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[1] Quantitative modeling of geochemical reactions at the Darcy scale is challenging due to
their dependence on pore-scale characteristics that often cannot be averaged out. We
propose a hybrid pore-scale/continuum-scale algorithm to bridge the gap between the pore-
scale mechanisms of reactive transport and the Darcy-scale observations of their impact.
These two scales are coupled by introducing extra nodes at the pore/continuum interfaces,
in which the continuity of both concentrations and mass fluxes is enforced. Our algorithm is
applicable to highly localized transport phenomena that can be adequately described by
Darcy-scale equations in most of a computational domain except for small regions (e.g.,
reaction fronts) wherein pore-scale simulations are necessary. We employ the proposed
hybrid algorithm to model transient reactive solute transport involving fracture cementation.

Citation: Roubinet, D., and D. M. Tartakovsky (2013), Hybrid modeling of heterogeneous geochemical reactions in fractured porous
media, Water Resour. Res., 49, doi:10.1002/2013WR013999.

1. Introduction

[2] Physical, chemical, and biological processes affect-
ing the fate and transport of solutes in natural environments
occur and interact on a large range of spatial and temporal
scales. Capturing the evolution and interactions of hydrau-
lic and (bio)geochemical properties requires a synthesis of
(field and laboratory) experimentation and mathematical
modeling. While computational studies elucidated a num-
ber of pore-scale transport mechanisms, they can only be
used to describe (bio)geochemical phenomena at small
scales.

[3] Effective (Darcy-scale or continuum-scale) models
of flow and transport are derived by averaging (upscaling)
their pore-scale counterparts. These analyses are invaluable
in providing fundamental understanding of Darcy-scale
models, thus enhancing confidence in the veracity of their
predictions. They can also be used to identify flow and
transport regimes in which Darcy-scale models are invalid
[Battiato et al., 2009; Battiato and Tartakovsky, 2011;
Boso and Battiato, 2013]. When the latter occurs, Darcy-
scale models fail to capture a number of experimentally
observed phenomena, including heterogeneous geochemi-
cal reactions [Noiriel et al., 2007] and localized mixing-
induced precipitation reactions [Tartakovsky et al., 2008a].

[4] The breakdown of Darcy-scale flow and transport
models occurs in regions of a computational domain
wherein pore-scale gradients of state variables (e.g., fluid
pressure or solute concentration) become large [Battiato

et al., 2009; Battiato and Tartakovsky, 2011; Boso and
Battiato, 2013]. In many, if not most, applications of practi-
cal significance, such regions are highly localized, i.e.,
much smaller than the rest of the computational domain.
Hybrid algorithms [Leemput et al., 2007; Tartakovsky
et al., 2008b; Battiato et al., 2011] take advantage of this
fact by using pore-scale simulations in subdomains where
their Darcy-scale counterparts break down and solving
Darcy-scale equations elsewhere in the computational
domain.

[5] By explicitly dealing with the local breakdown of
Darcy-scale (or upscaled) models, hybrid algorithms con-
ceptually differ from their multiscale counterparts that
assume that a given phenomenon can be adequately
described by models on multiple scales, e.g., on the pore
scale and the Darcy scale (see Battiato et al. [2011] for a
detailed discussion and references). For example, multi-
scale analyses of Balhoff et al. [2008], Mehmani et al.
[2012], and Tomin and Lunati [2013] start from the premise
that both pore-scale and Darcy-scale equations are valid
and explicitly aim to upscale the state variables (e.g., fluid
pressure or solute concentration) from the pore-scale to the
Darcy scale. Such methodologies are typically not amena-
ble to a theoretical assessment (mathematical proof) of con-
vergence and existence/uniqueness of a solution. The pore-
network models of reactive solute transport [Balhoff et al.,
2008; Mehmani et al., 2012] are currently limited to flow
regimes with large P�eclet numbers wherein diffusion is
neglected [Mehmani et al., 2012].

