin, Amax]Ng

by

dFav

dt
(t) = −DxFav(t)diag(V)

−
Ng∑

k=0

DV


ÃiFav(t)−

Ãi∫

−∞
Fav(Ã\Ãi, Ã

′
i, t)dÃ′i


diag[diag(u− V)Tk(u− V)], (21)

with V = [V0, . . . , VNV
]> the grid along theV direction andDV = 2/(Vmax− Vmin) × D is a scaled differentiation

matrix. The(Nx + 1)× (NV + 1)-matrixFav(t) is given byFi,j
av (t) = Fav(Vj , xi, t). We have taken an equal amount

of grid points in the directionsx andV directions, i.e.,Nx = NV . Since we use a tensorial grid, the integral on the
RHS of Eq. (21) is evaluated along lines in theA-coordinate direction. We found that the trapezoid rule is sufficiently
accurate.

Because of inherent sharp gradients in the solution of the CDF equations, the third-order total variation dimin-
ishing (TVD) Runge-Kutta scheme [35],

u(1) = un + ∆tL(un),

u(2) =
3
4
un +

1
4
u(1) +

1
4
∆tL(u(1)), (22)

un+1 =
1
3
un +

2
3
u(2) +

2
3
∆tL(u(2)),

is used to reduce numerical oscillations induced in time. In Eq. (22),L denotes the discrete spatial derivative operator.
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2.3.2 Filtering

Following [31], we filter the solution,

ũ(x) =
∫ x+ε

x−ε

u(τ)δm,k
ε (x− τ)dτ, (23)

using a kernel that regularizes the Dirac delta function with a class of high-order, compactly supported piecewise
polynomial [30],

δm,k
ε (x) =





1
ε

Pm,k
(x

ε

)
, x ∈ [−ε, ε]

0, otherwise
, (24)

whereε > 0 is the support width or scaling parameter. The polynomialPm,k controls the number of vanishing
momentsm, and the number of continuous derivatives at the end points of the compact supportk. The filter based
on the Dirac-delta approximationδm,k

ε converges according toO(
εm+1

)
in smooth solution regions away from

regularization areas [30].
Filtering of the interpolantuN (16) leads to

ũNx
(x) =

∫ x+ε

x−ε

[
Nx∑

i=0

u(xi)li(τ)

]
δm,k

ε (x− τ)dτ =
Nx∑

i=0

u(xi)Si(x), (25)

after interchanging summation and integration, where the filtering functionSi is given by

Si(x) =
∫ x+ε

x−ε

li(τ)δm,k
ε (x− τ)dτ. (26)

On the discrete collocation points the convolution reduces to a matrix-vector product,

ũ = Su, (27)

where the(Nx + 1)× (Nx + 1) filtering matrixS has the elements

Si,j =
∫ xj+ε

xj−ε

li(τ)δm,k
ε (xj − τ)dτ. (28)

The filtering matrixS can be precomputed. In two dimensions, the filtering operation is written asŨ = SxUST
y.

For the solution of the CDF equation, the filtering procedure is applied twice to regularize the Heaviside function in
the initial joint CDFFav(A, V ;x, t = 0) = Fa(A)H(V − 1) at everyA-grid point. Applying it once is sufficient
for obtaining a high-order resolution result, but applying it twice makes the solution visually more pleasing as it is
smoother. Favorable convergence properties remain.

2.3.3 Exponential Filter

The marginal CDF solution increases sharply atV = Vmax (Fig. 1). At this location no boundary condition is specified
because the solution moves out of the domain along its characteristic. The boundary spike does not always lead to
instability and does not affect the meaningful CDF solution in the center of the domain. It is not entirely clear what
the cause for this increase is, but the global nature of the collocation approximation and, hence, global sensitivity
of the solution can yield this type of change at the boundary. We found that an exponential filter applied at every
time step to the solution in the regions close to boundary, where the CDF is near constant, suppresses the undesired
boundary behavior. Following [33,36], we use the filter

F̃av = SexpFav, (29)
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FIG. 1: PDFfv(V ) at t = 2.5× 10−3 andx = 0.03 obtained by solving the CDF equation (35) with and without applying a
(fifth order) exponential filter, assuminga ∼ U([0.5, 1.5]). The regularization filter corresponding tok = 8, m = 13, Nd = 50 is
used. Further,Nx = 400andNa = 10.

where the elements of thepth order(Nx + 1)× (Nx + 1) exponential filter matrixSexp are given by

Si,j
exp =

2
c(j)Nx

Nx∑

k=0

1
c(k)

[
e−α(k/Nx)p

cos
(

ikπ

Nx

)
cos

(
jkπ

Nx

)]
. (30)

Here,c is the(Nx + 1)-dimensional vectorc = [2, 1, 1, . . . , 1, 2] andα = − ln(10−16). In generalp = 5 suppresses
the spike (Fig. 1).

