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a b s t r a c t

Complex topology of fracture networks and interactions between transport processes in a fracture and
the ambient un-fractured rock (matrix) combine to render modeling solute transport in fractured
media a challenge. Classical approaches rely on both strong assumptions of either limited or full
diffusion of solutes in the matrix and simplified fracture configurations. We analyze fracture-matrix
transport in two-dimensional Sierpinski lattice structures, which display a wide range of matrix block
sizes. The analysis is conducted in several transport regimes that are limited by either diffusion or block
sizes. Our simulation results can be used to validate the simplifying assumptions that underpin classical
analytical solutions and to benchmark other numerical methods. They also demonstrate that both
hydraulic and structural properties of fractured rocks control the residence time distribution.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Solute transport in fractured porous media often exhibits
anomalous (non-Fickian) characteristics that, if ignored, can com-
promise both site characterization and model reliability (Berkowitz,
2002; Carrera et al., 1998; Neuman, 2005; Zhou et al., 2007). Spatial
and/or statistical heterogeneity of fracture networks and interac-
tions between transport processes in a fracture and the ambient un-
fractured rock (matrix) are two mechanisms that are responsible for
this non-Fickian behavior. The former affects hydraulic properties of
fractured rocks (Bonnet et al., 2001; Bour and Davy, 1999; Davy
et al., 2006, 2010; de Dreuzy et al., 2001; Doughty and Karasaki,
2002), while the latter controls long-term transport characteristics
(Birgersson and Neretnieks, 1990; Dershowitz and Miller, 1995;
Haggerty et al., 2000; Neretnieks, 1980). Solutes are delayed by
exchange between the high-velocity fracture paths and the poorly
permeable matrix as well as by solute adsorption within the matrix.
Fracture-matrix exchange is driven by (1) solute dynamics within
the fractures conditioning the transfer to the matrix blocks
(Carrera et al., 1998; Hamm and Bidaux, 1996; Hassanzadeh and
Pooladi-Darvish, 2006), (2) geometrical structures of the blocks
(Crank, 1975; Dershowitz and Miller, 1995; Warren and Root, 1963)
and (3) heterogeneity of transfer processes and porosity (Bai et al.,
1993; Haggerty and Gorelick, 1995; Lagendijk et al., 2000).

While both the network structure and natural (or experimen-
tal) physical conditions affect fracture-matrix exchange and thus
the residence time distribution, classical models generally focus
on just one of these two mechanisms and ignore (or strongly
simplify) the other. On the one hand, the dual-porosity approach
assumes that fractures and ambient matrix can be independently
homogenized and that exchange between them depends on a
single coefficient (Barenblatt and Zheltov, 1960; Warren and Root,
1963). On the other hand, the single fracture approach reduces
fracture networks to a single fracture or a set of parallel fractures
embedded in a homogeneous matrix (Sudicky and Frind, 1982;
Tang et al., 1981). These approaches employ simplified models of
diffusion in matrix blocks, ignoring (or simplifying) the effects of
block shapes and sizes, and fracture hydraulics. More recent
modeling frameworks employ shape factors (Hassanzadeh et al.,
2009; Lim and Aziz, 1995), multi-rate mass transfer (Haggerty
and Gorelick, 1995) or memory functions (Carrera et al., 1998) to
account for the fracture-matrix exchange in more realistic set-
tings. Yet their reported applications are mostly limited to
idealized systems, such as layered, cylindrical or spherical
exchange. Roubinet et al. (2010) proposed a particle-tracking
algorithm that is especially adapted to heterogeneous fractured
porous media with multiple matrix block sizes.

We deploy the Roubinet et al. (2010) algorithm (code PERFORM)
to simulate solute migration in fracture networks exhibiting an
evolving range of matrix block distribution, in several transport
regimes. Our analysis aims to (1) establish benchmark solutions
of solute transport in complex fractured media characterized by a
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distribution of matrix bock sizes, (2) evaluate the validity of
classical modeling concepts, and (3) identify characteristic
diffusion regimes of solute transport in complex fractured
media. Section 2 contains a formulation of benchmark problems,
and the numerical algorithm for solving these problems is
described in Section 3. The resulting breakthrough curves are
presented in Section 4, and used in Section 5 to identify various
diffusion regimes.