[6] Computationally efficient and robust coupling of
pore-scale and Darcy-scale models is, arguably, the central
issue of hybrid methods. In general, the coupling requires a
computationally expensive iterative procedure to ensure
the continuity of state variables and their fluxes along the
interface separating the domains in which pore-scale and
Darcy-scale models are solved [Leemput et al., 2007; Tar-
takovsky et al., 2008b]. The need for iterations (i.e., for
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multiple solves of the pore-scale and Darcy-scale codes at
each time step) can be obviated at the cost of reducing a
hybrid algorithm’s generality. For example, the hybrid
strategy of Tartakovsky et al. [2008b] avoids iterations by
employing smoothed particle hydrodynamics to solve both
pore-scale and Darcy-scale reaction-diffusion equations;
incorporation of advection into this hybrid strategy remains
a challenge.

[7] A major goal of our analysis is to introduce a hybrid
algorithm that preserves a maximal degree of generality
(e.g., handles space-time varying flow velocity and pore-
geometry alterations due to precipitation and/or dissolu-
tion), while replacing numerical iterations at the pore-
scale/Darcy-scale interface with a semianalytical coupling.
In so doing, we build upon the hybrid algorithm of Battiato
et al. [2011], in which a modified finite-volume method
and an iterative procedure were used to enforce, respec-
tively, the continuity of mass and mass fluxes at the pore-
scale/Darcy-scale interface. Like Battiato et al. [2011], we
use our hybrid algorithm to model highly localized hetero-
geneous reactions in a fracture. Unlike Battiato et al.
[2011] who considered steady-state fully developed flow
described analytically by Poiseuille’s law, we solve Stokes
flow equations numerically. This enables us to account for
local alterations of the velocity field caused by solute pre-
cipitation on fracture walls.

[8] More important from the algorithmic point of view,
we replace the computationally demanding iterative cou-
pling of the pore-scale and Darcy-scale solvers [Battiato
et al., 2011] with a semianalytical coupling technique in
which one of the continuity conditions (e.g., mass conser-
vation) is satisfied automatically, while the second one
(e.g., continuity of mass fluxes) is formulated as an implicit
boundary condition [Roubinet et al., 2012]. The finite-
volume method is modified by replacing the common ana-
lytical interpolators with their numerical counterparts at the
pore-scale/continuum-scale interface. The new interpola-
tors are expressed explicitly at both the pore and Darcy
scales, and the continuity of mass and mass fluxes is built
explicitly into the final numerical scheme (a discretized
finite-volume matrix).

[9] The equations used to model flow and reactive trans-
port at the pore and Darcy scales are described in section 2.
A general formulation of our hybrid algorithm is provided
in section 3. Model validation results are provided in sec-
tion 4. In section 5, we use our hybrid algorithm to model
heterogeneous geochemical reactions and accumulation of
precipitated material at the entrance of a fracture.

2. Problem Formulation

[10] We consider both pore-scale and Darcy-scale
descriptions of fluid flow and reactive solute transport.

2.1. Pore-Scale Equations

[11] Inside the pore space of a porous medium, single-
phase flow of an incompressible fluid with density q and
dynamic viscosity l can be described by the Stokes and
continuity equations

lr2u1qg2rp50; r � u50: (1)

[12] Here uðx; tÞ is the pore-scale flow velocity, pðx; tÞ is
the fluid pressure, and g is the gravitational acceleration
vector. Equation (1) is subject to no-slip and no-flow
boundary conditions at fluid-solid interfaces, as well as to
boundary conditions imposed on a porous medium’s outer
surface.