2.3.4 Sampling the PDF

To compare MC and the CDF model, we must determine a PDF from a set of samples. For this, we use the built-in
Matlab kernel density estimatorksdensity [37]. A kernel distribution is a nonparametric representation of the PDF
of a random variable. It is used when a parametric distribution cannot properly describe the data, or when one wants
to avoid making assumptions about the distribution of the data. A kernel distribution is defined by a smoothing kernel
and a bandwidth value, which control the smoothness of the resulting density curve. We refer the interested reader to
[38] for more information on density estimation. The kernel density estimator’s formula is given by

f̂Bw(ξ) =
1

NsBw

Ns∑

i=1

K

(
ξ− ξi

Bw

)
, (31)

whereξ1, ξ2, . . . , ξNs
are random samples from an unknown distribution,Ns is the sample size,K(·) is the kernel

smoothing function, andBw is the bandwidth.
Here, we choose the density estimate produced byksdensity to be based on a normal (Gaussian) kernel

function. Other kernels, notably the box, triangle, or Epanechnikov kernel, can also be used. Details about the used
parameter values are given in Section 3.1.

2.4 Setup for Numerical Tests

To verify consistency between MC and the CDF model, we consider only the first random coefficients ina =
{a0, . . . , aNg}; i.e.,a is replaced witha0. Further, the source is a steady Gaussian source,

u(x) =
1√
2πσ

exp
[
− (x− xa)2

2σ2

]
, (32)
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wherexa denotes the center of the source andσ is a measure of the width of its support. This results in a Burgers test
model,

∂v

∂t
+ v

∂v

∂x
= a

(
1√
2πσ

e−(x−xa)2/2σ2 − v

)
, (33)

which we define on the spatial intervalx ∈ [0, 0.06]. The source is placed in the center of the interval,xa = 0.03,
and the spread of the source is given byσ = 5×10−3. The initial velocityv is deterministic, satisfying boundary and
initial conditions,

v(x, 0) = 1, v(0, t) = 1. (34)

The initial-boundary value problem (33) and (34) is solved using MC simulation.
The CDF equation (4) takes the form

∂Fav

∂t
+ V

∂Fav

∂x
= −

(
1√
2πσ

e−(x−xa)2/2σ2 − V

)
∂

∂V


AFav −

A∫

−∞
Fav(A′, V ;x, t)dA′


. (35)

It is defined on(x, V, A) ∈ [0, 0.06]× [Vmin, Vmax]× [Amin, Amax]; and is subject to initial condition

Fav(A, V ; x, 0) = Fa(A)Fv(V ; x, 0) = Fa(A)H(V − vin(x)), (36)

with vin(x) = 1, and boundary conditions

Fav(Amin, V ;x, t) = 0, Fav(Amax, V ;x, t) = Fv(V ;x, t),
Fav(A, Vmin;x, t) = 0, Fav(A, Vmax;x, t) = Fa(A). (37)

We setVmin = 0.6, Vmax = 1.6, Amin = 0.5, andAmax = 1.5. To test consistency for a number of CDF distributions,
we consider a uniform (a ∼ U([0.5, 1.5])), normal (a ∼ N (1, 0.15)), and beta distribution (a ∼ B(2, 5) + 0.5)
for the random source coefficienta. The distribution parameters are chosen such that the support of the distribution
equals[0.5, 1.5]. Therefore, the beta distribution—defined on[0, 1]—is translated by 0.5 to the right, but to improve
readability we will denote it bya ∼ B(2, 5) in what follows. The normal distribution has infinite support, but with
the chosen mean and variance, 99.9% of its mass lies in[0.5, 1.5]. By taking this set of distributions, we test the CDF
method on discontinuous, smooth, and skewed density functions.

