
Journal of Geophysical Research: Solid Earth

RESEARCH ARTICLE
10.1002/2012JB010016

Key Points:
• Analytical models for heat transfer in

fracture networks are derived
• Matrix diffusivity tensor is a key

parameter controlling fracture
temperature

• Classical models overestimate
fracture temperature and
time-to-equilibrium

Correspondence to:
D. M. Tartakovsky,
dmt@ucsd.edu

Citation:
Ruiz Martínez, Á., D. Roubinet, and D. M.
Tartakovsky (2014), Analytical models
of heat conduction in fractured
rocks, J. Geophys. Res. Solid Earth, 119,
doi:10.1002/2012JB010016.

Received 29 DEC 2012

Accepted 11 DEC 2013

Accepted article online 16 DEC 2013

Analytical models of heat conduction in fractured rocks
Á. Ruiz Martínez𝟏, D. Roubinet𝟏, and D. M. Tartakovsky𝟏

1Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, USA

Abstract Discrete fracture network models routinely rely on analytical solutions to estimate heat transfer
in fractured rocks. We develop analytical models for advective and conductive heat transfer in a fracture
surrounded by an infinite matrix. These models account for longitudinal and transverse diffusion in the
matrix, a two-way coupling between heat transfer in the fracture and matrix, and an arbitrary configuration
of heat sources. This is in contrast to the existing analytical solutions that restrict matrix conduction to the
direction perpendicular to the fracture. We demonstrate that longitudinal thermal diffusivity in the matrix
is a critical parameter that determines the impact of local heat sources on fluid temperature in the fracture.
By neglecting longitudinal conduction in the matrix, the classical models significantly overestimate both
fracture temperature and time-to-equilibrium. We also identify the fracture-matrix Péclet number, defined
as the ratio of advection timescale in the fracture to diffusion timescale in the matrix, as a key parameter
that determines the efficiency of geothermal systems. Our analytical models provide an easy-to-use tool for
parametric sensitivity analysis, benchmark studies, geothermal site evaluation, and parameter identification.

1. Introduction

Heat transfer in fractured rocks is a critical phenomenon that drives the performance of both enhanced
geothermal systems (wherein the heat transferred from hot dry rocks warms water circulating in fractures)
[Willis-Richards et al., 1996; Gelet et al., 2012] and enhanced oil recovery (wherein oil viscosity is reduced by
injecting hot water or steam, thus increasing rock temperature) [Al-Hadhrami and Blunt, 2001]. Heat conduc-
tion impacts the structural properties of ambient rocks by creating new or reopening existing microfractures
[Wang et al., 1989; Lin, 2002] and/or modifying rock alteration patterns [Xu and Pruess, 2001]. Its negative
effects are manifested in seismic activity induced by geothermal energy extraction [Gunasekera et al., 2003;
Chen and Shearer, 2011] and in nuclear waste leakage due to heat generated by radioactive decay [Xiang
and Zhang, 2012; Wang et al.,1981].

Heat transfer in fractured subsurface environments takes place in at least two distinct phases: fluid-filled
fractures and ambient solid matrix. Existing analytical and semianalytical models of heat conduction in
fractured rocks consider single isolated fractures [Meyer, 2004] and networks of equally spaced horizontal
[Bodvarsson and Tsang,1982] or vertical [Yang and Yeh, 2009; Gringarten et al., 1975] fractures. It is impor-
tant to recognize that single-fracture representations are important not only in their own right but also
as conceptual representations of mobile/immobile regions in natural fractured systems [Zhou et al., 2007].
Such models are amenable to the same mathematical treatment as their counterparts developed for mass
transport in discrete fracture networks. Examples of the latter include analytical [Tang et al., 1981], semiana-
lytical [Roubinet et al., 2012; Sudicky and Frind, 1982], and numerical [Roubinet et al., 2010] models of solute
transport due to advection and diffusion in fractures and pure diffusion in the host matrix. A key differ-
ence between heat and mass transfer in fractured environments is that heat readily diffuses through both
solid and fluid phases, whereas solutes spread largely in the fluid phase. While potentially important [e.g.,
Bataillé et al., 2006], investigation of variable-density flow and heat transport lies outside the scope of the
present study.

Analytical solutions, such as those mentioned above, provide significant physical insight into these trans-
port phenomena and act as an invaluable component in field-scale screening and management (decision
support) models. Yet they rely on a number of simplifying assumptions that might not be valid in a specific
application. While these solutions routinely neglect longitudinal diffusion in the matrix, its impact on heat
and mass transfer can be significant [Molson et al., 2007; Roubinet et al., 2012]. Likewise, longitudinal dif-
fusion in the matrix (which is typically neglected in analytical models) is an important mechanism of heat
transfer in a system of several fractures [Cheng et al., 2001; Baston and Kueper, 2009; Kolditz, 1995]. It can

RUIZ MARTíNEZ ET AL. ©2013. American Geophysical Union. All Rights Reserved. 1

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9356
http://dx.doi.org/10.1002/2012JB010016
http://dx.doi.org/10.1002/2012JB010016


Journal of Geophysical Research: Solid Earth 10.1002/2012JB010016

Figure 1. Single fracture embedded in an infinite matrix.

overestimate the thermal drawdown by up to 11% after 20 years of heat mining from HDRs in fractured
crystalline rocks [Kolditz, 1995].

