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ABSTRACT
Many biochemical phenomena involve reactants with vastly different concentrations, some of which are amenable to continuum-level descrip-
tions, while the others are not. We present a hybrid self-tuning algorithm to model such systems. The method combines microscopic
(Brownian) dynamics for diffusion with mesoscopic (Gillespie-type) methods for reactions and remains efficient in a wide range of regimes
and scenarios with large variations of concentrations. Its accuracy, robustness, and versatility are balanced by redefining propensities and
optimizing the mesh size and time step. We use a bimolecular reaction to demonstrate the potential of our method in a broad spectrum of
scenarios: from almost completely reaction-dominated systems to cases where reactions rarely occur or take place very slowly. The simulation
results show that the number of particles present in the system does not degrade the performance of our method. This makes it an accurate
and computationally efficient tool to model complex multireaction systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5125022., s

I. INTRODUCTION

Many mesoscopic models of reaction-diffusion phenomena
split a spatial simulation domain into well-mixed compartments.1–5
Such compartment-based representations reduce the computational
time required to study a system’s dynamics by keeping track of tem-
poral variability of the numbers of independent particles in indi-
vidual compartments, rather than the position of individual par-
ticles. Time-driven and event-driven approaches are two of the
most common criteria used to define a time step in mesoscopic
models. The former requires a time step �t to be small enough
for an “event” to happen,6 while the latter draws a waiting time
for the next reaction to occur from the exponential distribution.7
In both cases, diffusion is described by the transition of species,
either on regular4,5 or irregular3,8 meshes, from one compartment
to its neighbor. For reactions, time-driven approaches use random

numbers to determine if and which reactions take place; event-
driven approaches or stochastic simulation algorithms (SSAs) cal-
culate random numbers to determine which reaction happens first
and the time until the next reaction takes place. Although such
approaches are efficient for reaction and diffusion description at
the mesoscale, they do not explicitly represent a diffusing particle’s
position and trajectory.

Spatially extended models9 provide an alternative to their
compartment-based counterparts by combining mesoscopic
approaches with particle-based methods.10 Some of these hybrid
models divide the system into different subdomains; wherein, reac-
tants are described either as particles or as concentrations.11–15 Oth-
ers classify species as mesoscopic or microscopic depending on
the number of particles present in the system.16,17 Some particle-
based models also use compartments to study the proximities to a
specific particle to reduce the number of candidates that can react
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in a particular time step and, consequently, to minimize the compu-
tational time.18,19 Recent developments in multiscale hybrid simula-
tions of reaction-diffusion systems include Spatiocyte,20 ReaDDy2,21
GFRD,22,23 Smoldyn,24 and other techniques.25–27 The operator-
splitting algorithm of Choi et al.28 (henceforth referred to as
CM) consists of a particle-based method to describe diffusion
and a compartment-based method to represent reactions. Unlike
compartment-based models of diffusion, particle tracking does not
restrict particle movement to adjacent compartments. This allows
for the use of longer time steps and provides a more realistic
description of diffusion.

We present a self-tuning operator-splitting algorithm formeso-
scopic reaction-diffusion systems, which improves CM. The latter
was shown to be more efficient than the Gillespie multiparticle
(GMP)method that employs the Gillespie algorithm29,30 and cellular
automata31 to handle reactions and diffusion processes, respectively.
The enhanced accuracy and efficiency of our method stem from its
three features.

First, both accuracy and speed of the operator-splitting algo-
rithms depend on the size and shape of compartments used in the
reaction module, and our method redefines these features at every
time step. This is important because the accuracy does not neces-
sarily increase as the compartment size decreases; the number of
potentially reacting particles and their spatial distribution are essen-
tial factors to redefine the compartment mesh. Second, rather than
setting the time step to be proportional to the diffusion time,28 in
our method, the maximum reaction time determines the time step.
Since the reaction time is proportional to a compartment’s volume,
the time step also changes proportionally to its size, whichmakes our
method both spatially and temporally adaptive. Third, our algorithm
requires neither predefined parameters to determine if the reaction
nor diffusion effects are predominant or multiplicative factors to
estimate a proper time step.

We demonstrate the proposed hybrid mesoscopic algorithm
on an elemental bimolecular reaction. This setting is sufficient
to highlight the importance of self-adaption in reaction-diffusion
algorithms as a means of reducing the computational error. Our
approach can also be used to study multireaction phenomena occur-
ring in domains with complex geometry.

II. DESCRIPTION OF THE METHOD
Our stochastic operator-splittingmethod for reaction-diffusion

systems consists of two parts. First, during a given time step, diffu-
sion is modeled via Brownian dynamics in order to estimate particle
locations within individual compartments. Second, the stochastic
simulation algorithm (SSA)7 with propensities defined in terms of
the particle locations before and after diffusion is used to compute
the reaction time step during which the particles undergo additional
Brownian motion. Thus, the first step (diffusion only) is an esti-
mate that helps to make more accurate calculations in the second
step (diffusion until reaction happens). The method’s workflow is as
follows.● Space partition: The simulation domain is subdivided into a

set of nonoverlapping compartments. Their size and spatial
arrangement depend on the location and number of particles
and on a first estimate of the compartment-scale Damköhler
number, which is explicitly defined for our system in Eq. (6).

● Time partition: The optimal time step is calculated. It is pro-
portional to the maximum reaction time and, therefore, to
the compartment volume. It is also inversely proportional to
the reaction rate constants.● Diffusion process only: Diffusion of species between com-
partments is modeled via Brownian dynamics in order
to estimate the concentration of species in each com-
partment after the optimal time step was previously
estimated.● Combined diffusion-reaction process: Reactions within
some compartments are simulated via SSA. Propensities are
defined in terms of the concentrations before and after the
time step from the diffusion-only scenario and according
to the compartment-scale Damköhler number. The SSA-
estimated time for every particle is assumed to be the time
it takes for the particle to diffuse until it reacts.● Time is increased by the time step, and the above procedure
is repeated until the final desired time.

Three key properties define our method: an appropriate choice
of the compartments’ size and shape, the time-step proportional
to the maximum reaction time, and the modified propensities for
SSA. The synergy of these characteristics makes up a novel approach
which, as we demonstrate below, stands out for its computational
efficiency even in limiting cases with very slow diffusion or, con-
versely, a diffusion-dominated regime. We focus on a bimolecular
reaction,

A + B→ C. (1)

Henceforth, mathematical expressions are defined in terms of the
reactants A and B and their product C.

A. Compartment size and shape
A proper choice of the compartment size and shape is criti-

cal to prediction accuracy.32 If all Ncom compartments are regular
and identical, a good initial estimate of the volume of the ith com-
partment at the kth time step is Ṽik = Vtot�min{nAk ,nBk}. Here,
V tot is the system’s total volume; nAk and nBk are, respectively, the
total number of particles of species A and B at the kth time step.
For the cases presented below, we use isotropic three-dimensional
compartments, whose volume in a Cartesian coordinate system is
Ṽik = Ṽk = �x̃k�ỹk�z̃k for all i = 1, . . ., Ncom.