Following numerical experiments (see next section), we takeNV = 100grid intervals (hence 101 grid points) in
theV direction andNs = 20,000samples of the random coefficienta to solve the MC equation (33), while in the
CDF routine we considerNx = NV = 400grid intervals in both thex andV directions, andNA = 10grid intervals
in theA direction to solve (35). We use a regularization filter corresponding tok = 8, m = 13, andNd = 50, which
gives stable and filter-independent results up to 400 intervals in theV direction for the CDF equation. Regularization
is not needed in the MC routine, since all functions and solutions are smooth there. In the CDF routine, an exponential
filter of orderp = 5 is applied after every time step to the 50 rightmostV –grid points (see next chapter). The integral
in Eq. (35) is approximated using the trapezoidal rule.

In all simulations,t = 2.5× 10−3 is taken as the final integration time. That falls within the limits dictated by
the shock-forming nature of the Burgers equation; our initial numerical study (not presented in this paper) using the
method of characteristics indicates that integration up tot = 1.5 × 10−2 (given a ∈ [0.5, 1.5]) proceeds without
risking shock formation. Asa becomes larger, this upper bound on the integration time naturally decreases.

3. RESULTS

In this section we test consistency between MC and the CDF model. First, the effect of different parameter values
(grid resolution, sample size, etc.) are considered for both MC and CDF. Subsequently, the MC solution with the
highest number of samples and optimal bandwidth and CDF solution with the finest grid are directly compared. All
results are obtained with Matlab, 2018a.
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3.1 Monte Carlo Simulations

The accuracy of the MC solution depends on several factors, including the number of spatial grid intervalsNx,
the number of samplesNS , time step∆t, and the input parameters of the density estimator (type of smoothing
kernel, number of grid pointsNks, and bandwidth). Below we discuss the effect of each of these parameters on the
solution.

Figure 2 shows the effect of the number of grid pointsNks in the V direction on the density estimation; we
seta ∼ U([0.5, 1.5]), Nx = 100, NS = 20,000 and the optimal bandwidth (see below). The default number of
grid pointsNks = 100 provides sufficient accuracy. Likewise, Fig. 3 depicts the effect of thex-grid resolution, for
a ∼ U([0.5, 1.5]), Nx = 50, 100, or 150;NS = 20,000; and the optimal bandwidth. We conclude thatNx = 100
gives sufficiently accurate results. Therefore, all MC results correspond toNx = 100 andNks = 100. To ensure
stability, the time step∆t is a function of the number of spatial grid points:∆t = λ(xmax− xmin)/(Nx + 1)2, where
λ = 1.5 is the CFL condition number.
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FIG. 2: Closeup of PDFfv(V ) at t = 2.5× 10−3 andx = 0.03obtained by MC simulation, fora ∼ U([0.5, 1.5]). In this figure,
Nx = 100; NS = 20,000; andNks = 50, 100, or 200. The optimal bandwidth is used.

1.05 1.1 1.15 1.2 1.25 1.3 1.35

V

0

1

2

3

4

5

6

7

f(
V
)

Nx=50

Nx=100

Nx=150

FIG. 3: PDFfv(V ) at t = 2.5× 10−3 andx = 0.03 obtained by MC simulation, fora ∼ U([0.5, 1.5]). In this figure,NS =
20,000; Nks = 100; andNx = 50, 100, or 150. The optimal bandwidth is used.
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Figures 4 and 5 show the effect of the sample size on the solution to the problem with a uniform and beta
distribution, respectively. ForNS = 20,000, the PDFfv(V ) is sufficiently resolved to be used as a yardstick for the
subsequent comparison.