In the present study, we develop an analytical model of heat transfer in individual fractures, which accounts
both for longitudinal and transverse diffusion in the matrix and for longitudinal and transverse dispersion
and diffusion in the fracture. Section 2 provides a mathematical formulation of the problem. Section 3 con-
tains its general solution in the Fourier-Laplace space. This solution is inverted analytically under conditions
that are typical of most geothermal reservoirs (section 3.2). We compare our analytical solutions with their
existing counterparts in section 4 and demonstrate their physical and practical implications in section 5.
Major conclusions from our study are summarized in section 6.

2. Problem Formulation

Consider fluid flow and heat transfer in a fracture with aperture 2b and infinite length that is embedded
in a homogeneous rock matrix with porosity 𝜙 (Figure 1). Following the standard practice in the field [e.g.,
Kolditz, 1995; Cheng et al., 2001; Baston and Kueper, 2009; Xiang and Zhang, 2012], we assume the steady
state flow to be single phase, incompressible, and laminar; the gravity effects and density variation with
temperature to be negligible; and the fracture walls to be smooth and parallel to each other. Some of these
assumptions can be relaxed, as discussed in the concluding remarks in section 6. Since the problem is sym-
metric about the plane z = 0, we restrict our analysis to the upper half of the computational domain, so
that the fracture is represented by Ωf = {(x, z) ∶ −∞ < x < ∞, 0 ≤ z ≤ b} and the matrix by
Ωm = {(x, z) ∶ −∞ < x < ∞, b ≤ z < ∞}. Fluid temperature in the fracture, T f (x, z, t), satisfies an
advection-dispersion equation

𝜕T f

𝜕t
+ u

𝜕T f

𝜕x
= Df

L

𝜕2T f

𝜕x2
+ Df

T

𝜕2T f

𝜕z2
+ f , 𝐱 ∈ Ωf (1)

where 𝐱 = (x, z)⊤ is the position vector, u is the fluid velocity, f (𝐱, t) is a source term, and Df
L

and Df
T

are the
longitudinal and transverse dispersion coefficients, respectively. For a fluid of density 𝜌f and heat capacity cf ,
these are given by Df

L
= 𝜆f

L
∕𝛼f + Ef

L
∕𝛼f and Df

T
= 𝜆f

T
∕𝛼f + Ef

T
∕𝛼f , where 𝛼f = 𝜌f cf , 𝜆

f
L

and 𝜆f
T

are the longitudi-
nal and transverse thermal conductivity coefficients, and Ef

L
and Ef

T
the longitudinal and transverse thermal

dispersion coefficients [Yang and Yeh, 2009].

The ambient matrix Ωm is assumed to be impervious to flow. The heat spreads throughout the matrix by
conduction, so that temperature in the matrix, T m(𝐱, t), is governed by a diffusion equation

𝜕T m

𝜕t
= Dm

L

𝜕2T m

𝜕x2
+ Dm

T

𝜕2T m

𝜕z2
, 𝐱 ∈ Ωm, (2)

where Dm
L
= 𝜆e

L
∕ce and Dm

T
= 𝜆e

T
∕ce are the longitudinal and transverse diffusion coefficients, ce is the effective

heat capacity of the matrix, and 𝜆e
L

and 𝜆e
T

the longitudinal and transverse thermal conductivity coefficients
in the matrix.

Let Ti(x, z) denote the initial temperature in the system. Then equations (1) and (2) are subject to initial
conditions

T f (x, z, 0) = Ti(x, z), T m(x, z, 0) = Ti(x, z). (3)
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Equation (1) is subject to boundary conditions

T f (±∞, z, t) = Ti,
𝜕T f

𝜕z
(x, 0, t) = 0, (4)

and equation (2) to boundary conditions

T m(±∞, z, t) = Ti, T m(x,∞, t) = Ti. (5)

At the fracture-matrix interface z = b, both the temperature and the heat flux are continuous, giving rise to
two interfacial conditions

T f = T m, 𝜙mDm
T

𝜕T m

𝜕z
= Df

T

𝜕T f

𝜕z
≡ r, z = b, (6)

where 𝜙m = 𝜙 + (1 − 𝜙)𝜌scs∕(𝜌f cf ); 𝜌s and cs are the density and heat capacity of the solid phase, respec-
tively; and r(x, t) is the (unknown) thermal flux between the fracture and matrix. Since the boundary value
problems (BVPs) (1)–(6) are invariant under transformations T = T j − Ti (j = f ,m), we set, without loss of
generality, Ti = 0.

In what follows, we first develop general solutions of BVPs (1)–(6), which are applicable to a wide range of
source functions f (𝐱, t). Then we proceed by analyzing these solutions in detail for f representing a point
injection of heat at x = 0. This setting is relevant to both natural and forced convection. For example, it
represents fluid injection through a well that intersects a fracture at x = 0. If the temperature of the injected
fluid is appreciably different from the initial temperature Ti of the host fluid, then this setup can be used
to characterize fractured rocks by collecting temperature logs at the well; Pehme et al. [2007, 2010] used
it to detect the presence of active fractures under natural groundwater flow conditions. Another example
described by the model is an enhanced geothermal system, in which the fluid velocity u is induced by, e.g.,
groundwater extraction at point x = xi > 0. If the fracture fluid is at the initial temperature Ti, the objective is
to evaluate how the temperature of the fluid extracted at x = xi is modified by warmer/colder water injected
at x = 0 under forced flow conditions.