[13] The fluid contains a solute with concentration
cðx; tÞ, whose pore-scale dynamics is described by an
advection-diffusion equation (ADE)

@c

@t
1r � ðucÞ5Dmr2c; (2)

where Dm is the molecular diffusion coefficient. This equa-
tion is subject to boundary conditions imposed on the
porous medium’s outer surface. The solute reacts with solid
matrix, with the surface reaction rate rs(c). Mass concentra-
tion at the fluid-solid interfaces takes the form [e.g., Tarta-
kovsky et al., 2008b]

2n � ðDmrcÞ5rsðcÞ; (3)

where n is the outward normal unit vector to the interfaces.
This heterogeneous reaction changes the pore geometry of
the solid matrix. Let vnðxs; tÞ denote the normal component
of the velocity with which a point xs on the solid surface
moves as a result of either solute precipitation or surface
dissolution. It is directly proportional to surface reaction
rate rs [e.g., Tartakovsky et al., 2008b],

vnðxsÞ5
rs

qs

; (4)

where qs is the density of the solid phase.

2.2. Darcy-Scale Equations

[14] The pore-scale flow equation (1) is replaced by
Darcy’s law and Darcy-scale mass conservation,

U52Krh;
@x
@t

52r � U: (5)

[15] Here UðX; tÞ is the macroscopic flow velocity at a
Darcy-scale point X5ðX1;X2;X3Þ> (i.e., a representative
elementary volume associated with this continuum-scale
representation), KðX; tÞ is the hydraulic conductivity of a
porous medium (in general, a second-rank tensor),
hðX; tÞ5p=ðqgÞ1X3 is the Darcy-scale hydraulic head,
pðX; tÞ is the Darcy-scale pressure, and xðX; tÞ is the
porous medium’s porosity.

[16] The Darcy-scale solute concentration cðX; tÞ satis-
fies an advection-reaction-dispersion equation (ARDE)

@xc

@t
1r � ðUcÞ5r � ðDrcÞ2RðcÞ; (6)

where D is the dispersion coefficient (a second-rank ten-
sor). While the heterogeneous reactions enter the pore-
scale description through the boundary condition (3), in the
Darcy-scale transport model (6) they are represented by the
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homogeneous reaction term RðcÞ and time-varying porosity
x. For the moment, we keep the pore-scale heterogeneous
reaction rate law rs(c) and its Darcy-scale homogeneous
counterpart RðcÞ generic in order to preserve the ability of
the hybrid algorithm described below to deal with a wide
class of heterogeneous reactions. Concrete examples of
these laws are presented in sections 4 and 5.

3. Hybrid Models

[17] The Darcy-scale flow and transport equations can be
derived from their pore-scale counterpart by various
homogenization (upscaling) techniques. These approaches
also establish conditions under which the Darcy-scale flow
and transport equations become invalid [Battiato et al.,
2009; Battiato and Tartakovsky, 2011; Boso and Battiato,
2013]. Let X denote a simulation domain (a porous medium
of interest), and suppose that the Darcy-scale equations
break down in a small part of this domain,
Xp ðXp � X; jjXpjj � jjXjjÞ, wherein the pore-scale equa-
tions are to be solved. The Darcy-scale equations are solved
in the rest of the computational domain, XcðX5Xp [ XcÞ.

[18] The pore-scale and Darcy-scale simulations are
coupled by enforcing the continuity of mass (concentration)
and mass flux (its normal component) along the interface U
between Xp and Xc,

cðX; tÞ5 1

jjUljj

ð
Ul

cðx; tÞdx (7a)

qðX; tÞ5 1

jjUljj

ð
Ul

qðx; tÞdx: (7b)

[19] Here Ul and Us are the parts of the interface U occu-
pied, respectively, by the liquid and the solid, U5Ul [ Us ;
and q and q are the normal component of pore-scale and
Darcy-scale mass fluxes q5uc2Dmrc and q5Uc2Drc,
respectively.

3.1. Numerical Discretization

[20] To simplify the presentation, we consider a transport
phenomenon that is described by either the one-
dimensional Darcy-scale equations or the two-dimensional
pore-scale equations. Figure 1 shows a hybrid discretiza-
tion in which the Darcy-scale domain is discretized into NV

one-dimensional volumes VI ðI51; . . . ;NV Þ (in Figure 1,
NV 5 4), and the pore-scale domain is discretized with a
two-dimensional grid composed of volumes vi;j

(i51; . . . ; nx and j51; . . . ; ny), where nx and ny are the
number of volumes in the x and y directions (in Figure 1,
nx5ny54).