The bandwidth has a significant impact on the accuracy of the PDF determination. Too large of a value produces
a significant overlap between the individual kernels. In accordance with Eq. (31), being the sum of almost identical
Gaussians, this would result in a nearly Gaussian, thereby obscuring the underlying behavior. If the bandwidth is
too small, the support of most individual kernels—especially those belonging to sample outliers—will be isolated,
causing the estimate to look like a collection of multiple steep peaks. In other words, sample outliers are not ignored
in this case, but influence the density estimate significantly. We empirically determine an optimal bandwidth for each
distribution at each point in time and space, by taking the smallest bandwidth that yields a unimodal PDF. For the
uniform distribution, this is not possible. Instead, a bandwidth is chosen such that the support of the PDF resembles
the support of the actual sample, while avoiding too many peaks in the center part. Figure 6 shows the difference
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FIG. 4: PDFfv(V ) at t = 2.5× 10−3 andx = 0.03obtained by MC simulation, fora ∼ U([0.5, 1.5]). In this figure,Nx = 100
and the number of samplesNS is either 1000, 2000, 4000, 10,000, or 20,000. The default bandwidth is used.
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FIG. 5: PDFfv(V ) at t = 2.5× 10−3 andx = 0.03 obtained by MC simulation, fora ∼ B(2, 5). In this figure,Nx = 100and
the number of samplesNS is either 1000, 2000, 4000, 10,000, or 20,000. The default bandwidth is used.
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FIG. 6: PDFfv(V ) at t = 2.5× 10−3 andx = 0.03 obtained by MC simulation, fora ∼ N (1, 0.15). In this figure,Nx = 100,
Ns = 20,000, and both the default and optimal bandwidths are shown.

between the default and optimal bandwidth fora ∼ N (1, 0.15). It reveals that the default bandwidth is too small,
resulting in a multimodal distribution. By increasing the bandwidth, one obtains a unimodal distribution, without
losing the underlying behavior: the location of the maximum and the tail behavior remain very similar. The so-called
optimal bandwidths are0.008, 0.01, and0.01 for uniform, normal, and beta-distributeda, respectively.

Remark1. Our numerical experiments reported in Fig. 7 suggest a linear relationship (dependent on positionx and
time t) betweena andv, i.e., v(x, t) = c(x, t)a. This implies thatv has the same PDF asa, but with unknown
distribution parameters, which depend on time and space. Hence, instead of using a less accurate nonparametric
density estimator (as we do in the present study), one can fit the velocity PDF at any (x, t) fit to the PDF ofa.

FIG. 7: Evolution through time of deterministic velocityv as a function ofa. For all linesx = 0.03. From left to right,t =
2.5k × 10−4 with i = 1, . . . , 10.

Volume 11, Issue 2, 2021



94 Rutjens, Jacobs, & Tartakovsky

3.2 CDF Equation

For the CDF equation, the solution accuracy is affected by the grid resolution in theA, x, andV directions, as
well as by the regularization and exponential filter settings. Following [31] and the discussion above, we choose the
regularization filter withm = 13, k = 8, Nd = 50. An exponential filter of orderp = 5 is applied locally (i.e., to the
50 rightmostV -grid points) to suppress oscillations near the boundary without impacting the solution at the center of
theV domain. This local filtering is only possible because the solution is already approximately zero at the51st grid
point (Fig. 1). The transition from nonfiltered to filtered is thus smooth. This is generally not the case; one should
then filter globally, which smears the solution. A finer (higher-order) filter only partly mitigates this issue.

In theA direction,NA = 10 grid intervals is sufficient (Fig. 8), as confirmed by the relatively small value of the
loss function att = 2.5× 10−3 andx = 0.03:

maxV

∣∣∣∣
fv(V |Na = 10)− fv(V |Na = 40)

maxV [fv(V |Na = 40)]−minV [fv(V |Na = 40)]

∣∣∣∣ = 0.0176. (38)

In theV direction, the grid resolution has a significant effect. The regularization zone of possible discontinuities in
the solution (CDF or PDF) can shrink as the resolution increases (Fig. 9). In the advected regularization zone of the
numerical solution, the undershoots are visible, violating the positivity of the PDF. These undershoots are a direct
consequence of the approximation of the deterministic Dirac delta initial condition. As discussed in Section 2.3.2, the
polynomial approximation of the delta sequence with support widthε [30,39,40],δf

ε(x) ≡ ε−1f(x/ε) wheref is the
generating function, must havem vanishing moments in order to obtainmth-order accuracy. The sequence of regular
distributions,T f