3. Analytical Solutions

The fracture BVP consists of (1), (3), (4) and the second condition in (6). The matrix BVP is composed of (2),
(3), (5) and the second condition in (6). Let Gf (x, z; x′, z′; t − t′) and Gm(x, z; x′, z′; t − t′) denote the Green’s
functions associated with the fracture and matrix BVPs, respectively. Their analytical expressions are given in
Appendix A.

Our analytical models are first derived in the Fourier-Laplace (FL) space. For any suitable function A(x, t), we
define its Laplace and Fourier transformations as

Ā(x, s) =

∞

∫
0

A(x, t)e−stdt, (7a)

Ã(𝜉, s) = 1√
2𝜋

∞

∫
−∞

Ā(x, s)e−ix𝜉dx. (7b)

3.1. General Solution in Fourier-Laplace Space
We show in Appendix B that the FL transforms of the temperature in the fracture, T̃ f (𝜉, z, s), and matrix,
T̃ m(𝜉, z, s), are given by

T̃ f =
√

2𝜋
[

F1(𝜉, s)Δ (b; 𝜉; s)
F2(𝜉, s) + 1∕𝛽

− Δ (z; 𝜉; s)
]

(8)

and

T̃ m = −
√

2𝜋
𝛽

exp

(
−𝜓|z − b|√

Dm
T

)
Δ (b; 𝜉; s)

F2(𝜉, s) + 1∕𝛽
. (9)
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Here Δ (z; 𝜉; s) = ̃ (z, 0; 𝜉; s) − ̃ (z, b; 𝜉; s), ̃ (z, z′; 𝜉; s) is the antiderivative of f̃ G̃f with respect to z′, 𝜓 =√
Dm

L 𝜉
2 + s, 𝛽 = 𝜙m

√
Dm

T 𝜓 , and

F1 =
G̃f
𝜉
(s)

b
+ 2

b

∞∑
n=1

(−1)n cos(𝛼nz)G̃f
𝜉
(s + 𝛼2

n
D f

T
) (10a)

F2 =
G̃f
𝜉
(s)

b
+ 2

b

∞∑
n=1

(−1)2nG̃f
𝜉
(s + 𝛼2

n
D f

T
) (10b)

where Gf
𝜉
(s) is given by (A4) and 𝛼n = n𝜋∕b.

The FL transform of the temperature distribution in the fracture-matrix system, (8) and (9), is free of any sim-
plifying assumptions. It captures full (two-way) coupling of the fracture-matrix exchange and accounts for
longitudinal and transverse dispersion and diffusion in the fracture and matrix, respectively. It also enables
one to deal with arbitrary heat sources.

3.2. Explicit Models of Temperature in the Fracture
In the case of complete transverse mixing (Df

T
= ∞) and negligible longitudinal dispersion (Df

L
= 0) in

the fracture, the general FL solutions (8) and (9) can be inverted analytically, yielding a closed-form expres-
sion for the temperature distribution. These conditions are typical for fracture-matrix systems. Indeed, the
impact of longitudinal dispersion is limited to low velocities (≤ 10−7 m/s) [Tang et al., 1981], and transverse
dispersion is important only if Df

T
< Dm

T
[Roubinet et al., 2012].

Consider a continuous-in-time point source located at x = 0, such that f = T0u𝛿(x)(t), where T0 is the
temperature of the injected fluid (or the difference between the temperature of the injected fluid and its
initial value Ti if the latter is not zero) and (⋅) is the Heaviside function. In the limit of Df

T
→ ∞ and Df

L
→ 0,

(8) reduces to

T̃ f = 1√
2𝜋s

T0u

𝛽∕b + s + u𝜉i
. (11)

Let us define dimensionless ratio R, coefficient K , and critical time tmin as

R =
𝜙m

√
Dm

T Dm
L

ub
, K =

𝜙m

2b

√
Dm

T

Dm
L

, tmin = 104b2

𝜙2
m

Dm
T

. (12)

Note that since
√

Dm
T Dm

L is the geometric mean of the heat diffusivity in the matrix and u∕𝜙m is a scaled
advective velocity in the fracture, one can think of R as the inverse of a “fracture-matrix Péclet number” in
that it represents a ratio of advection timescale in the fracture to diffusion timescale in the matrix. We show
in Appendix C that for R > 1, K > 1, and t > tmin, the inverse FL transformation of (11) yields

T f (x, t) ∼ −
T0

2𝜋
R
Ei

(
− 1

4t∗d

)
+

T0

2
1


{
sgn(x) − erf

[
sgn(x)
2
√

t∗d

R√
]}

+
T0

𝜋
e−R2∕(4t∗

d
)

{
−
√
𝜋t∗d

2t∗
a

sgn(x)

R
√ +

2t∗
a
− 1

2t∗
a
3∕2

+
2t∗

a
− 3

12t∗
a
5∕2

+ 1
7∕2

[
R2(1 − 2t∗

a
)

24t∗d t∗
a

+ 3
40t∗

a

− 3
16t∗

a
2

]
+

R2(5 − 6t∗
a
)

80t∗d t∗
a

29∕2
+

R4(2t∗
a
− 1)

320t∗d
2t∗

a
211∕2

}
(13)

where  = R2+1 and t∗
a
= tu∕x and t∗

d
= tDm

L
∕x2 are the dimensionless advection and (longitudinal) diffusion

times, respectively.