2. Formulation of benchmark problems

The Sierpinski lattices are hierarchical fractal structures that
exhibit high degrees of connectivity imposed by a set of contin-
uous elements (Doughty and Karasaki, 2002). Several studies have
demonstrated that the high degree of connectivity of these
structures provides an adequate representation of the heteroge-
neity of natural fractured media (Davy et al., 2006; de Dreuzy and
Davy, 2007; Doughty and Karasaki, 2002; Sahimi, 1993). The
Sierpinski lattices are generated by recursively shrinking and
replicating a pattern through scales. Structures are controlled by
a density parameter directly linked to the fractal dimension of the
resulting structure (de Dreuzy and Davy, 2007) and the level of
recursive divisions k. We are mostly interested in the extent of
the block-scale distribution parameterized by k and consider
three structures with k¼1, 2, or 3 (Fig. 1).

The basis configuration (k¼1) corresponds to a regular
fracture network, which is used as a reference. Increasing the
magnitude of k (k¼2 and k¼3) increases structure hetero-
geneity. In what follows, we refer to the three block geometries
generated by the case k¼3 in Fig. 1 as large, medium and small
blocks.

Unless specified otherwise, simulations are conducted with
the following parameters: the domain length is set to L¼100 m,
the fracture aperture to 2b¼ 10#4 m, the matrix porosity to
fm ¼ 0:1, and the matrix diffusion coefficient to Dm ¼ 10#8 m2=s
(corresponding to molecular diffusion coefficient multiplied by a
tortuosity factor). Periodic boundary conditions and a uniform
head gradient (rh) are applied in the vertical and horizontal
directions respectively. Simulations are conducted for several
values of the head gradient corresponding to the fracture flow
velocity v¼ 10#1 m=s (Fast Flows), 10#3 m=s (Medium Flows) and
10#4 m=s (Slow Flows) for the simplest configuration (Fig. 1,
k¼1). These velocities have been selected to identify character-
istic regimes and their extension for the range of velocities
typically used for field tracer tests, i.e., 10#2210#6 m=s (Zhou
et al., 2007).

Solute transport is analyzed through the residence time dis-
tribution within the domain. Particles are injected at the inlet (left
side of the domain) within the fractures and their residence time
is recorded at the domain outlet. The residence-time distributions

from 10.000 particles are similar to those obtained from 100.000
particles and are presented in Section 4.

3. Simulation algorithm

Classical solute transport models rely on simplified network
structures and/or diffusion regimes. To simulate solute transport
on a large range of structural and hydraulic properties, we use the
particle-tracking approach of Roubinet et al. (2010) that is
specifically designed for highly heterogeneous fractured porous
media. This modeling method enables one to handle (1) hetero-
geneous hydraulic properties of fracture networks, (2) unlimited
or limited diffusion within matrix blocks, and (3) a wide distribu-
tion of matrix block sizes.

For a particle advecting during the time ta in the fracture, its
diffusion time tdiff in the surrounding infinite matrix is estimated
by (Painter and Cvetkovic, 2005)

tdiff ¼
fm

ffiffiffiffiffiffiffi
Dm
p

2ab
ta

" #2

ð1Þ

where fm and Dm are the matrix porosity and diffusion coefficient
respectively, b is the fracture half-aperture, and a¼ erfc#1ðU½0,1'Þ
with U½0,1' denoting a uniform random number in the interval
½0,1'. The corresponding penetration depth xdiff into the matrix is

xdiff ¼
fmDmffiffiffi

2
p

abv
l ð2Þ

where l is the length of the fracture segment and v is the fracture
flow velocity. We define a fracture segment as the segment
delimited by two fracture intersection points.

The assumption of infinite matrix corresponds to a diffusive
regime not limited by structural properties. Expressions (1) and
(2) remain valid as long as particles do not reach one of the
neighboring fractures by diffusion through the matrix blocks. This
condition can be expressed as xdiff oB, where B is the distance
from the initial fracture to the closest neighboring fractures. For
the specific square matrix blocks configuration in Fig. 1, the
closest neighboring fracture of a fracture segment of length l is
located at the same distance B¼ l. Solute diffusion is thus not
limited by structural properties for small values of the character-
istic ratio b1 expressed as

b1 ¼
fmDm

bv
ð3Þ

and corresponding to a modified inverted Péclet number where
the characteristic length is the fracture aperture instead of the
fracture length.