A compartment’s state is determined in terms of the dimen-
sionless Damköhler number Dak,�s̃k , which is defined at the kth time
step for the compartment scale �s̃k with s = x, y, z. The maximal
diffusion time is estimated as

Tmax
diffk = Ṽ2�3

k
2dmin{DA,DB} =

�s̃2k
2dmin{DA,DB} , (2)

where DA and DB are the diffusion coefficients of particles A and
B, respectively; and d is the system’s dimensionality (d = 3 in three
dimensions). The maximum reaction time, Tmax

reack , corresponds to
the situation in which the minimum number of particles react in a
compartment, i.e.,

Tmax
reack = 1

amin,k
, (3)

J. Chem. Phys. 151, 244117 (2019); doi: 10.1063/1.5125022 151, 244117-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

where amin,k is the propensity at the kth time step. For the bimolec-
ular reaction A + B → C with reaction rate constant kr whose units
are 1/(molar time), the minimum propensity is

amin,k = krnAmin,knBmin,k

NAvṼk
. (4)

Here, NAv is the Avogadro number; nAmin,k = 1 and nBmin,k = 1 are,
respectively, the minimum number of particles of A and B that react
in a compartment. Thus,

Tmax
reack = NAvṼk

krnAmin,knBmin,k
= NAv�s̃3k

kr
. (5)

With these definitions, the compartment’s state at the kth time step
is characterized by the Damköhler number,

Dak,�s̃k = Tmax
diffk

Tmax
reack
= kr
6NAv�s̃kmin{DA,DB} . (6)

Both relative strength of the reaction and anisotropic varia-
tions of the concentrations determine the compartment’s size in
every spatial direction. In the reaction-dominated regime, Dak,�s̃k≥ 10,33,34 the compartments are anisotropic, with smaller com-
partment dimensions in the directions in which the spatial varia-
tions of concentration are larger. In the diffusion-dominated regime,
Dak,�s̃k ≤ 0.1, the compartments are isotropic. For the intermedi-
ate regime, compartments are isotropic when 0.1 < Dak,�s̃k ≤ 1 and
anisotropic when 1 < Dak,�s̃k < 10. For example, in a system with
large variations of concentrations in the x direction and Dak,�s̃k > 1,
one could use compartments with large �ỹk and �z̃k, and small
time-varying �x̃k. Thus, our first estimate for �s̃k must be redefined
as

�s̃k ∝
�������
V1�3
tot �min{nAk ,nBk}, s = x,

�̃ > �x̃k, s = y, z. (7)

Once the initial shape and size for the compartment is esti-
mated and a mesh is created, the product of the number of particles
A and B that are available for the bimolecular reaction A + B→ C in
the ith compartment at the kth time step is Pik = nAiknBik. A criteria to
decide whether the compartment size is adequate for accurate pre-
dictions is to ensure that S1,k, the number of compartments where
Pik = 1, is at least as large as S2,k, the number of compartments
where Pik > 1. These criteria facilitate the subsequent definitions of
the time steps as being proportional to the compartment volume Vk
and inversely proportional to the minimum propensity amin,k, i.e.,
the propensity of one particle of A and one particle of B reacting in a
compartment. A mesh with the propensity amin,k in the majority of
the compartments is discretized enough to guarantee that the time
step is not too long and the number of reactions is not overestimated.
Therefore, we establish a condition

S1,k
S1,k + S2,k

≥ α, (8)

with α = 0.5 for isotropic compartments. Our numerical experi-
ments show that this condition provides a good balance between
accuracy and computational efficiency because the choice of large

values for α could create a mesh with no pairs of molecules in any
compartment. For anisotropic compartments, the choice of α is less
restrictive because the optimal shape of the compartment already
increases the efficiency of the mesh. In such a scenario, we found
a value of α = 0.1 to provide a noticeable balance between accu-
racy and computational efficiency. If the criterion (8) is not met,
our algorithm recalculates the size �s̃k of the compartments until
the condition is satisfied. The value of �s̃k that meets the crite-
rion (8) is the optimal size at the kth time step, �sk = �s̃k, with
s = x, y, z, and the compartment volume with optimal dimensions is
Vk = �xk�yk�zk.

B. Time-step selection
We define the reaction time as τreac,k = Tmax

reack ln(1�r), where r is
a random number distributed uniformly on the unit interval [0, 1].
The probability of ln(1/r) ≤ 1, i.e., the probability of τreac,k ≤ Tmax

reack , is
0.63. Accounting for (3), this choice implies that on average 63% of
the reactions occur in any compartment of propensity amin,k by time
Tmax
reack . In other words, in a system of compartments with propensity

amin,k, a reaction occurs in 63% of the compartments before time
Tmax
reack .

Our algorithm estimates the compartments where particles end
up after a diffusion time-step and assumes that a reaction occurs
with a propensity amin,k any time one particle of A and one parti-
cle of B end up in the same compartment. That would result in an
overestimated number of reactions since reactions occur only in 63%
of the compartments with propensity amin,k. Let āk, with āk > amin,k,
denote the average propensity of the system before diffusion, and
�tk = 1/āk define an optimal time step. We impose the condition
amin,k = 0.63āk to guarantee that 100% of the particles reacting
after diffusion be equivalent to 63% of the molecules of A react-
ing with B (or vice versa) before diffusion. Then, the optimal time
step is

�tk = 1
āk
= 0.63
amin,k

= 0.63Tmax
reack . (9)

Further details on the time-step selection are provided in
Appendix A.

C. System state at the compartment scale
TheDamköhler numberDak,�s̃k , which is defined in (6) in terms

of the initial compartment estimate �s̃k, provides one way to deter-
mine this regime. It depends on themaximum reaction and diffusion
times because we choose the ideal compartment size and shape for
the longest time step possible without losing accuracy.

We also use the Damköhler number Dak,�sk with the optimal
compartment size �sk and the minimum reaction time to determine
the system regime with higher accuracy. This number is defined in
terms of the minimum diffusion and reaction times. We focus on
the minimummagnitudes because we are not interested in the entire
time step but only in the time that a particle diffuses until it reacts
before the time step is complete. Thus,● the minimum time that a particle needs to move to observe

variations in the concentration within a compartment due to
diffusion is Tmin

diffk = (min{�sk})2�(2dmax{DA,DB});
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● the minimum reaction time provides information about the
time that a particle needs to move to notice variations in
the concentration in a compartment mainly due to reaction.
The compartment i with the maximum propensity deter-
mines the value of the minimum reaction time such that
Tmin
reack = 1�amax,k = VkNAv�(krmax

i
{Pik}).

With these preliminaries, we define the global Damköhler number,

Dak,�sk = Tmin
diffk

Tmin
reack
= kr(min{�sk})2max

i
{Pik}

2dmax{DA,DB}VkNAv
. (10)

D. Modified Gillespie algorithm
Once the compartments, the time step, and the system state at

the compartment scale are defined, we count the number of parti-
cles per compartment before allowing the system to diffuse or react.
Then, the particles undergo Brownian motion during the kth time
step, and the number of particles in each compartment is counted
again. From this information and knowing the volume of the com-
partments, the propensity functions along an lth particle’s trajectory
is computed as

aikl = krVkNAv[χcAikl + (1 − χ)cAi′k′ l][χcBikl + (1 − χ)cBi′k′ l], (11)

where the subscripts i and i′ refer to the compartments where the
particle l is located before and after diffusion during the kth time
step, respectively; k and k′ = k + �tk label the times before and after
the time step �tk; cAikl and cBikl are the concentrations of molecules
A and B in the ith compartment and time k; cAi′k′ l, cBi′k′ l are the con-
centrations of molecules A and B in the compartment i′ and time
k + �tk; and χ is a factor that quantifies the probability of reaction
of the molecule l at its initial location. In the diffusion-dominated
regime (Dak,�sk ≤ 0.1), we set χ = 0.5 to ensure that diffusion dom-
inates and that the probability of the lth particle to react is not
affected by possible reactions of other particles. The propensity aikl
is, therefore, defined in terms of the average of the initial and final
concentrations.