The conditions R > 1, K > 1, and t > tmin are adequate for geothermal studies: Typical thermal diffusivity
in rocks is Dm = (10−6m2∕s) [Baston and Kueper, 2009], and typical prediction times are larger than hours.
Therefore, (13) provides a robust explicit prediction of spatiotemporal evolution of temperature in an infinite
fracture. It accounts for both longitudinal and transverse diffusion in the matrix.
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(b)

(a)

Figure 2. Distributions of the relative temperature along the fracture for flow velocity u = 1.4 × 10−4 m/s and different values of the
dimensionless parameters R and K , computed with the analytical and numerical solutions. The liquid is injected at x = 0 during (a)
t = 1 month and (b) t = 1 year.

In lieu of another example, we consider a pulse injection of duration tp. This corresponds to the source term
f = T0u𝛿(x)[(t) −(t − tp)], and fracture temperature

T f
p
(x, t) = T f (x, t)(t) − T f (x, t − tp)(t − tp), (14)

where T f (x, t) is given by (13).

3.3. Accuracy of Analytical Solutions
Our analytical solutions, e.g., (11), are exact in the Fourier-Laplace space. Their analytical inversion in
Appendix C is approximate since it is based on truncation of the Taylor series involved. We assess the accu-
racy of the resulting analytical solutions, e.g., (13), by comparing them with their counterparts computed
with numerical inversion of the corresponding expressions in the Fourier-Laplace space, e.g., (11). The
latter is accomplished by using the de Hoog et al. [1982] algorithm and the MATLAB routine ifft to com-
pute the inverse Laplace and Fourier transforms, respectively. In the simulations reported below we set
Dm

L
= Dm

T
= 9.16 × 10−7 m2/s, 𝜙 = 0.1, 𝜌s = 2757 kg/m3, cs = 1180 J/kgK and 𝜙m = 0.78.

Figures 2 and 3 exhibit distributions of the relative fracture temperature T f
r
= T f∕T0 for two transport config-

urations. The first (Figure 2) corresponds to flow with velocity u = 1.4×10−4 m/s in a fracture whose aperture
is 2b = 1.0 × 10−3, 5.0 × 10−4, and 2.0 × 10−4 m or R = 10, 20, and 50. The second (Figure 3) corresponds to
u = 1.4 × 10−3 m/s, and 2b = 1.0 × 10−3, 5.0 × 10−4, and 2.0 × 10−4 m or R = 1, 2 and 5. Both cases demon-
strate the agreement between the analytical and numerical solutions for t = 1 month (Figures 2a and 3a)
and 1 year (Figures 2b and 3b), which is to be expected since the conditions of validity of our solutions are
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(a)

(b)

Figure 3. Distributions of the relative temperature along the fracture for flow velocity u = 1.4 × 10−3 m/s and different values of the
dimensionless parameters R and K , computed with the analytical and numerical solutions. The liquid is injected at x = 0 during (a)
t = 1 month and (b) t = 1 year.

fulfilled. Although not shown here, this agreement deteriorates for R < 1, a condition that is rarely (if ever)
met in the field (see the discussion in the previous section).

4. Comparison With Existing Models

In this section we demonstrate that under certain conditions/assumptions our solutions reduce to the
classical solutions of Tang et al. [1981] for semi-infinite fractures.

4.1. No Dispersion in Semi-Infinite Fracture
Setting Df

L
= 0, Dm

L
= 0, and Df

T
→ ∞ (the complete mixing assumption) reduces our general solution (8) to

T̃ f = −Δ (z; 𝜉; s)
𝛼s + u𝜉i

(15)

where 𝛼s = 𝜙m

√
Dm

T s∕b + s. For a point injection of fluid with temperature T0, i.e., for f = T0u𝛿(x)(t), this
gives rise to the Laplace transform of temperature in the fracture,

T̄ f =
T0

s
exp

(
−
𝛼sx

u

)
, x ≥ 0. (16)

This is identical to the analytical solution [Tang et al., 1981] for heat transfer in a semi-infinite fracture with a
fixed temperature T0 at the fracture’s inlet x = 0. This solution ignores longitudinal dispersion in the fracture
and is referred to by Tang et al. [1981] as “transient solution with D = 0”.
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4.2. Longitudinal Dispersion in Semi-Infinite Fracture
Setting Dm

L
= 0 and Df

T
→ ∞ reduces our general solution (8) to

T̃ f = − Δ (z; 𝜉; s)
𝛼s + Df

L𝜉
2 + u𝜉i

. (17)

The “general transient solution” of Tang et al. [1981] is recovered from (17) by choosing the source term to be

f̄ =
T0

s

√
u2 + 4Df

L𝛼s 𝛿(x). (18)

This choice accounts for the “lost” part of the injected flux due to the longitudinal diffusion in the negative
half (−∞ < x < 0) of the infinite fracture. The resulting Laplace transform of temperature in the fracture is

T̄ f =
T0

s
exp

[
−

(√
u2

4
+ Df

L𝛼s −
u
2

)
x

Df
L

]
, x ≥ 0. (19)

5. Results and Discussion

The subsequent discussion serves to demonstrate the importance of accounting for two-dimensional
heat conduction in rock matrix. In this discussion, we refer to (13) and (16) as “2-D solution” and
“1-D solution,” respectively.