For larger values of the characteristic ratio b1, diffusion may be
limited by the size of the block, and particles may transfer to a
neighboring fracture through the matrix block one (or several)
time(s). The required characteristic diffusion time tB to cross the

k =1 k =2 k =3

Fig. 1. The Sierpinski lattices with evolving ranges of the block size distribution for domain size L¼100 m and fracture aperture 2b¼ 10#4 m.
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matrix block of size B is given by

tB ¼
B2

2Dm
: ð4Þ

The total diffusion time spent in the block is

tdiff ¼NtB ð5Þ

and the number of times that the particle diffuses through the
matrix block, N, is expressed as

N¼
ta

tna
ð6Þ

where tna corresponds to the required residence time within the
fracture to diffuse during the time tB in the matrix blocks. From
expression (1) the characteristic times tna and tB are related as

tnap
b

fm

ffiffiffiffiffiffiffi
Dm
p

ffiffiffiffiffi
tB

p
: ð7Þ

Combining the latter expression with expressions (4) and (6),
the total diffusion in a block, expressed by expression (5), is
related to the advection along this block by

tdiffp
fmB

b
ta: ð8Þ

Expressions (1) and (8) characterize diffusion time in matrix
blocks for diffusion regime unlimited and limited by structural
properties respectively. For the first regime, diffusion and advection
times are quadratically related to the ratio g1 ¼fm

ffiffiffiffiffiffiffi
Dm
p

=b indepen-
dent of structural properties (parameter B). For the second regime,
diffusion and advection times are linearly related to the ratio
g2 ¼fmB=b that does not depend on the matrix diffusion coefficient
(parameters Dm) as demonstrated by Carrera et al. (1998).

These key concepts allow one to consider the impact of
fracture properties (and thus hydraulic properties) in both diffu-
sion regimes, and the impact of structural properties (e.g. block
size) in the full diffusion regime. This is in contrast to the classical
models that are usually restricted to a predetermined diffusion
regime, wherein diffusion times are driven by either hydraulic or
structural properties.

It is worth emphasizing that the presented modeling approach
assumes one-dimensional diffusion in matrix blocks. This classi-
cal assumption for modeling solute transport in fractured porous
media is valid for the configurations and conditions of the current
study (Roubinet et al., 2012). Finally, the matrix mesh-free
property of the method limits simulation times to several minutes
and 1 h for 10.000 and 100.000 particles respectively. Fracture
network discretization is characterized by the limiting transfer
probability plim defined by expression (8) of Roubinet et al. (2010)
and set to 0.1.

4. Residence-time distribution for Sierpinski lattice structures

Fig. 2a–d shows cumulative arrival times computed with the
algorithm described above. The black circles, blue squares and
green triangles represent the arrival times for the Sierpinski
lattices with k¼1, 2, and 3 levels of divisions respectively.
Fig. 2a–c correspond respectively to the Fast, Medium and Slow
Flows (see Section 2). Fig. 2d shows the cumulative arrival times
for the Slow Flows 2 configuration, whose parameters are iden-
tical to those of the Slow Flows regime except for the matrix
diffusion coefficient Dm ¼ 10#6 m2=s. (The latter value of Dm

characterizes a dual-porosity medium in which the matrix repre-
sents both a safe rock and small fractures that are not explicitly
represented by a fracture network due to either prohibitive
computational costs or the lack of sufficient data.)

For Fast Flows (Fig. 2a), the division level of the lattice
influences the breakthrough-curve position as the median arrival
time increases about half-order of magnitude with the level of
division k. This influence decreases by decreasing the flow
velocity v in the fracture network as arrival times of the complex
cases (k¼2 and k¼3) tend to the ones of the basis case (k¼1). The
convergence is observed first for long arrival times (Medium Flows
experience, Fig. 2b) and then for short arrival times (Slow Flows 1
experience, Fig. 2c). It leads to reduce the arrival time range of the
complex cases resulting in similar curves for both basis and
complex cases (Fig. 2c). Breakthrough curves from the two kinds
of configurations (basis and complex) are again distinguishable by
increasing the matrix diffusion coefficient Dm (Slow Flows 2
experience, Fig. 2d). Whereas curve position remains similar, a
strong reduction of the arrival time range is observed for the basis
case (from Fig. 2c to d).