ε [φ] ≡ ∫
R δ

f
ε(x)φ(x)dx, must have the propertylimε→0+ T f

ε [φ] = φ(0). To preserve themth-order
convergence of the delta sequence in akth-order polynomial representation of the sequence of distributions, we must
relax the positiveness of the delta sequence. An optimal value forε, which ensures high-order accuracy in the solution
of problems with regularized singular sources like the problem described here, was found in [30,40]. The kernel can
be applied to the regularization of singularities in spectral solutions if used as a kernel in a convolution filter [31]. It
was proven that high-order convergence or resolution is obtained away from the regularization zone according to the
number of vanishing moments. Integral to the recovering of this high-order resolution is relaxation of the positivity of
the delta function. Hence, even though the undershoot makes the solution visually unsettling, the solution outside of
the regularized delta-sequence zone is more accurate. As the grid resolution increases, the solution converges outside
the regularization zone according to the theoretical convergence rate. ForNx andNV = 400, the solution outside
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FIG. 8: PDFfv(V ), at t = 2.5× 10−3 andx = 0.03, obtained by solving the CDF equation (35), fora ∼ U([0.5, 1.5]). The
regularization filter corresponding tok = 8, m = 13, Nd = 50 is used. Further,Nx = Nv = 200andNa = 10, 20, or 40. A
fifth-order exponential filter has been applied to the 50 rightmost grid points.

International Journal for Uncertainty Quantification



A CDF Method for UQ in Systems with Stochastic Sources 95

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

V

0

2

4

6

8

10

f(
V
)

Nx=100

Nx=200

Nx=400

FIG. 9: PDFfv(V ), at t = 2.5× 10−3 andx = 0.03, obtained by solving the CDF equation (35), fora ∼ U([0.5, 1.5]). The
regularization filter corresponding tok = 8, m = 13, Nd = 50 is used. Further,Nx andNv are either100, 200, or 400 and
Na = 10. A fifth-order exponential filter has been applied to the 50 rightmost grid points.

the regularization zone has converged (Fig. 9), an observation that is confirmed by the value of the loss function at
t = 2.5× 10−3 andx = 0.03:

maxV ∈I

∣∣∣∣
fv(V |NV = 200)− fv(V |NV = 400)

maxV [fv(V |NV = 400)]−minV [fv(V |NV = 400)]

∣∣∣∣ = 0.0093, (39)

where the first maximum runs over the intervalI = [0.6, 1]∪ [1.4, 1.6] to avoid the regularization zone; the time step
is ∆t = 2λ(xmax− xmin)/(VmaxN

2
x), whereλ = 1.2 is the CFL condition number.

3.3 Comparison of MC and CDF Solutions

With the grid independence established for both the MC and CDF solutions, we test consistency between the two
methods. As a first indicator, we compare their zeroth moment, the mean, standard deviation, and skewness. For MC,
the mean, standard deviation, and skewness are calculated with built-in Matlab functions. For the CDF solution, these
moments are computed via numerical integration of the computed PDFfv(V ).

Table 1 demonstrates that both the MC and CDF solutions satisfy the property that the PDF integrates to unity.
The other moments agree well, except for the skewness for a normal distribution ofa, which we expect to be zero

TABLE 1: Statistical moments of the CDF solutionFv(V ) with Nx = NV =
400 and the MC solution withNx = 100, Ns = 20,000, and the optimal
bandwidth, both att = 2.5× 10−3 andx = 0.03

Distr. Method
∫∫∫

fv Mean Standard deviation Skewness

Uniform
MC 1.000 1.1867 0.0532 –0.0061
CDF 1.000 1.1872 0.0530 –0.0080

Gaussian
MC 1.000 1.1870 0.0275 0.0049
CDF 1.000 1.1868 0.0281 0.0350

Beta
MC 1.000 1.1471 0.0296 0.5904
CDF 1.000 1.1477 0.0301 0.5681
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based on the reasoning in Remark 1 (above). We attribute the deviation from zero to the regularization, which has
a more severe effect on the left tail (see Remark 2 below), thereby creating a slightly skewed approximation of a
Gaussian. Overall, the agreement between the MC and CDF moments is excellent, verifying consistency between the
two methods.

Figures 10 and 11 compare the PDFs determined with MC and CDF. General features like support, position of the
maximum (when applicable), and general shape are in excellent agreement, as can be expected from the agreement
in the statistical moments. Initial undershoots and overshoots induced by initial filtering with the nonpositive delta
kernel nearly disappear at the final time in the case of a normal distributed source coefficient. They are, however,
causing small deviations at the tails and tops of the normal and beta distribution [Figs. 10(b) and 10(c)]. In the case
of a uniform (hence discontinuous) distribution, the undershoots and overshoots are necessary for regularization and
apparent at the discontinuous edges of the PDF. Away from the regularization zones, however, the agreement is very
good.