The results below correspond to continuous point injection (x = 0) of a fluid whose temperature T0 is either
warmer (T0 > 0) or colder (T0 < 0) than the host fluid (the initial temperature Ti = 0). Unless specified
otherwise, a shale matrix has the following characteristics: Dm

L
= Dm

T
= 9.16×10−7 m2/s, 𝜙 = 0.1, 𝜌s = 2757

kg/m3, and cs = 1180 J/kg K. Taking the fluid to be water (𝜌f = 1070 kg/m3 and cf = 4050 J/kg K) yields
𝜙m = [𝜙 + (1 − 𝜙)𝜌scs∕(𝜌f cf )] = 0.78.

The results are reported in terms of the relative fracture temperature

T f
r
(x, t) = T f (x, t)∕T0, (20)

which ranges from 0 (temperature is at its initial value Ti) to 1 (temperature at the local heat source).

5.1. Effects of Heat Conduction in Matrix
Figure 4 depicts the temporal evolution of relative temperature T f

r
at the distance x = 0.5 m from the heat

source. Flow velocity in the fracture is set to u = 1.4 × 10−4 m/s, and fracture aperture to 2b = 2 × 10−4 m
(Figure 4a), 5 × 10−4 m (Figure 4b), and 10−3 m (Figure 4c). This choice of fracture apertures yields the values
of the dimensionless ratio R = 50 (Figure 4a), R = 20 (Figure 4b), and R = 10 (Figure 4c).

In the diffusion-dominated regime (Figure 4a), the 1-D solution (no longitudinal heat conduction in the
matrix) underestimates the relative temperature at short times and significantly overestimates it at later
times. The longitudinal heat conduction in the matrix (the 2-D solution) causes the fracture temperature to
rise at earlier times and shows that the local heat source impacts on the fracture temperature (T f

r
> 0) at

much earlier times; after this initial time interval, the 1-D solution predicts a much larger rate of increase of
the fracture temperature than the 2-D solutions do. This is because heat is transferred from the fracture into
the matrix in the vicinity of the localized injection, diffuses longitudinally in the matrix, and then returns
to the fracture at locations far from the injection. Our 2-D solution captures this heat transfer mechanism in
the diffusion-dominated regime, while the classical 1-D solution does not. Figures 4b and 4c show that this
mechanism does not occur in advection-dominated regimes.

In all heat transfer regimes (Figures 4a–4c), both temperature in the fracture and the time-to-equilibrium
increase as the matrix diffusion coefficient Dm

L
decreases. The smaller the value of R (i.e., the larger the

fracture-matrix Péclet number), the more pronounced this effect becomes. Ignoring longitudinal diffusion
in the matrix (the 1-D solution) significantly underestimates the fracture-matrix transfer and significantly
overestimates both temperature in the fracture and the time-to-equilibrium.

Overestimation of the time-to-equilibrium has important practical implications, since determination of the
time it takes a fracture-matrix system to reach thermal equilibrium (steady state) is essential for estimation
of the matrix penetration depth. The latter determines the adequacy of conceptual representations of
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(a)

(b)

(c)

Figure 4. Relative temperature in the fracture T f
r
, as a function of advection time t∗

a
= tu∕x, computed with the 1-D solution (red dotted

lines) and the 2-D solution for Dm
L
= 9.16×10−9 (green dash-dotted lines), 9.16×10−8 (blue dashed lines), and 9.16×10−7 m2/s (black

solid lines). Fracture aperture 2b is set to (a) 2 × 10−4 m, (b) 5 × 10−4 m, and (c) 10−3 m.
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(a)

(b)

(c)

Figure 5. Isolines of the geothermal performance Pf in the space of advection (t∗
a
) and diffusion (t∗

d
) times, for (a) R = 1, (b) R = 2, and

(c) R = 5.
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(a)

(b)

Figure 6. Isolines of the geothermal performance Pf in the space of diffusion time t∗
d

and the inverse fracture-matrix Péclet number R,
for (a) 1 ≤ R ≤ 20 and (b) 1 ≤ R ≤ 5.

fracture-matrix systems, i.e., enables one to decide whether a single-fracture-in-infinite-matrix model is suf-
ficient or more evolved fracture-network models are to be used instead. Our 2-D solution, which accounts
for longitudinal heat conduction in the matrix, demonstrates that heat sources in a fracture affect much
smaller regions of the adjacent matrix than would be predicted with the classical 1-D solution, which ignores
longitudinal conduction. Consequently, a conceptualization of heat dissipation in fractured rocks as a
system of isolated fractures in infinite matrix might be adequate for geothermal studies.