In the reaction-dominated and intermediate regimes (Dak,�sk> 0.1), we chose χ = 0.37 to ensure that, according to the def-
inition of the time step �tk in (9), about 63% of the particles
at the initial location i react fast and only 37% of them influ-
ence the particle l. Consequently, approximately 63% of molecules
in the compartment i′ influence the particle l. Appendix B pro-
vides additional information about the selection of χ. Appendix C
contains analytical and numerical justifications for the choice of
Dak,�sk = 0.1 as the limit between the diffusion-dominated and
intermediate regimes.

In the spirit of the Gillespie algorithm,7 for diffusion-
dominated scenarios, we define a continuous random variable �tikl,

�tikl = 1
aikl

ln� 1rl �, (12)

where rl is a randomnumber distributed uniformly on the unit inter-
val [0, 1]. It describes the time that the lth particle diffuses from the
compartment i during the time step �tk until it reacts, i.e., �tikl = �tk
for the majority of the particles.

As reaction effects become dominant, i.e., for large values of the
reaction rate constant kr , the cumulative distribution function of the
continuous random variable �tikl,

rl = 1 − e−aikl�tikl with aikl ∝ kr ,

is approximated via a Taylor expansion by

�tikl ∼ rl
aikl

. (13)

In this regime, reactions happen before particles move a time step
�tk. Thus, the larger the reaction effects, the smaller the values of
�tikl, such that �tikl < �tk for the majority of the particles.

If the system is diffusion-dominated (Dak,�sk ≤ 0.1), then
�tikl = ln(1�rl)

0.25krVkNAv(cAikl + cAi′k′ l)(cBikl + cBi′k′ l) . (14)

If the system is in intermediate or reaction-dominated regimes
(Dak,�sk > 0.1), then

�tikl = rl
krVkNAv(0.37cAikl + 0.63cAi′k′ l)(0.37cBikl + 0.63cBi′k′ l) . (15)

III. ALGORITHM
Numerical implementation of the above steps of our stochastic

operator-splitting method, implemented for a bimolecular reaction
A + B→ C, is provided below.
(1) Initialize t = 0.
(2) While t ≤ tfinal

(I) Set �tk = 0 and define initial isotropic compartments.
(II) Calculate Dak,�s̃k .

If Dak,�s̃k > 1, use initial anisotropic compartments
and set α = 0.1;
If Dak,�s̃k ≤ 1, use initial isotropic compartments
and set α = 0.5;
end

(III) While �tk = 0
(A) For each compartment i

(i) calculate nAik and nBik,
(ii) calculate Pik,
end

(B) Count compartments with Pik = 1 to obtain S1,k.
(C) Count compartments with Pik > 1 to obtain S2,k.
(D) If S1,k/(S1,k + S2,k) < α,

reduce compartment size,
else,

�tk = 0.63 × VkNAv/kr ,
end

end
(IV) Calculate concentration in all compartments before

advancing species.
(V) Use Brownian dynamics to advance species with time

step �tk and estimate their concentrations with no
reaction effects.

(VI) Assign an initial time ti = t to all compartments i and
reset told,i = ti.

(VII) Calculate Dak,�sk .
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(VIII) Define particle countersAi and Bi for all compartments
i and set them to zero, Ai = Bi = 0.

(IX) For each particle l (randomly selected from all the exis-
tent particles of species A or B; let’s suppose a particle
of A is selected)
(A) If the system is in the diffusion-dominated

regime at the compartment scale (Dak,�sk ≤ 0.1),
use (14) to determine �tikl,

if the system is in the intermediate or reaction-
dominated regime at the compartment scale
(Dak,�sk > 0.1),

use (15) to determine �tikl,
end

(B) If �tikl < �tk,
use Brownian dynamics to advance particle
l along the trajectory calculated in step (V)
but with time step �tikl,

else,
assume that the particle is at the location
calculated in step (V), i.e., �tikl = �tk,

end
(C) Determine in which compartment i∗ the particle

l is located after �tikl.
(D) If ti∗ ≤ �tk + told,i∗ ,

(i) Ai∗ = Ai∗ + 1,
(ii) define the reaction time associated with

the particle l in the compartment i∗ as tAi∗ l= �tikl,
(iii) if Ai∗ > 0 and Bi∗ > 0,

(a) the reaction is fired and t∗ =
min{tAi∗ l, tBi∗ l′} determines the reac-
tion time of a pair of particles l and
l′ from A and B species, respectively,
in cell i∗,

(b) update ti∗ such that ti∗ = t∗ + ti∗ ,
(c) remove particle l of species A and

molecule l′ of species B and generate
a particle of C in a location halfway
between the positions where this pair
of particles was located,

(d) Ai∗ = Ai∗ − 1 and Bi∗ = Bi∗ − 1,
(e) if nAi∗k′ > 0 and nBi∗k′ > 0,

nAi∗k′ = nAi∗k′ − 1 and nBi∗k′ = nBi∗k′ − 1
and, consequently, update concen-
trations cAi∗k′ and cBi∗k′ ,

else,
do not update nAi∗k′ , nBi∗k′ , cAi∗k′ ,
and cBi∗k′ ,

end
else,

do not update, no reaction is fired,
end

else,
do not update, no reaction is fired,

end
end

(3) Set t = t + �tk.
end

IV. RESULTS AND DISCUSSION
We demonstrate that our method possesses a better balance of

accuracy, computational speed, and versatility than CM. The Dou-
glas Gunn alternating-direction-implicit (ADI) numerical method35
is used to calculate a deterministic solution that we treat as a refer-
ence for validation (Appendix D). Henceforth, we use interchange-
ably the terms deterministic solution and partial differential equation
(PDE) solution to refer to the ADI method solution.

We consider a cubic domainDwith volumeV = 10−18 m3, such
that D ≡ {0 ≤ x ≤ L, 0 ≤ y ≤ L, 0 ≤ z ≤ L} with L = V1/3. At time
t = 0, NA0 molecules of species A and NB0 molecules of species B
are randomly placed in the region D ′ ≡ {0 ≤ x ≤ L�2, 0 ≤ y ≤ L,
0 ≤ z ≤ L} (Fig. 1). These molecules then diffuse with the same
diffusion coefficient D and bounce off the boundaries, so they never
leave the domain. They also react according to the chemical reaction
A + B→ C with the reaction rate kr . Molecules of species C are also
assumed to diffuse with the same diffusion coefficient D.

This computational setting is similar to the case used to ana-
lyze the performance of CM.28 The initial placement of all molecules
in a half of the domain facilitates comparison of the diffusion-
and reaction-dominated scenarios. In the former, the number of
molecules of C in the region D ′ does not reach a stable value of
300 until steady state. In the latter, the number of molecules of C
in the region D ′ exceeds 300, reaches a maximum value, and then
decreases over time until steady state.