It must be noticed that decreasing velocity about two orders of
magnitude results in a median arrival time around four orders of
magnitude larger for the basis configuration (from Fig. 2a to b).
For the complex cases, the long arrival times converge by
decreasing the flow velocity about two orders of magnitude
(Fig. 2b) whereas the short ones converge by decreasing it about
one order more (Fig. 2c).

From the previous observations, the hierarchical organization
of the studied structures impacts arrival time distribution proper-
ties. It influences arrival time amplitude (characterized by the
median arrival time) when advection is the dominant process
(Fast Flows case) whereas it influences their range (characterized
by the variance) when diffusion is the dominant process (Slow
Flows 2 case). Results for intermediary configurations (Medium
Flows and Slow Flows 1 cases) must be a combination of the two
previous extreme behaviors.

5. Characteristic regimes and alternative modeling concepts

The residence time distributions reported in the previous section
are compared to two classical approaches adapted either to small
matrix diffusion compared to fracture advection (assumption of
infinite matrix) (Cvetkovic et al., 2004; Maloszewski and Zuber,
1993; Tang et al., 1981) or to regular parallel fracture networks
where diffusion may be limited by the fracture spacing (Liu et al.,
2000; Shan and Pruess, 2005; Sudicky and Frind, 1982). We denote
these two models as Hydraulic Sierpinski and Regular Layers respec-
tively and results presented in the previous section are denoted Full
Sierpinski. The objectives are both to assess the relevance of classical
models in this benchmark context and second to identify and
characterize the different transport regimes. We organize the
comparison around the three fast, medium and slow flow cases.

5.1. Solute behavior for fast flows

Fig. 3a shows the good agreement between the Full Sierpinski
(large full symbols) and the Hydraulic Sierpinski (small empty
symbols) approaches for the Fast Flows experience. It means that
the diffusive penetration depth in the matrix is too small to allow
particle transfer through the matrix block by diffusing from the
initial fracture to one of the neighboring fractures. In other words,
the assumption of infinite matrix related to the Hydraulic Sier-
pinski approach is valid and diffusion regime is not impacted by
the structural properties.

Residence time distribution does not depend on the block size
distribution but solely on the fracture velocity and aperture
distributions and on the matrix diffusion. Such regime will
remain for smaller values of the dimensionless parameter b1,
with b1 ¼ 10#4 in this present case.

D. Roubinet et al. / Computers & Geosciences 50 (2013) 52–5854



For the present regime, diffusion times in matrix blocks are
related to advection times in fractures by the expression (1). As
expected, it implies a non-linear dependence between the arrival
times (Tarr) and the total advection times in the fracture network
(Ta) as the red line of Fig. 3b is obtained for the expression

Tarr ¼ g1T2
a ð9Þ

where g1 ¼fm

ffiffiffiffiffiffiffi
Dm
p

=b.
It must be noticed that the advection time increase from a

configuration to another is due to longer paths and to smaller
velocities within the smaller fractures.

5.2. Solute behavior for medium flows

Fig. 4 shows solute behavior for the set of parameters denoted
Medium Flows that corresponds to a larger value of the previously
defined characteristic ratio b1 (b1 ¼ 10#2). As previously, large full
and small empty symbols represent simulation results from Full
Sierpinski and Hydraulic Sierpinski approaches respectively and red
full, dashed and dotted lines represent simulation results for
Regular Layers 1, Regular Layers 2 and Regular Layers 3 configura-
tions respectively. These three latter approaches correspond to
parallel fracture networks spaced out by the largest, intermediate
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and smallest block observed on the generated Sierpinski lattice
structures respectively (Fig. 1).

Increasing flow velocity from the previous simulations (Fast
Flows) leads to an intermediate regime where both hydraulic and
structural properties impact solute behavior. Arrival times are first
driven by hydraulic properties (where results from Full Sierpinski
and Hydraulic Sierpinski approaches are similar) and then driven by
structural properties (where results from Full Sierpinski and Regular
Layers approaches are similar). In this latter regime, diffusion is
progressively limited by the several block sizes from the smallest
one to the largest one for each configuration.