5.2. Performance of Geothermal Systems
Relative temperature drawdown, Pf (x, t) = 1 − T f

r
(x, t), is an effective performance measure of geothermal

systems. It quantifies the degree to which temperature at a point x is affected (changes from initial tempera-
ture Ti) by injection of a fluid with temperature T0 at another point (say, x = 0). The value Pf = 0 corresponds
to zero cooling/heating efficiency (the fluid extracted at point x has the same temperature as that of the
fluid injected at x = 0), and Pf = 1 represents the maximum cooling/heating efficiency (extracted fluid is
at its initial temperature). Its values provide a consistent measure of performance regardless of whether the
injected fluid is cooler (T0 < 0) or warmer (T0 > 0) than the host fluid.

Figure 5 exhibits Pf (x, t) at x = 10 m for flow velocity u = 1.4 × 10−3 m/s and fracture aperture 2b = 10−3 m
(Figure 5a), 5 × 10−4 (Figure 5b), and 2 × 10−4 m (Figure 5c). These aperture values translate into the inverse
fracture-matrix Péclet number R = 1, 2, and 5, respectively. Isolines of Pf (x, t) are plotted as a function of
advection (t∗

a
= tu∕x) and diffusion (t∗

d
= tDm

L
∕x2) times. This corresponds to physical time t ranging from

5 × 104 s to 109 s (from hours to 30 years).
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Geothermal performance increases with R: it is lowest in the advection-dominated regime (Figure 5a) and
highest in the diffusion-dominated regime (Figure 5c). In a given regime (as characterized by the value of R),
the performance varies only slightly with t∗

a
, i.e., it is relatively insensitive to convective properties of frac-

tured rocks. This is to be expected from Figure 4, which shows that temperature in the fracture stabilizes
quickly as the advection time t∗

a
increases, so that subsequent increases in t∗

a
have a limited impact on

system performance.

When R = (1), the geothermal performance Pf depends strongly on the diffusion time t∗
d
, with high perfor-

mance occurring at small values of t∗
d
. Therefore, the cooling/heating efficiency increases with the reservoir

size (the distance x between fluid’s injection and extraction) and decreases with exploitation time t. As R
increases (from R = 1 in Figure 5a to R = 5 in Figure 5c), the dependence of the geothermal performance Pf

on t∗
d

diminishes, leading to stable and efficient configurations in the diffusion-dominated regime. For large
values of t∗

d
(the top of Figures 5a–5c), the geothermal performance is slightly higher at small values of t∗

a
.

This implies that for rocks with large thermal diffusivity Dm
L

(large values of t∗
d
), the largest changes in fluid

temperature in the fracture occur at early times ta and the geothermal performance can be improved by
decreasing flow velocity u.

Figure 6 illustrates these points further. Extracted fluid remains at its initial temperature regardless of the
temperature of injected fluid for t∗

d
< 10−2. The latter inequality holds for small values of Dm

L
, short exploita-

tion times t, and/or large distances (x) between the injection and extraction points. This nearly perfect
geothermal performance (Pf > 0.9) is observed when R > 7. In other words, the diffusion-dominated
regime is best suited for geothermal exploitation, since it limits the thermal impact of injected fluids on the
host fluid in a fracture by maximizing heat dissipation into the matrix. In the advection-dominated regime
with R < 5 (Figure 6b), the geothermal performance depends strongly on t∗

d
, with small values of t∗

d
(short

exploitation times t or/and large injection-to-extraction distances x) improving Pf .

6. Conclusions

We developed analytical models for heat transfer in a single fracture surrounded by an infinite matrix. These
models account for advection and hydrodynamic dispersion in the fracture, longitudinal and transverse
conduction in the matrix, and a two-way coupling between heat transfer in the fracture and matrix. They
also handle any heat source configuration, such as distributed or localized heat sources of arbitrary duration.

In their most general form, these solutions are given by their Fourier and Laplace transforms and require
numerical inversion. Under conditions that are typical of geothermal reservoirs, these solutions are inverted
analytically, giving rise to an explicit closed-form model of heat transfer in fractured rocks. By accounting
for two-dimensional heat conduction in rock matrix, this model represents a significant advance over the
existing analytical solutions that restrict matrix conduction to the direction perpendicular to the fracture.
Our analysis leads to the following major conclusions.

1. Longitudinal thermal diffusivity in the matrix is a critical parameter that determines the impact of local
heat sources on fluid temperature in the fracture.

2. By neglecting longitudinal conduction in the matrix, the classical models significantly overestimate both
fracture temperature and time-to-equilibrium.

3. The inverse fracture-matrix Péclet number R and diffusion timescale t∗
d

are two parameters that determine
the efficiency of geothermal systems.

4. The diffusion-dominated regime (R > 7) is ideal for geothermal exploitation, since it limits the thermal
impact of injected fluids on the host fluid in a fracture by maximizing heat dissipation into the matrix.

5. In the advection-dominated regime (R < 5), the geothermal performance depends strongly on t∗
d
. It is

highest at small values of t∗
d

(short exploitation times and/or large injection-to-extraction distances).

Our analytical models provide an easy-to-use tool for parametric sensitivity analysis, benchmark studies,
and validation of numerical simulations. They can be used for geothermal site evaluation and parameter
identification. They will improve field-scale studies of geothermal reservoirs, which rely on discrete frac-
ture network approaches and consider only one-dimensional heat conduction in the rock. Our solutions
obviate the need for this strong and limiting assumption, while retaining the analytic simplicity of the
original approaches.
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In the follow-up studies, we will generalize these analytical models by incorporating the following
phenomena.