The system regime for all cases presented in this work is deter-
mined by the system-scale Damköhler number DaL. It defines the
system regime at t = 0 and at the scale of the characteristic length L.
Thus,● the characteristic diffusion time is defined as Tmin

diff= L2�(6max{DA,DB}); and● the characteristic reaction time of the system is Tmin
reac= L3NAv�(krmax{NA0 ,NB0}).

The Damköhler number for the whole system is

DaL = Tmin
diff

Tmin
reac
= krmax{NA0 ,NB0}
6max{DA,DB}LNAv

. (16)

FIG. 1. Graphical representation of the system. Initially, molecules of A and B are
only present in the half-domain D ′.
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Henceforth, unless stated otherwise, all results are based on the
sample average of 5000 trials. The reaction rate for all cases is kr = 6× 104 mM−1 s−1.
A. Performance analysis

We start by demonstrating how the choice of appropriate com-
partment size and shape affects the simulation accuracy. We study
the temporal evolution of the number of C molecules in the region
D ′ in three different scenarios: diffusion-dominated (Fig. 2), compa-
rable diffusion and reaction effects (Fig. 3), and reaction-dominated
(Fig. 4). The initial number of molecules of species A and B is
NA0 = NB0 = 600. By studying the system at early times, we estimate
the dimensions of initial isotropic and anisotropic compartments
and demonstrate how their dimensions can be modified to define
optimal compartments.

1. Isotropic compartments
For bimolecular reactions, the number of molecules of species

A in the system equals that of species B, nAk = nBk , at all times tk. We
define the initial regular compartment estimate for any time step �tk
as

Ṽk = Vtot�min{nAk ,nBk} = L3�nAk . (17)

Since the volume of an isotropic compartment is Ṽk = �x̃k�ỹk�z̃k= (�x̃k)3, it follows from (17) that �x̃k = L�(nAk )1�3. To enforce

FIG. 2. Temporal evolution of the number of C molecules in domain D ′ for the
diffusion-dominated regime (DaL = 0.01) and NA0 = NB0 = 600. The solid line in
both graphs is the PDE solution. Top: Circles indicate the solution obtained by our
method. Bottom: Squares, circles, and diamonds are the solutions obtained by CM
with �x = �y = �z = L/4, L/8, and L/16, respectively.

FIG. 3. Temporal evolution of the number of C molecules in domain D ′ for the
intermediate regime (DaL = 1) and NA0 = NB0 = 600. The solid line is the PDE
solution in both graphics. Top: Circles are the solution obtained by our method.
Bottom: Squares, circles, and diamonds are the solutions obtained by CM with �x
= �y = �z = L/4, L/8, and L/16, respectively.

condition (8), we use the above result to introduce an integer
domain-partition parameter,

κk ≡ L��x̃k = �(nAk )1�3�. (18)

Since we are interested in the number of C molecules in the left half
of the domain, we set the minimal value of κk to 2; this ensures that
the compartments are not larger than half of the domain. Further-
more, we take κk to be an even number that increases by 2 so that
�s̃k = L�κk with s = x, y, z is continually modified in step (III) of our
algorithm until condition (8) is met. Once the optimal compartment
volume Vk is estimated, the optimal time step �tk is defined.

2. Anisotropic compartments
For the problem under consideration, one can expect the aver-

age concentration of molecules to change in the x-direction during
the entire process. In order to define the initial anisotropic com-
partment estimate, we focus on the compartment dimension along
the x-direction, �x̃k, and assume that molecules are uniformly dis-
tributed in the region D ′ along this direction at t = 0. Then, �x̃k is
defined as

�x̃k = L
2min{nAk ,nBk} =

L
2nAk

. (19)

Therefore, parameter κk for anisotropic compartments is
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FIG. 4. Temporal evolution of the number of C molecules in domain D ′ for the
reaction-dominated regime (DaL = 100) and NA0 = NB0 = 600. The solid line
is the PDE solution in both graphics. Top: Circles are the solution obtained by our
method. Bottom: Squares, circles, and diamonds are the solutions obtained by CM
with �x = �y = �z = L/4, L/8, and L/16, respectively.

κk ≡ L��x̃k = 2min{nAk ,nBk} = 2nAk . (20)

Analogously to isotropic compartments, we take κk ≥ 2 to be an
even integer that increases by 2 until condition (8) is met. The val-
ues of �yk and �zk are constant and equal to L during the entire
process.

We use the root mean square error (RMSE) to measure the
difference between the number of Cmolecules in the region D ′ pre-
dicted by the two operator-splitting algorithms, N̂Ck , and the PDE
solution, NCk . To facilitate the comparison, we discretize time into
averaging time steps �t̄k and, for each method, calculate the average
of N̂Ck during the time step (t, t + �t̄k). Next, we average over the

number of trials to obtain an estimate N̂Ck̄ for every �t̄k. The RMSE
is defined as

RMSE =
����� 1

k̄f

k̄f�̄
k=1
(N̂Ck̄ −NCk̄)2, (21)

where k̄f denotes the index of the final averaged time step. To main-
tain the desired accuracy, the value of �t̄k must decrease as the
variation of molecules in time increases and vice versa.

Table I shows the RMSE values for CM and our method. Three
transport regimes are considered: diffusion-dominated (DaL = 0.01
andD = 10−9 m2/s), intermediate (DaL = 1 andD = 10−11 m2/s), and
reaction-dominated (DaL = 100 and D = 10−13 m2/s). These results
lead to the following observations.● Our method is fully specified by the system’s inherent char-

acteristics, i.e., the number of molecules, their spatial dis-
tribution, diffusion coefficients, and reaction rates. That
is in contrast with CM, which requires two user-specified
parameters to determine if a system is in the reaction-
dominated, intermediate, or diffusion-dominated regime
and two parameters to estimate a proper time step.● Our algorithm optimizes both compartment dimensions
and time step to guarantee accuracy during the entire pro-
cess in any transport regime.

Except for the diffusion-dominated regime, our algorithm out-
performs CM in terms of accuracy, with the latter method’s error
increasing with the decrement in the diffusion coefficient (for a fixed
reaction rate), i.e., as the system becomes more reaction-dominated
(Figs. 2–4 and Table I).

Next, we explore the relative efficiency of our method vis-à-
vis CM. To this end, we select the compartment size �x = �y =
�z = L/6 that maximizes the latter method’s efficiency. Table II and
Figure 5 present the RMSE and computational time for both meth-
ods. As before, the initial number of molecules for both species is
NA0 = NB0 = 600.

The results in Table II and Figure 5 demonstrate that our
method is more accurate than CM when diffusion does not domi-
nate. The highest differences in accuracy are reached for DaL = 100,
with the RMSE of our method being 4–5 times smaller than that
of CM. In the diffusion-dominated regime, the RMSE of CM is
twice smaller than that of our algorithm although both methods
increase their performance by reducing the RMSE to values around
1 molecule of C or less. The computational time required by our
method does not depend on the regime of the system. That is in

TABLE I. Root mean square error (RMSE) for our operator-splitting algorithm and CM. The superscript ∗ represents the
sample average of 20 000 trials, and � denotes the size of cubic compartments relative to the system’s size L. Units of RMSE
are in the number of molecules of species C, averaged over 20 000 trials for the diffusion-dominated case and over 5000 for
the other two scenarios.