3.1.1. Finite-Volume Method for Interior Elements
[21] The pore-scale and Darcy-scale unknowns are com-

puted at the center (big red dots and small green dots in
Figure 1, respectively) of each discretization volume. With-
out loss of generality, in the pore-scale domain Xp we use a
constant time step Dt and pore-scale elements vi;j of con-
stant lengths Dx and Dy in the x and y directions, respec-
tively. Integrating equation (2) over the pore-scale volume
vi;j leads to its regular finite-volume representation

cn11
i;j 5cn

i;j2
rn

i;jðw; eÞ
Dx

2
rn

i;jðs; nÞ
Dy

(8)

where cn
i;j is the pore-scale concentration at the center of

volume vi;j (i51; . . . ; nx and j51; . . . ; ny) at time tn5nDt ;
rn

i;jða; bÞ5gn½qi;jðaÞ�1gn½qi;jðbÞ�; qi;jðkÞ are the spatially
discretized versions of mass flux qðkÞ5nk � ðuc2DmrcÞ
normal to the k (k 5 w, e, s, or n representing the west, east,
south, or north) edge of volume vi;j ; and

gnðzÞ5 hzn111ð12hÞzn
� �

Dt: (9)

[22] Setting h 5 0, 0.5, or 1 one obtains an explicit,
Crank-Nicolson, or implicit method. Mass flux q(k) is dis-
cretized as

qi;jðkÞ5ak
i;jcik ;jk 1~ak

i;jci;j; (10)

where cik ;jk is the pore-scale concentration at the center of
volume vik ;jk that shares the edge k of the volume vi;j. The
hybrid differencing scheme [Versteeg and Malalasekera,
2007, section 5.7] is used to compute coefficients ak

i;j and
~ak

i;j. They are obtained by applying a central difference
scheme to the diffusive term and either a central difference
scheme (for small P�eclet numbers) or an upwind scheme
(for large P�eclet numbers) for the advective term. Only the
central difference scheme was tested in the present
analysis.

[23] Without loss of generality, in the (one-dimensional)
Darcy-scale domain Xc we use a constant time step DT and
Darcy-scale elements VI of constant lengths DX in the x
direction. Integrating the one-dimensional version of equa-
tion (6) over the Darcy-scale volume VI leads to its regular
finite-volume representation

xN11
I cN11

I 5xN
I cN

I 2
gN ½qI ðWÞ�1gN ½qI ðEÞ�

DX
2gN ½RðcI Þ� (11)

where cN
I is the concentration at the center of volume VI at

time tN 5NDT , and

gN ðzÞ5 hzN111ð12hÞzN
� �

DT : (12)

[24] The spatially discretized versions of mass flux
qðKÞ5nK � ðUc2DrcÞ normal to the K (K 5 W and E, rep-
resenting the west and east) edge of volume VI are given by

1 2 3 4 

Figure 1. Hybrid finite-volume discretization. The (small
green and big red) circles indicate nodes at which the
(pore-scale and Darcy-scale) unknowns are computed with
a regular finite-volume method. The (big red and small
green) crosses denote extra nodes used to enforce the conti-
nuity conditions at the hybrid’s interfaces.
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qI ðKÞ5AK
I cIK 1~A

K

I cI ; (13)

where cIK is the Darcy-scale concentration at the center of
volume VIK that shares the edge K of the volume VI, and
coefficients AK

I and ~A
K

I are defined by the numerical proce-
dure used to compute their counterparts in equation (10).
3.1.2. Finite-Volume Method for Interfacial Elements