Considering that diffusion times in matrix blocks characterize
arrival times, transition times between the several observed
regimes can be evaluated by the expression (4) corresponding
to the first times where diffusion is limited by blocks of size B. For
the present study, solute behavior for the simplest configuration
(k¼1) is characterized by two regimes and tb ¼ 33:3 represents the
transition time between the first regime (where hydraulic proper-
ties are determinant) and the second regime (where diffusion is
limited by large blocks) (Fig. 4a). The second configuration (k¼2)
is characterized by three regimes where solute behavior is driven
first by hydraulic properties, secondly by the medium blocks and
then by the large blocks and the corresponding transition times
are tb ¼ 11:1 and tb ¼ 33:3 respectively (Fig. 4b). And finally the last
configuration (k¼3) presents four regimes characterized first by
hydraulic properties and then by the several kinds of blocks from
the smallest one to the largest one. The corresponding transition
times are tb ¼ 3:7, tb ¼ 11:1 and tb ¼ 33:3.

5.3. Solute behavior for slow flows

Figs. 5 and 6 show simulation results for the set of parameters
denoted Slow Flows 1 (b1 ¼ 10#1) and Slow Flows 2 (b1 ¼ 10)
respectively. Contrary to the previous case (Medium Flows), influ-
ence of hydraulic properties is poorly visible as simulation results
from the Hydraulic Sierpinski approach overestimate arrival times
on the main parts of the curves (Fig. 5a). The characteristic ratio b1

is large enough to offer a configuration where diffusion regime is
mainly limited by structural properties. For the complex cases,
arrival times are influenced first by the smallest block size and then
by the largest one (Fig. 5b).

For the largest value of b1 (Slow Flows 2), the range of arrival
times is strongly reduced for the simple case showing that
diffusion into matrix blocks is instantaneously limited by struc-
tural properties (Fig. 6a). For complex cases, the actual range of
arrival times is due to the standard deviation of advection times
as shown by Fig. 6b. The red line is obtained for the relation

sðTarrÞ ¼ g2sðTaÞ ð10Þ

where sðTÞ is the standard deviation of the times T, Tarr and Ta are
the arrival times and the total advection times in the fracture
network and g2 ¼fmB=b with B the size of the largest block. This
is coherent with expression (8) related diffusion and advection
times for large values of the ratio b1 and shows that structural
properties impact the amplitude of arrival times whereas hydrau-
lic properties impact their range of variation.

6. Conclusions

The present work demonstrates key results for the under-
standing of solute behavior in heterogeneous fractured porous
media. It shows that the characteristic ratio enables one to
identify diffusion regimes occurring in the domain and thus to
determine the key properties impacting arrival times and the
appropriate modeling approaches.

( For small values of the ratio b1, solute behavior is driven by the
hydraulic properties of the medium and thus by the heterogene-
ity level of the fracture network. Classical models neglecting the
effect of structural properties (assumption of infinite matrix) and
focusing on the fracture network properties (Discrete Fracture
Network representation) are particularly relevant.
( For large values of the ratio b1, solute behavior is driven by

both structural and hydraulic properties as they determine the
amplitude and variance of arrival times respectively. Struc-
tural properties can be simplified as their impact is mainly
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related to the largest block of the structure. A simple parallel
fracture network representation is thus able to approximate
median arrival times but not the range of the arrival time
distribution.
( For intermediary values of b1, first arrival times are driven by

hydraulic properties whereas the following ones are driven by
the block size distribution, with a progressive influence from
the smallest to largest block of the domain. This regime
requires sophisticated modeling approaches enable to consider
both hydraulic and structural properties.

The presented results and their interpretation are formulated
in terms relevant to contaminant transport in fractured porous
media. However, this study and the underlying methodology are
directly applicable to many phenomena in petroleum and
geothermal engineering, which both exhibit complex interactions
between transport mechanisms and take place in fractured media
with heterogeneous structures. By extending the modeling
approach, future benchmarks could consider reactive transport,
3D media and the full dimensionality of matrix diffusion. The two
latter extensions are particularly pertinent for oil extraction and
heat transport where the volume of matrix blocks and its
investigation are determinant factors for the performance of the
system.
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