RMSE

Regime DaL CM, � = L/4 CM, � = L/8 CM, � = L/16 Our method

Diffusion-dominated∗ 0.01 0.3949 0.4150 1.0855 1.2141
Intermediate 1 3.3558 1.6514 3.6082 0.7374
Reaction-dominated 100 17.9951 34.9453 63.9988 3.8607

J. Chem. Phys. 151, 244117 (2019); doi: 10.1063/1.5125022 151, 244117-7

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE II. Root mean square error (RMSE) for our operator-splitting algorithm and CM. The superscript ∗ represents the sample average of 20 000 trials. Both the time to reach
the steady state, tkss , and the computational time are in seconds. Units of the RMSE are in the number of molecules of species C. Both the computational time and the RMSE
are averaged over 20 000 trials for the diffusion-dominated cases and over 5000 for the other scenarios. All simulations have been performed using MATLAB software.

CM Our method

Regime DaL tkss (s) RMSE Computational time (s) RMSE Computational time (s)

Diffusion-dominated∗ 0.01 1 0.5909 9.6988 0.9975 0.0441
Diffusion-dominated∗ 0.02 1 0.5159 4.5942 0.7768 0.0428
Diffusion-dominated/intermediate transition∗ 0.1 1 0.5370 0.9275 1.0670 0.0435
Intermediate 1 1 0.7997 0.1015 0.5520 0.0421
Reaction-dominated/intermediate transition 10 1.5 3.2728 0.0455 2.2674 0.0405
Reaction-dominated 50 3 9.9077 0.0253 3.1173 0.0412
Reaction-dominated 100 6 14.0846 0.0250 3.0902 0.0388

contrast to CM, whose computational time increases as the diffusion
effects become stronger, eventually becoming 220 times less effi-
cient than our algorithm for DaL = 0.01. In the reaction-dominated
regime, CM is faster, but its accuracy declines much more than our
method’s.

Our method is also appreciably faster than MCell,36 a
Monte Carlo simulator that predicts reactions at a particle level
(Appendix E). This finding holds regardless of whether a small (rint
= 5 × 10−3 �m) or large (rint = 0.1 �m) interaction radius between
molecules is imposed by MCell.

FIG. 5. Root mean square error or RMSE (top) and computational time (bottom) as
a function of the Damköhler number DaL. Solid lines correspond to our algorithm,
and dashed lines represent CM.

B. Robustness in limiting conditions
To explore the robustness of our algorithm, we consider two

extreme cases with the concentrations varying rapidly in space
and/or time. Figure 6 shows a fast variation of the number of
C molecules: in less than 0.1 s almost all molecules of A and B
react in the half-domain D ′ before diffusion manifests itself. It is,
therefore, an almost completely reaction-dominated scenario with
DaL = 104.

FIG. 6. Temporal evolution of the number of C molecules in the region D ′ for
a case with highly dominant reaction effects (DaL = 104). The solid line is the
PDE solution in both graphics. Top: Dashed and dashed-dotted lines are the solu-
tions obtained by CM with �x = �y = �z = L/6 and our method with anisotropic
compartments. Bottom: Close-up view of the first time-steps.
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Figure 6 also demonstrates that in the reaction-dominated
regime, our algorithm significantly outperforms its competitor in
terms of accuracy. This is despite the fact that the simulations are
carried out with the compartment size optimized for CM. Our
algorithm autonomously selects narrow compartments and smaller
time steps to make better predictions. Figure 6 shows that by using
compartments with time-varying �xk and constant �y = �z = L,
our algorithm captures variations in the concentration due to low
diffusion.

Figure 7 exhibits a fast decay in the number of Amolecules due
to diffusion: in less than 10−4 s, almost half of the Amolecules leave
the half-domain D ′ before the reaction takes place. This is an exam-
ple of the strongly diffusion-dominated regime with DaL = 10−4.
In this regime, the CM predictions are accurate provided an appro-
priate compartment size is selected. Nevertheless, such an accuracy
comes at a high computational cost. That is because the time steps
in the CM algorithm are proportional to the diffusion time so that
larger diffusion coefficients lead to smaller time steps.

Figure 7 illustrates that our method does not need small time
steps to guarantee high accuracy as the diffusion effects increase.
Large time steps still provide high levels of accuracy and compu-
tational speed. Also, in contrast to CM, step (a) of our algorithm
provides information about the system’s state during the first time
step. It determines when and where reactions occur. Specifically,
t∗ = min{tAi∗ l, tBi∗ l′} determines the reaction time of any pair of

FIG. 7. Temporal evolution of the number of A molecules in the region D ′ for a
case with highly dominant diffusion effects (DaL = 10−4). The solid line is the PDE
solution in both graphics. Top: Squares and circles are the solutions obtained by
CM with �x = �y = �z = L/6 and our method based on the sample average of
20 000 trials. Bottom: Close-up view of the first time-steps.

FIG. 8. Temporal evolution of the relative number of C molecules for NA0 = NB0 =
6 × 102 particles (DaL = 50). Solid, dashed, and dashed-dotted lines are the PDE
solution, the solution obtained by CM with �x = �y = �z = L/8, and the solution
obtained by our method, respectively.

particles l and l′ from A and B species at the compartment i∗, during
any time step �tk.

C. Effect of number of molecules
In this section, we study the influence of the number of parti-

cles present in the system on the accuracy and computational speed
of our method. Figures 8–10 show the temporal evolution of the
relative number of C molecules, i.e., NC�NA0 , in the region D ′ for
different initial numbers of molecules NA0 and NB0 , until the steady
state is reached. In these simulations, we set the diffusion coefficient
to D = 2 × 10−13 m2/s. As the number of reacting particles increases,
more interactions occur in shorter times, and the maximum number
of C particles is reached faster. For the first time steps (t < 0.1 s), our
algorithm chooses anisotropic compartments, which provides better
results than those obtained with CM. For longer times (t > 0.1 s), the
predominant process is diffusion of species C and both CM and our
algorithm are accurate. These results show that our method is able
to describe processes that occur at different time scales: from short

FIG. 9. Temporal evolution of the relative number of C molecules for NA0 = NB0 =
6×103 particles (DaL = 500). Solid, dashed, and dashed-dotted lines are the PDE
solution, the solution obtained by CM with �x = �y = �z = L/16, and the solution
obtained by our method, respectively.
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FIG. 10. Temporal evolution of the relative number of C molecules for NA0= NB0 = 6 × 104 particles (DaL = 5000). Solid, dashed, and dashed-dotted lines
are the PDE solution, the solution obtained by CM with �x = �y = �z = L/32, and
the solution obtained by our method, respectively.

time scales, 10−4 s ≤ t ≤ 10−2 s, to long-term reactions and variations
of concentrations, 10−2 s ≤ t ≤ 10 s.

Let N∗C denote the maximum number of C molecules present
in the subdomain D ′ relative to the initial number of molecules
of A or B,

N∗C = 1
NA0

max
k̄
{NCk̄}. (22)

Furthermore, let φ be the relative error/discrepancy between the
times it takes to reach N∗C , as predicted with the solution of the par-
tial differential equations (tPDE) and one of the particle methods (tm
withm designating either CM or our method) estimates,

φ = �tPDE − tm�tPDE
. (23)

Table III shows that both N∗C and the time-to-equilibrium pre-
dicted with our method are in close agreement with those predicted
by the deterministic PDEs, while CM underestimates N∗C and over-
estimates the time-to-equilibrium in all scenarios. Moreover, the rel-
ative error φ of CM increases with the number of reacting molecules.
On the contrary, the errors in our method do not increase with the
number of molecules and the relative error φ is virtually negligible.
Table IV collates the computational times (CT) required by both
methods to reach the steady state. The computational time required
by CM increases much faster with the number of molecules than

TABLE III. Relative maximum number of molecules of species C, N∗C , and relative
time error, φ, corresponding to CM and our method for different initial number of
molecules, NA0 and NB0 .