[25] Along the pore-scale/Darcy-scale interface U, where
the pore-scale and Darcy-scale volumes are adjacent to
each other (e.g., at the nodes denoted by the big red and
small green crosses in Figure 1), interior finite-volume rep-
resentations (8) and (11) are modified as follows. Let I-K
denote the edges (K 5 W or E) of the Darcy-scale volumes
VI adjacent to the interface U (the big red crosses 2-E and
3-W in Figure 1). Let ði; jÞ-k denote the edges (k 5 w, e, s,
or n) of the pore-scale volumes vi;j adjacent to the interface
U (the small green crosses ð1; jÞ-w and ðnx; jÞ-e, with
j51; . . . ; ny, in Figure 1). Finally, let cI-K denote the
Darcy-scale concentrations at the I-K edges and cði;jÞ-k

denote pore-scale concentrations at the ði; jÞ-k edges.
[26] We treat extra unknowns cI-K and cði;jÞ-k as Dirichlet

boundary conditions for the corresponding interfacial control
volumes. The corresponding mass fluxes at the edges form-
ing U are obtained by modifying equations (10) and (13),

qi;jðkÞ5bk
i;jcði;jÞ-k1~b

k

i;jci;j (14)

and

qI ðKÞ5BK
I cI-K1~B

K
I cI (15)

for all i, j, I, k, and K that belong to the pore-scale/Darcy-

scale interface U. Coefficients bk
i;j and ~b

k

i;j are obtained from

coefficients ak
i;j and ~ak

i;j by enforcing Dirichlet boundary con-

dition on the edge k of the volume vi;j, and coefficients BK
I

and ~B
K
I are obtained from coefficients AK

I and ~A
K

I by enforc-
ing Dirichlet boundary condition on the edge K of the volume
VI.
3.1.3. Global Linear System

[27] Continuity conditions (7) are spatially discretized as

cI-K5
Dy

HK
I

Xny

j51

cði0;jÞ-k qI ðKÞ52
Dy

HK
I

Xny

j51

qi0 ;jðkÞ (16)

where i05 1 (or nx) for the west (or east) edge of the two-
dimensional pore-scale simulation domain, whose widths
at the (west, K 5 W, or east, K 5 E) pore-scale/Darcy-scale
interfaces are HW

I and HE
I . We replace equation (16) with

cði0;jÞ-k5ai0;jcI-K qi0 ;jðkÞ52bi0;jqI ðKÞ (17)

where the (unknown) coefficients ai0;j and bi0;j satisfy

Dy

HK
I

Xny

j51

ai0;j51
Dy

HK
I

Xny

j51

bi0;j51: (18)

[28] A global linear system for our hybrid finite-volume
method is composed of (i) concentrations computed with

equations (8) and (11) for interior pore-scale and Darcy-
scale control volumes, respectively; (ii) concentrations
computed with equations (8) and (14) for interfacial pore-
scale control volumes; (iii) concentrations computed with
equations (11) and (15) for interfacial Darcy-scale control
volumes, and (iv) the continuity conditions at the pore-
scale/Darcy-scale interface U (Appendix A). The latter can
be implemented in one of the two alternative ways. The
first, which we refer to as ‘‘free concentration coupling’’ or
FCC, combines the first equation in (16) and the second
equation in (17). The second, denoted by the term ‘‘free
mass flux coupling’’ or FFC, combines the second equation
in (16) and the first equation in (17). Solution of the result-
ing system of linear algebraic equations yields both con-
centrations at the centers of pore-scale and Darcy-scale
control volumes and concentrations at the pore-scale/
Darcy-scale interface.