Figure 12 exhibits the PDFsfv(V ) computed with MC and the CDF method for a negative steady Gaussian
source,

u(x) = − 1√
2πσ

e−(x−xa)2/2σ2

, (40)

and the beta-distributeda. Other distributions fora give similar results, establishing consistency for negative sources.
Only Nx = 200spatial intervals were considered for the CDF equation, andNs = 2000samples for MC (all with the
optimal bandwidth as mentioned before). Nevertheless, this is sufficient for the purpose of verification of the adjusted
CDF equation (11).

Figures 13 and 14 exhibit the predicted (mean) flow velocityv(x, t) accompanied by the two standard deviations’
uncertainty bound. The uncertainty bounds are generated by calculating the standard deviation (in the way explained
above) at every spatial grid point. The solutions predicted with MC and the CDF equation are visually indistinguish-
able when plotted as either a function ofx for a fixedt (Fig. 13) or a function oft for a fixedx (Fig. 14). The figures
show a linear interpolation of ten uniformly spaced time points. As expected, the predicted solutionv increases due to
the positive source, and the prediction uncertainty increases with time. The largest uncertainty bounds correspond to
uniformly distributeda, which has the most mass towards theA domain boundary of the three distributions. Finally,
the mean corresponding to the left-skewed beta-distributeda is lower than the other two, the latter being equal since
both have symmetric distributions ofa.

Finally, in terms of computational efficiency, a significant reduction in computation time is obtained; the CDF
method is 10–15 times faster than MC simulation with 20,000 samples. Considering that ideally one would want to
use many more samples for MC when computing a distribution, rather than its low moments, the gain in computational
efficiency may be even higher. This finding is consistent with others, which revealed the method of distributions to be
up to two orders of magnitude faster than MC [41–43]. These results come with a caveat. The CDF method does not
scale well with the number of state variables, because each of these variables adds a dimension to a CDF equation.
One can ameliorate this problem by deploying numerical techniques for high-dimensional PDEs, e.g., parallel tensor
methods [29]. In this regard, it is worthwhile pointing out that the problem of scalability with the number of random
state variables is generic, affecting other uncertainty quantification techniques such as (multilevel) MC, especially
when they are used to estimate (joint) distributions, rather than their low moments [44,45].

Remark2. Because of the regularization it is not possible to make rigorous statements about (the order of) conver-
gence of the CDF solution to the MC solution as the number of grid points increases; in the advected regularization
zone, the CDF solution does not converge to its MC counterpart, since there the former necessarily has undershoots
and overshoots. For the uniformly distributed input, these zones lie at both boundaries of the support of the MC so-
lution [Fig. 10(a)]. For the Gaussian or beta-distributed input, the propagated regularization zone runs from the left
support boundary to the maximum of the MC solution [Figs. 10(b) and 10(c)]. Figure 10(c) reveals that the right tail
is less prone to under- and overshoot. Moreover, for the uniform input, the estimated kernel density does not have a
flat plateau shape (which the analytical solution should have), but shows multiple smaller peaks. We must therefore
be satisfied with the visual comparisons, the good agreement that we generally find in the moments, and the PDFs
that confirm consistency between MC and CDF.
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1.05 1.1 1.15 1.2 1.25

-2

0

2

4

6

8

10

12

14

f(
V

)

V

MC: Ns=20,000, Bw=0.01

CDF: Nx=400, Na=10

(c) a ∼ B(2, 5)

FIG. 10: PDFfv(V ), att = 2.5× 10−3 andx = 0.03, obtained by solving the CDF equation (35) and by MC simulation, for (a)
uniform, (b) Gaussian, and (c) beta distributions ofa
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FIG. 11: PDFfv(V ) at (from left to right)t = 5× 10−4, 1× 10−3, 1.75× 10−3, 2.5× 10−3, andx = 0.03obtained by solving
the CDF equation (11) and MC simulation, assuminga ∼ B(2, 5). The used bandwidths are0.0055, 0.0055, 0.0065, and0.01,
respectively.
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FIG. 12: PDFfv(V ) at t = 2.5× 10−3 andx = 0.03 obtained by solving the CDF equation (11) and MC simulation, assuming
a negative source anda ∼ B(2, 5)

4. CONCLUSIONS AND FUTURE DIRECTIONS

We developed a CDF method for hyperbolic systems with stochastic sources, which describe numerous multiphysics
phenomena such particle-laden and chemically reacting flows. In particular, the Burgers equation with random source
coefficients was considered. An equation for the joint CDF of the QoI and source coefficients was derived.