PDE CM Our method

NA0 and NB0 N∗C N∗C φ N∗C φ

6 × 102 0.769 0.710 0.489 0.761 ∼0
6 × 103 0.895 0.834 1.269 0.887 ∼0
6 × 104 0.955 0.903 3.050 0.950 ∼0

TABLE IV. Values of the computational times until steady state is reached cor-
respondent to CM and our method for different initial number of molecules, NA0
and NB0 .

Computational time (s)

NA0 and NB0 CM Our method

6 × 102 0.027 0.043
6 × 103 1.356 0.380
6 × 104 46.639 3.671

our method. For the latter, the scenario with 6 × 104 molecules, our
method is 12 times faster than CM.

For CM, we have chosen compartment sizes that maximize
its efficiency. The more the particles react, the smaller the optimal
compartment is. Nevertheless, despite choosing compartment sizes
that guarantee high accuracy, there are still differences between the
PDE solution and the CM estimates. Moreover, a fixed compartment
size used in CM implies that, after reaching the maximum number
of C particles, this size is not optimal anymore in terms of com-
putational speed. When diffusion of nonreactive particles becomes
dominant, it is more convenient to resize the mesh and define larger
compartments and time steps.

Our algorithm refines both the compartment size and the time
step and makes more accurate estimates during the entire process in
all presented cases. Also, the computational time necessary to com-
pute the solution until the steady state is reached is lower than the
one required by CM. That is also due to the self-tuning nature of
our method. Compartments and time steps are refined according to
the number and spatial distribution of reactive molecules A and B.
When diffusion of nonreactive particles C is dominant, our method
moves forward in time much faster than CM.

It is important to remark that our method becomes much more
efficient than CM as the number of molecules increases because
mesoscopic models are ideal for systems with medium-to-large
numbers of particles with noticeable stochastic effects. The presence
of large numbers of reactive molecules in a system increases reac-
tion effects that our method describes more accurately and faster
than CM does. On the contrary, the presence of a large number
of nonreactive molecules increases diffusion effects; highly refined
compartments and time steps in CM undermine its efficiency.

V. CONCLUSIONS
We developed a hybrid mesoscopic model of reaction-diffusion

systems that improves upon CM by refining the balance between
accuracy and computational speed, by making it more versatile, and
by increasing its range of applicability. By optimizing compartment
dimensions and time steps, we avoid unnecessary calculations in
both diffusion- and reaction-dominated systems. Also, the present
modified Gillespie algorithm describes reactions more realistically
since they can happen at any point along particle trajectories. The
presence of a high number ofmolecules in the system emphasizes the
efficiency of our algorithm when it is compared to CM and MCell.
These characteristics make our method a better choice to model
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mesoscopic systems with noticeable stochastic phenomena. In terms
of accuracy and computational cost, our method shines in systems
with predominant diffusion effects and a high number of particles.
In cases with predominant reaction effects and a high number of
particles, it also keeps a solid and optimal balance.

The Gillespie algorithm implicitly assumes that compartments
are well-mixed, which is not realistic at a basic particle level. Com-
bining our method with particle-based methods for reactions would
improve estimates of highly reactive systems andwould describe sce-
narios with a low number of molecules that cannot be validated with
PDE solutions. On the other hand, PDE-basedmethods would accel-
erate calculations for scenarios with a very large number of particles.
Since our method provides an efficient mesoscopic description of a
basic bimolecular reaction A + B → C, it naturally fits into hybrid
particle/PDE models where species A and B could be defined as
deterministic and stochastic, respectively.

The self-tuning nature of our algorithm and its applicability to
a wide range of regimes make it useful for more complex scenarios
with nonregular geometries and additional reactions. By guarantee-
ing a considerable level of efficiency for a simple system, we ensure
a smaller propagation of errors than its direct competitor, CM.

An example of a MATLAB code developed for this study and
the MATLAB code for the PDE solution is available for download
in the Github repository “https://github.com/AlvaroRuizMartinez/
hybridalgorithm.”
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APPENDIX A: TIME-STEP SELECTION
(1) We follow the CM approach to define a characteristic reaction

time at a kth time step for the entire system:● For an ith compartment (i = 1, . . ., Ñcomp with Ñcomp≤ Ncomp, where Ñcomp and Ncomp are the number of
compartments with propensities larger than 0 and
the total number of compartments, respectively) at a
kth time step, we define a macroscopic time constant

Treacik = 1
aik

, (A1)

where aik is a propensity function.● At each time step, we find the maximum value of the
macroscopic time constants over all compartments,

Tmax
reack = max

i
{Treacik}. (A2)

While CM uses the minimum value of the macro-
scopic time constants over all compartments, we
employ the maximum time value. We consider
the maximum reaction time, Tmax

reack (or minimum
propensity, amin,k = krnAiknBik�(NAvVk) with nAiknBik= 1), to be the characteristic reaction time in the

compartments. That is because of the condition
imposed by our method in Sec. II A: the majority of
the compartments must have one pair of molecules
of A and B, i.e., nAik = nBik = 1.● Taking the Gillespie algorithm7 as a reference, we
define a continuous random variable τreac,k in terms
of the maximum time Tmax

reack ,

τreac,k = Tmax
reack ln�1r �, (A3)

where r is a random number distributed uniformly
on the unit interval [0, 1]. Figure 11 shows a
frequency chart of ln(1/r) and the corresponding
cumulative distribution function. It reveals that the
probability of ln(1/r) ≤ 1, i.e., the probability of
τreac,k ≤ Tmax

reack , is 0.63. This is equivalent to a sys-
tem of compartments of propensity amin,k in which
a reaction occurs in 63% of the compartments before
time Tmax

reack .
(2) Step (IX) of our algorithm (see Sec. III) uses the modified

Gillespie algorithm (Sec. II D) to calculate the time �tikl it
takes for the lth particle to diffuse in the kth time step, �tk,
until it reacts in the ith compartment. Thus, our algorithm
estimates the compartments where particles end up after dif-
fusion and assumes that any time one particle of A and one

FIG. 11. Top: Histogram of ln(1/r), where r is a uniformly distributed random vari-
able in [0, 1]. Bottom: Cumulative fraction of counts out of the total 106 counts.
About 63% of the numbers have values less than 1.
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particle of B end up in the same compartment: (i) a reac-
tion happens with propensity amin,k and (ii) the time in such
a compartment advances by a time step equal to min{�tikl,
�tk}. That overestimates the number of reactions since in a
system with the characteristic minimum propensity, amin,k
(or characteristic time Tmax

reack ), reactions occur only in 63%
of the compartments. In order to avoid such overestimation,
the appropriate time step must be shorter than Tmax

reack and is
calculated as follows:● Let us define the average propensity of any compart-

ment before diffusion is

āk = krn̄Ak n̄Bk
NAvVk

, (A4)

where n̄Ak and n̄Bk are the average values of molecules
of A and B over all compartments at the kth time
step.● Let us also define the average time step is the inverse
of the average propensity before diffusion,
�tk = 1/āk. We impose the condition that the charac-
teristic propensity before diffusion, āk, and the char-
acteristic propensity after diffusion, amin,k, satisfy

amin,k = 0.63āk. (A5)