1. Fracture wall roughness. The numerical simulations of Neuville et al. [2010] demonstrated the effects of
fracture wall roughness on heat transfer in fractured rocks. Treating fracture walls as random fields, and
combining our solutions with stochastic domain mappings [Xiu and Tartakovsky, 2006; Tartakovsky and
Xiu, 2006; Park et al., 2012] and stochastic homogenization [Tartakovsky et al., 2003], will enable us to
investigate these effects in a computationally efficient semi-analytical manner. The latter step will rely on
the Green’s functions derived in this study.

2. Heat transfer in fracture networks. Multiscale modeling approaches to flow and transport in fractured
rocks [e.g., Dershowitz and Miller, 1995; Cvetkovic et al., 2004; Roubinet et al., 2010, 2013] combine a dis-
crete fracture network (DFN) representation at the field scale with analytical solutions at the fracture scale.
We will embed our analytical solutions into particle-tracking DFN models to represent rock conduction
effects at the field scale with optimized computational cost and representation accuracy.

Appendix A: Green’s Functions

A1. Green’s Function for Fracture BVP

We represent the two-dimensional Green’s function Gf as the product of two one-dimensional Green’s
functions, Gf = Gf

x
(x; x′; t − t′)Gf

z
(z; z′; t − t′) [Carslaw and Jaeger, 1959]

Gf
x
= 1

2
√
𝜋Df

L(t − t′)
exp

[
−[x′ − x + u(t − t′)]2

4Df
L(t − t′)

]
(A1)

and

Gf
z
= 1

b
+ 2

b

∞∑
n=1

e−𝛼2
n Df

T
(t−t′) cos(𝛼nz) cos(𝛼nz′) (A2)

where 𝛼n = n𝜋∕b. The Fourier Laplace (FL) transform of Gf has the form

G̃f =
G̃f
𝜉
(s)√

2𝜋b
+
√

2
𝜋

∞∑
n=1

cos(𝛼nz) cos(𝛼nz′)
b

G̃f
𝜉
(s + 𝛼2

n
Df

T
) (A3)

where

G̃f
𝜉
(s) = 1

s + 𝜉2Df
L + u𝜉i

. (A4)

A2. Green’s Function for Matrix BVP

The Green’s function Gm is computed as the product of one-dimensional Green’s functions, Gm = Gm
x
(x; x′;

t − t′)Gm
z
(z; z′; t − t′),

Gm
x
= 1

2
√
𝜋Dm

L (t − t′)
exp

[
−(x′ − x)2

4Dm
L (t − t′)

]
(A5)

and

Gm
z
= e−(z′−z)2∕𝜔 + e−(z′+z−2b)2∕𝜔

2
√
𝜋Dm

T (t − t′)
(A6)

where 𝜔 = 4Dm
T
(t − t′). The FL transform of Gm is

G̃m = e
−𝜓|z−z′|∕√Dm

T + e
−𝜓|z+z′−2b|∕√Dm

T

2
√

2𝜋Dm
T 𝜓

(A7)

where 𝜓 =
√

Dm
L 𝜉

2 + s.

RUIZ MARTíNEZ ET AL. ©2013. American Geophysical Union. All Rights Reserved. 12

http://dx.doi.org/10.1002/2012JB010016


Journal of Geophysical Research: Solid Earth 10.1002/2012JB010016

Appendix B: Integral Solutions of BVPs

Solutions of the fracture and matrix BVPs, expressed in terms of the Green’s functions, are

T f (x, z, t) =

t

∫
0

∞

∫
−∞

r(x′, t′)Gf (.; x′, b; .)dx′dt′

+

t

∫
0

b

∫
0

∞

∫
−∞

f (x′, z′, t′)Gf (.; .; .)dx′dz′dt′

(B1)

and

T m(x, z, t) = − 1
𝜙m

t

∫
0

∞

∫
−∞

r(x′, t′)Gm(.; x′, b; .)dx′dt′. (B2)

Their FL transforms are

T̃ f =
√

2𝜋
⎛⎜⎜⎝r̃G̃f |z′=b +

b

∫
0

f̃ G̃f dz′
⎞⎟⎟⎠ (B3)

T̃ m = −

√
2𝜋 r̃G̃m|z′=b

𝜙m

, (B4)

where G̃f and G̃m are given by (A3) and (A7), respectively.

The FL transform of the fracture-matrix heat transfer, r̃(𝜉, s), is obtained from the continuity condition at the
interface, T̃ f (𝜉, z = b, s) = T̃ m(𝜉, z = b, s).

Appendix C: Fourier-Laplace Inversions

Since T̃ f (𝜉, s) = T̃∗(−𝜉, s) (where T̃∗ denotes the conjugate of T̃ f ), the inverse Fourier transform of T̃ f is

T̄ f = 1√
2𝜋

∞

∫
0

[
T̃∗(𝜉, s)e−ix𝜉 + T̃ f (𝜉, s)eix𝜉

]
d𝜉 (C1)

and its inverse Laplace transform is

T f = 1√
2𝜋

∞

∫
0

[
L−1[T̃∗]e−ix𝜉 + L−1[T̃ f ]eix𝜉

]
d𝜉 (C2)

where L−1[ ] represents the inverse Laplace operator.