A major advantage of the CDF approach over other existing methods—MC, SFEM, method of moments, and
PDF equations—is that it accounts for a full description of uncertain parameters, including their tail behavior, while
being computationally efficient. Furthermore, the CDF method results in an unambiguous, closed system of equations.
High dimensionality of the PDF/CDF equations would pose a computational challenge to the method’s performance;
a potential remedy is to deploy parallel tensor methods [29].

If the initial system state is known with certainty, the initial condition for the CDF equation takes the form of
the Heaviside function. The latter needs to be regularized to ensure stable solutions, e.g., via the use of a Dirac-delta
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FIG. 13: Prediction of the flow velocityv(x, t = 2.5× 10−3) and the corresponding two standard deviations uncertainty bound,
for (a) uniform, (b) Gaussian, and (c) beta distributions ofa. Dotted lines: MC. Blue dotted lines: CDF. Centerline is the mean.
Color version online.
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FIG. 14: Prediction of the flow velocityv(x = 0.03, t) and the corresponding two standard deviations’ uncertainty bound, for (a)
uniform, (b) Gaussian, and (c) beta distributions ofa. Dotted lines: MC. Blue dotted lines: CDF. Centerline is the mean. Color
version online.
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polynomial kernel [30]. Our numerical experiments showed that a (purely numerical) boundary singularity appears
in the CDF. An exponential filter [33] was applied to the solution after every time step to suppress this behavior.

We compared solutions of a simplified CDF equation with a positive source and a single random coefficient, with
MC simulation. Chebyshev collocation was used for the spatial discretization of the PDE, and a suitable higher-order
Runge-Kutta method was employed for time marching.

The CDF method accurately predicts the mean and standard deviation of the QoI, and is able to approximate
the PDF of the QoI outside of the regularization zone, preserving the main characteristics of the PDF. However,
under/overshoots generated by the regularization process make a thorough error analysis difficult.

For negative sources, an adjusted version of the method is needed to avoid severe instabilities within a few time
steps. Instead of the joint CDFFav, one can consider the variableGav = Fa − Fav, which is not a CDF, but does
satisfy the CDF equation with adjusted initial and boundary conditions. Results are again in good agreement with
MC simulation.

Future work will focus on extending the approach to more complex and general systems, such as coupled gas-
particle models, and to implementing a data-driven learning approach to decrease the uncertainty in the system.
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APPENDIX A. DERIVATION OF THE JOINT CDF EQUATION (POSITIVE SOURCE)

In addition to the two random functionsa andv(x, t), we consider a fine-grained CDF,

Π(A, a;V, v) ≡ H(A − a)H(V − v(x, t)), (A.1)

whereA andV are deterministic variables, andH(·) is the Heaviside function. The ensemble mean of any integrable
functiong(a, v) of random variablesa ∈ RNg andv ∈ R with the joint PDFfav(A′, V ′) : RNg × R→ R+ is

E[g(a, v)] =
∫

R

∫

RNg

g(A′, V ′)fav(A′, V ′)dA′dV ′. (A.2)

In particular, at any space-time point(x, t), the ensemble mean ofΠ(A, a;V, v) over random realizations of the
random variablesa andv is

E[Π] =
∫

R

∫

RNg

Π(A, A′;V, V ′)fav(A′, V ′; x, t)dA′dV ′

=
∫

R

∫

RNg

H[A − A′]H[V − V ′]fav(A′, V ′;x, t)dA′dV ′

=
∫ V

−∞

∫ A1

−∞
· · ·

∫ ANg

−∞
fav(A′, V ′;x, t)dA′dV ′ = Fav(A, V ; x, t), (A.3)

whereFav is the joint cumulative distribution function (CDF) fora = {a0, . . . , aNg} andv at any space-time point
(x, t). This property suggests a two-step procedure for the derivation of a PDE forFav. First, we derive an equation
for Π. Then, we average this equation. It follows from (A.1) and the sifting property of the Dirac-delta function that