This condition guarantees that 100% of molecules
reacting after diffusion are equivalent to 63% of the
molecules of A reacting with B (or vice versa) before
diffusion. Thus, the optimal time step is expressed as

�tk = 1
āk
= 0.63
amin,k

= 0.63Tmax
reack . (A6)

APPENDIX B: ESTIMATION OF PARAMETER χ
Consider an lth molecule of A that diffuses from a compart-

ment i to a compartment i′ during the time interval [t, t + �tk]. Our
algorithm estimates n̄Bikl, the average number of collisions of A with
molecules of B between compartments i and i′, as

n̄Bikl = Pcollision,i ⋅ nBikl + Pcollision,i′ ⋅ nBi′kl. (B1)

Here, nBikl and nBi′kl are the number of collisions (or molecules of B)
in compartments i and i′, respectively; and Pcollision,i and Pcollision,i′
are the probabilities of A colliding with any molecule of B in com-
partments i and i′, respectively. Let cBikl denote the concentration
of molecules B in the ith compartment at time k and cBi′k′ l be the
concentration of molecules B in the compartment i′ at time k′ = k
+ �tk assuming that no reaction occurs during time step �tk (our
algorithm calculates these concentrations in Step (V) of Sec. III).
Dividing (B1) by the volume of a compartment and the Avogadro
number, we obtain the average concentration of B molecules that
can react with A along its trajectory,

c̄Bikl = χcBikl + (1 − χ)cBi′k′ l, (B2)

where χ = Pcollision,i and 1 − χ = Pcollision,i′ . Thus, the propensity of the
lth molecule of A in the ith compartment to react with any molecule
of B or vice versa is defined as

aikl = krVkNAvc̄Aiklc̄Bikl. (B3)

Here, Vk is the volume of the ith compartment at the kth time step,
assuming that all compartments are similar (Vk = Vik, for all i).

Next, we consider a continuous random variable �tikl defined
in terms of the propensity aikl from the Gillespie algorithm,7

�tikl = 1
aikl

ln� 1rl �. (B4)

It describes the time that the lth particle diffuses from the com-
partment i during the time step �tk until it reacts. Depending on
the regime of the compartment, we make different assumptions for
(B2)–(B4) to define the values for the parameter χ:● Diffusion-dominated regime (Dak,�sk ≤ 0.1). In this regime,

molecules are likely to move to adjacent compartments or
even further. Since we do not have information about the
variations of concentrations between compartments i and i′
during the time step �tk, we assume similar probabilities for
collision in both compartments, i.e., set χ = 0.5 in (B2). With
this value, we obtain an estimate of the propensity aikl that,
consequently, gives us an estimate of the reaction time, �tikl,
for anymolecule l in (B4). This time is used in Step (B) of our
algorithm (Sec. III) to estimate the location of the reaction
via Brownian motion,

x(t + �tikl) = x(t) +�2D�tikl rn, (B5)

whereD is the diffusion coefficient of the particle, rn is a nor-
mal random displacement vector, and x(t) and x(t + �tikl)
are the position vectors of the particle at times t and t + �tikl,
respectively.

For infinitely fast diffusion, i.e., large diffusion coef-
ficient D or Dak,�sk � 0.1, our algorithm predicts
that molecules diffuse long distances because x(t + �tikl)− x(t)∝√D.

The value χ = 0.5 is also consistent with the limiting
scenario, Dak,�sk = 0.1, where molecules move to the adja-
cent compartments but not further. In the absence of both
large variations of concentrations between adjacent com-
partments (cik′ l ≈ ci′k′ l) and noticeable variations of concen-
trations in time due to diffusion or reaction because none of
those phenomena dominate when Dak,�sk = 0.1 (cikl ≈ cik′ l),
we express (B2) for any molecule A or B as

c̄ikl = cikl
2

+
ci′k′ l
2
≈ cikl

2
+
cikl
2
= cikl. (B6)

This concentration defines the propensity in a well-mixed
compartment with no other molecules coming from neigh-
bor compartments.● Reaction-dominated and intermediate regimes (Dak,�sk >
0.1). In these regimes, molecules are likely to stay in the
same compartment while diffusing. The average percent-
age of molecules that react in a compartment in a time step
�tk is 63%. If reactions happen fast in these regimes, then
the concentration of molecules left in the compartment i
after the reactions happen is 0.37 ⋅ cikl, i.e., χ = 0.37 in (B2).
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Then, in the compartment i′, the concentration of molecules
after diffusion and after reaction, i.e., the concentration of
molecules that will react in the time step following �tk,
is 0.63 ⋅ ci′k′ l.

For fast reactions, i.e., large deterministic reaction rate constant
kr or Dak,�sk � 0.1, the propensity defined in (B2) becomes very
large. Consequently, the reaction time �tikl takes small values and
molecules do not diffuse far via Brownian motion.

The value χ = 0.37 is consistent with the limiting scenario
Dak,�sk = 0.1, where molecules hardly move to adjacent com-
partments at short reaction times. In the absence of both high
variations of concentrations between adjacent compartments (cik′ l≈ ci′k′ l) and noticeable variations of concentrations in time due to
diffusion or reaction because none of those phenomena dominate
when Dak,�sk = 0.1 (cikl ≈ cik′ l), we express (B2) for any molecule
A or B as

c̄ikl = 0.37cikl + 0.63ci′k′ l≈ 0.37cikl + 0.63cikl = cikl. (B7)

This concentration defines the propensity in a well-mixed compart-
ment with no other molecules coming from neighboring compart-
ments.

APPENDIX C: TRANSITION BETWEEN
DIFFUSION-DOMINATED AND INTERMEDIATE
REGIMES, Dak,�sk = 0.1

The Damköhler number value of Dak,�sk = 0.1 has been sug-
gested in the past33,34 to delineate the diffusion-dominated and
intermediate regimes; CM relies on it to define the time step for
the diffusion-dominated regime. Below, we demonstrate analytically
and numerically that there is a transition from a regime with dom-
inant diffusion effects to a regime with noticeable reaction effects
when Dak,�sk ≈ 0.1, where �sk is the characteristic length of a
compartment at the kth time step.

1. Analytical explanation
● Suppose that a molecule moves from one compartment to

another without reaction via Brownian motion,

x(t + �tdiff) = x(t) +�2D�tdiff rn, (C1)

where �tdiff is the time during which the particle diffuses,
rn is a random number distributed normally; x(t) and
x(t + �tdiff) are the locations of the particle at times t and
t + �tdiff, respectively. The distance that a particle moves to
transition from one compartment of side �sk (s = x, y, z) to
an adjacent compartment is

�sk = rn
�

2D�tdiff ≈ 0.8
�

2D�tdiff,

where rn is the mean of the half-normal distribution,
rn = �2�π ≈ 0.8. Therefore, the average diffusion time is
estimated by

�tdiff = �s2k
1.28D . (C2)

● Let us take the average reaction time (or time step) defined as
the inverse of the average propensity in (A6) and assume that
the compartments are isotropic. Then, the average reaction
time is

�treac = 0.63
amin,k

= 0.63NAvVk
kr

= 0.63NAv�s3k
kr

. (C3)

Let us introduce a condition

�tdiff
�treac

= kr
0.806DNAv�sk

= 1. (C4)

Then, a molecule reacts before leaving the compartment
when �tdiff��treac > 1 or it leaves the compartment before
it reacts when �tdiff��treac < 1. Assuming that a parti-
cle reacts with another one of similar diffusion coefficient
and the compartment is isotropic, the compartment-scale
Damköhler number defined in Sec. II C has the general form

Dak,�sk = kr
6DNAv�sk

. (C5)

It follows from (C4) and (C5) that

Dak,�sk = 0.806�tdiff
6�treac

.