C1. Inverse Laplace Transform of ̃T
f

We decompose the FL transform T̃ f in (11) into simple fractions

T̃ f = A
4∑

i=1

Xi

𝜓 + bi

, A =
T0u√

2𝜋
(C3)

where b1 = B∕2 +
√

G − Di, b2 = B∕2 −
√

G − Di, b3 = −b4 =
√

C, X1 = 1∕[(b1 − b2)(C − b2
1
)], X2 =

−1∕[(b1−b2)(C−b2
2
)], X3 = −1∕{2

√
C[(C+b1b2)−(b1+b2)

√
C]}, X4 = 1∕{2

√
C[(C+b1b2)+(b1+b2)

√
C]}, and

B =
𝜙m

√
Dm

T

b
, C = Dm

L
𝜉2, D = u𝜉, G = B2

4
+ C. (C4)

Since only 𝜓 =
√

C + s depends on the Laplace variable s, and noticing that
∑4

i=1
Xi = 0, the inverse Laplace

of T̃ f is

T̂ f = −Ae−Ct

4∑
i=1

Xibie
b2

i
terfc(bi

√
t) (C5)
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which can be recast in terms of the function w(z) = e−z2 erfc(−iz) of a complex variable z [Faddeeva and
Terent’tev, 1961] as

T̂ f =
AB

√
C

B2C + D2

[
1 − erfc(

√
Ct)

]
− ADi

B2C + D2

[
1 − e−Ctw(ib1

√
t)
]

+ AX2b2e−Ct
[

w(ib1

√
t) − w(ib2

√
t)
]
.

(C6)

C2. Inverse Fourier Transform of ̂T
f

Recalling that b1 and b2 in (C6) are given by

b1 =
B
2
+

√√
G2 + D2 + G

2
− i

√√
G2 + D2 − G

2
(C7)

b2 =
B
2
−

√√
G2 + D2 + G

2
+ i

√√
G2 + D2 − G

2
, (C8)

expanding the square roots into Taylor series, and requiring G ≫ D leads to

b1 ≈
B
2
+
√

G + D2

4G
− iD

2
√

G
, b2 ≈

B
2
−
√

G + D2

4G
+ iD

2
√

G
. (C9)

Requiring B2∕4 ≫ C, and expanding the square roots into Taylor series, yields

b1 ≈ B − i
D
B
, b2 ≈ −C

B
− D2

B3
+ i

D
B
. (C10)

Similarly, X2b2 in (C6) is approximated by

X2b2 ≈
1
B2

− iD
B2C + D2

. (C11)

Finally, for small values of 𝜉, we approximate b1 and b2 in the arguments of w(⋅) with b1 ≈ B and b2 ≈ iD∕B,
so that

w(ib1

√
t) ≈ eB2 terfc(B

√
t)

w(ib2

√
t) ≈ e−D2 t∕B2

erfc(iD
√

t∕B).
(C12)

For t > 104∕B2, expanding erfc(iD
√

t∕B) into a Taylor series yields

w(ib1

√
t) ≈ 0

w(ib2

√
t) ≈ e−𝜀2

[
1 −

(
2√
𝜋
𝜀 + 2

3
√
𝜋
𝜀3 + 1

5
√
𝜋
𝜀5

)
i

]
,

(C13)

where 𝜀 = D
√

t∕B. With these approximations, (C6) is replaced with

T̂ f ≈
A
√

C
B2𝜅

erf(
√

Ct) − ADi
B2𝜅

− A(𝜅 − Di)
B2𝜅

[
1 −

(
2𝜀√
𝜋
+ 2𝜀3

3
√
𝜋
+ 𝜀5

5
√
𝜋

)
i

]
e−𝜅t (C14)

where 𝜅 = C + D2∕B2. Using (C2) to compute the inverse Fourier transform leads to (13).

C3. Limits of Applicability of Analytical Model (13)

The Fourier transform of temperature in the fracture (C14) and its exact analytical inversion (13) are derived
under the following three conditions:

1. B2∕4 + C ≫ D
2. B2∕4 ≫ C
3. t > 104∕B2.

In what follows, we demonstrate the general applicability of these conditions.
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Condition 1: Solving the first condition B2∕4 + C ≫ D as an equation results in

𝜉2 = u2

2Dm
L

2
−
𝜙2

m
Dm

T

4b2Dm
L

± u
2Dm

L
2

√
u2 −

𝜙2
m

Dm
L Dm

T

b2
. (C15)

Thus, 𝜉 is real if

𝜙m

√
Dm

L Dm
T

ub
> 1. (C16)

Condition 2: Recalling (C4), this condition implies 𝜉2 ≪ 𝜙2
m

Dm
T
∕(4Dm

L
b2). When 𝜉 > 1, this is equivalent to

𝜉 < 𝜙m

√
Dm

T ∕Dm
L ∕(2b), which gives

𝜙m

2b

√
DT

m

DL
m

> 1. (C17)

Condition 3: For B2t = 104, eB2 terfc(
√

B2t) ≈ 0.0056 and we treat it as 0. This yields a third constraint,

t >
104b2

𝜙2
m

Dm
T

. (C18)
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