∂Π
∂t

= −∂Π
∂V

∂v

∂t
,

∂Π
∂x

= −∂Π
∂V

∂v

∂x
, and g(v)

∂Π
∂V

= g(V )
∂Π
∂V

, (A.4)

for any test functiong(v). Hence, multiplication of the stochastic Burgers equation,

∂v

∂t
+ v

∂v

∂x
= (u− v)

Ng∑

i=0

aiTi(u− v), (A.5)

with −∂Π/∂V yields

∂Π
∂t

+ V
∂Π
∂x

= −∂Π
∂V

(u− V )
Ng∑

i=0

aiTi(u− V ). (A.6)

This is a linear PDE with the random (constant) coefficients a0, ..., aNg . (Recall that both u and V are deterministic). 
By virtue of Eqs. (A.2) and (A.3), the ensemble average of this PDE is
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∂Fav

∂t
+ V

∂Fav

∂x
=−

∫

R

∫

RNg

∂Π
∂V

(u− V )
Ng∑

i=0

A′iTi(u− V )fav(A′, V ′;x, t)dA′dV ′

=− (u− V )
Ng∑

i=0

[∫

R

∫

RNg

∂Π
∂V

A′ifav(A′, V ′;x, t)dA′dV ′
]
Ti(u− V )

=− (u− V )
Ng∑

i=0

[
∂

∂V

∫

R

∫

RNg

ΠA′ifav(A′, V ′; x, t)dA′dV ′
]
Ti(u− V ). (A.7)

For the left-hand side, we used the following theorem and lemma. Their proofs are omitted.

Theorem 1 (Dominated convergence). Let Xn be a sequence of integrable random variables and let the limit
limn→∞Xn(ω) = X(ω) exist for allω ∈ Ω. If there is a nonnegative random variableY such that|Xn(ω)| ≤
Y (ω) for all ω ∈ Ω and alln, thenX is integrable andlimn→∞ E[Xn] = E[X].

Lemma 1. LetX ∈ X be a random variable andg : R×X → R a function such thatg(X, t) is integrable for allt,
andg is differentiable with respect tot. Assume that there is a random variableY such that|∂tg(X, t)| ≤ Y a.s. for
all t, andE[Y ] < ∞. Then∂tE[g(X, t)] = E[∂tg(X, t)].

Applied to our case, it follows that

E
[
∂Π
∂t

+ V
∂Π
∂x

]
=

∂E(Π)
∂t

+ V
∂E(Π)

∂x
=

∂Fav

∂t
+ V

∂Fav

∂x
. (A.8)

For the right-hand side of Eq. (A.7), we interchange summation and integration and apply Leibniz’s integral rule to
obtain the final result.

The definition ofΠ in terms of the Heaviside function implies that the integral in the last line on the right-hand
side of Eq. (A.7) reduces to

I =
∫ V

−∞

∫ A1

−∞
· · ·

∫ ANg

−∞
A′ifav(A′, V ′; x, t)dA′dV ′. (A.9)

Recalling the relationship between PDF and CDF, this yields

I =
∫ V

−∞

∫ A1

−∞
· · ·

∫ ANg

−∞
A′i

∂Ng+1Fav

∂A′1 · · · ∂A′Ng
∂V ′ (A

′, V ′;x, t)dA′dV ′

=
∫ Ai

−∞
A′i

∂Fav

∂A′i
(A\Ai, A

′
i, V ; x, t)dA′i

= AiFav(A, V ;x, t)−
Ai∫

−∞
Fav(A\Ai, A

′
i, V ;x, t)dA′i, (A.10)

whereA\Ai =
(
A1, . . . , Ai−1, Ai+1, . . . , ANg

)
. Combining the terms leads to

∂Fav

∂t
+ V

∂Fav

∂x
= −(u− V )

Ng∑

i=0

Ti(u− V )
∂

∂V


AiFav −

Ai∫

−∞
Fav(A\Ai, A

′
i, V ;x, t)dA′i


. (A.11)
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