Condition (C4) implies

Dak,�sk = 0.806
6
≈ 0.134, (C6)

which is close to the reported value of Dak,�sk = 0.1.
2. Numerical calculation

Figure 12 exhibits the temporal evolution of the number of
C molecules in domain D ′ for three different scenarios: (a) the
diffusion-dominated regime with D = 10−11 m2/s, (b) transition
from the intermediate regime to the diffusion-dominated regime
with D = 2 × 10−11 m2/s, and (c) the intermediate regime with
D = 10−12 m2/s; the regimes are defined at the compartment
scale, Dak,�sk . The solution calculated with MCell36 differs from the
PDE solution and the solution estimated by our method when the
reaction effects become relevant and the well-mixed compartment
assumption breaks down. Figure 12(d) reveals that Dak,�sk = 0.1
is a good estimate to characterize the transition between interme-
diate and diffusion-dominated regimes. In the diffusion-dominated
regime (D = 10−11 m2/s), Dak,�sk < 0.1 during the entire process and
MCell yields a solution close to the PDE solution. In the intermedi-
ate regime (D = 2 × 10−11 m2/s), the MCell solution differs from the
PDE solution before time t ∼ 0.15 s and the temporal evolution of
the compartment-scale Damköhler number is consistent with that
finding, i.e., Dak,�sk > 0.1 for t < 0.15 s and Dak,�sk < 0.1 for t > 0.15 s.
Finally, in the intermediate regime (D = 10−12 m2/s), Dak,�sk > 0.1
during the entire process and the MCell solution differs from the
PDE solution.
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FIG. 12. Temporal evolution of the number of C molecules in domain D ′ for three different scenarios: (a) the diffusion-dominated regime with D = 10−11 m2/s, (b) transition
from the intermediate regime to the diffusion-dominated regime with D = 2 × 10−11 m2/s, and (c) the intermediate regime with D = 10−12 m2/s. In all cases, NA0 = NB0 = 600
and the results are based on the sample average of 100 trials. Also shown is (d) temporal evolution of the compartment-scale Damköhler numberDak,�sk , based on the sample
average of 100 trials; the dashed black line represents the transition Damköhler number between the intermediate regime (0.1 < Dak,�sk ≤ 10) and the diffusion-dominated
regime (Dak,�sk ≤ 0.1).

APPENDIX D: DOUGLAS-GUNN ADI METHOD
Spatiotemporal evolution of a species concentration f (x, t) is

described, at the continuum scale, by a reaction-diffusion equation,

@f
@t = D�@

2f
@x2 +

@2f
@y2 +

@2f
@z2 � + R(f , t), (D1)

where D is the diffusion coefficient, x = (x, y, z)� is the coordinate
vector, and R(f, t) denotes the reaction term. We solve this equation
by using the Alternating Direction Implicit (ADI) method,35

�1 − Ax

2
�f n∗ =�1 + Ax

2
+ Ay + Az�f n + �tRn, (D2a)

�1 − Ay

2
�f n∗∗ = f n∗ − Ay

2
f n, (D2b)

�1 − Az

2
�f n+1 = f n∗∗ − Az

2
f n + �t

2
(Rn+1 − Rn), (D2c)

where f n = f ijk = f (xi, yj, zk, tn), n = 0, . . ., tmax/�t, i = j = k = 1, . . .,
L/�s with s = x, y, z. The value of L/�s is an even number, and L is
the length in any direction x, y, and z of a cubic simulation domain.

In (D2),

Ax = νxδ2x , Ay = νyδ2y , Az = νzδ2z ,
where

νx = D�t
�x2 , νy = D�t

�y2 , νz = D�t
�z2

and, for i, j, k = 2, . . ., L/�s − 1,
δ2xf n = f ni−1,j,k − 2f ni,j,k + f ni+1,j,k,

δ2y f n = f ni,j−1,k − 2f ni,j,k + f ni,j+1,k,

δ2z f n = f ni,j,k−1 − 2f ni,j,k + f ni,j,k+1.

Finally, Rn ≡ R(f n) and Rn+1 = Rn + R′(f n) (f n+1 − f n).
For the problem formulated in Sec. IV, [A] = [B] ≡ f, where [A]

and [B] are the concentrations of species A and B, respectively. We
use the ADI method with f n = [A]n, Rn = −kr[A]n[B]n = −kr(f n)2,
and D = DA = DB. The initial conditions are

f 0i,j,k = [A](t = 0), for i = 0, . . . , imid, (D3)
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TABLE V. Computational times (CT) required by MCell with r int = 5 × 10−3 �m and r int = 0.1 �m and our method for different Damköhler number DaL to reach the steady state.
The superscript ∗ indicates the sample average of 100 trials. The time to reach the steady state (tkss ), the time step, and the computational time is in seconds.

MCell (rint = 5 × 10−3 �m) MCell (rint = 0.1 �m) Our method
Regime DaL tkss (s) Time step (s) CT (s) Time step (s) CT (s) CT (s)

Diffusion-dominated 0.01 1 10−2 1.1524 0.1 0.6367 0.0441
Diffusion-dominated/intermediate transition 0.1 1 10−3 1.7071 0.1 0.2149 0.0435
Intermediate 1 1 10−4 2.8125 0.1 0.0821 0.0421
Reaction-dominated/intermediate transition∗ 10 1.5 10−5 20.4414 0.1 0.0625 0.0405
Reaction-dominated∗ 100 6 10−6 228.9688 0.1 0.0521 0.0388

where imid = L/(2�x). The boundary conditions are

f n0,j,k = f n2,j,k, f nL��s+1,j,k = f nL��s−1,j,k,
f ni,0,k = f ni,2,k, f ni,L��s+1,k = f ni,L��s−1,k,
f ni,j,0 = f ni,j,2, f ni,j,L��s+1 = f ni,j,L��s−1. (D4)

Spatiotemporal evolution of the concentration of species C is com-
puted via (D2)–(D4) with [C] ≡ f, Rn = kr([A]n)2, D = DC, and
f 0i,j,k = 0.
APPENDIX E: COMPARISON OF COMPUTATIONAL
TIMES

Table V collates computational times for MCell and our
method. As expected, when MCell predicts reactions at a particle
level, i.e., when its interaction radius is set to rint = 5 × 10−3 �m,
the time steps are very short and the computational times are much
higher than the ones required by our method. As reaction effects
become dominant, the well-mixed assumption breaks down and
MCell represents a realistic scenario at a large computational cost
if rint is small. When the latter is set to a larger value (rint = 0.1 �m),
MCell works like a mesoscopic method, but its computational times
are still larger than those of our method. That is because of the
self-adaptive nature of our method in terms of the compartment
dimensions and the time step. In future versions, we will adapt our
algorithm to describe reactions at a particle level in order to rep-
resent the non-well-mixed scenarios with the accuracy similar to
MCell’s but at smaller computational times.
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