[29] FCC and FFC do not require prior knowledge of the
relationship between the pore-scale and Darcy-scale concen-
tration and mass flux, respectively. Instead, FCC and FFC
assume coefficients bi0;j and ai0;j, respectively. The choice
between FCC and FFC depends on whether the pore-scale
concentration or the pore-scale flux can be treated as piece-
wise constant (over the edge of an adjacent Darcy-scale con-
trol volume) at the pore-scale/Darcy-scale interfaces. For
example, if pore-scale transport is diffusion-dominated then
the pore-scale concentration at the pore-scale/Darcy-scale
interface (i.e., in the region of validity of the Darcy-scale
description) is approximately constant over the bounding
edge of the adjacent Darcy-scale control volume. Then, one
can use FFC with ai0;j51 for all i0 and j belonging to the
interface U (in our example, i051; nx and 1 � j � ny). Sec-
tions 4 and 5.1 illustrate configurations where the assumption
bi0;j51 with FCC and ai0;j51 with FFC hold, respectively.

[30] Regardless of whether FCC or FFC is used,
our hybrid algorithm results in a global linear system
(Appendix A)

Ac5b (19)

where A is an Nc 3 Nc matrix, c and b are vectors of length
Nc, and Nc is the total number of unknowns (concentrations
assembled into vector c)

Nc5NV 12NI�1
XNI�

I�51

f ðI�Þ: (20)

[31] Here NI� is the number of hybrid nodes;
f ðI�Þ5nxðI�ÞnyðI�Þ12nyðI�Þ defines the number of pore-
scale unknowns in hybrid node I� ; and nxðI�Þ and nyðI�Þ
are the numbers of pore-scale control volumes discretizing
the hybrid node I� in the x and y directions, respectively.

3.2. Numerical Implementation

3.2.1. Flow Computation and Coupling
[32] Pore-scale flow equations (1) are solved by using a

finite-difference method on a fully staggered grid [Gerya,
2010]. At the pore-scale/Darcy-scale interfaces, the Darcy-
scale flow variables (pressure and/or flow velocity) are used
as boundary conditions for the pore-scale simulations. It is
worthwhile emphasizing that this study focuses on transport
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phenomena whose Darcy-scale descriptions break down
locally due to, e.g., high concentration gradients caused by
biochemical heterogeneity. In such a setting, Darcy-scale flow
equations remain valid throughout a computational domain,
even in regions where their transport counterparts are not.
3.2.2. Time-Scale Coupling

[33] Solute concentrations are determined by solving the
global linear system (19) at each Darcy-scale time step DT.
If the pore-scale subdomains require a smaller time step
(Dt<DT), then pore-scale concentrations between two
Darcy-scale times tN and tN11 are determined at each pore-
scale time tn5nDt where n51; . . . ; nt21 with ntDt5DT .
Initial conditions for these pore-scale simulations are given
by the concentrations computed at time tN and boundary
conditions are provided by equations (17) at time tN (the
first or second of these equations for FFC or FCC, respec-
tively). Continuity conditions are updated by solving the
global linear system (19) when reaching the Darcy-scale
time tN11, corresponding to tn5ntDt.
3.2.3. Algorithm Acceleration

[34] Changes in pore-geometry due to biochemical depo-
sition/dissolution processes usually occur at a time scale
that is much (several orders of magnitude) larger than typi-
cal time scales Dt and DT. This allows one to significantly
increase the hybrid algorithm’s efficiency by treating the
concentration as time-invariant during each time step, Dg

t ,
of surface growth [Dijk and Berkowitz, 1998].

[35] In the absence of surface growth (early stages of sur-
face chemistry simulations), the global linear system (19) is
solved at each time step DT ; in later stages of our hybrid
simulations (19) is solved at each time step Dg

t . We use the
sparse solver from umfpack library [Davis, 2004], where
matrix and vector storage is optimized by using uBLAS
library from project Boost, http://www.boost.org.
3.2.4. Pore-Geometry Evolution

[36] At the Darcy scale, the system parameters affected by
these processes are porosity x, Darcy flow velocity U, disper-
sion coefficient D, and the reaction term RðcÞ. Since our
hybrid algorithm models highly localized reaction fronts with
pore-scale simulations (in Xp), the temporal variability of
these Darcy-scale parameters in the rest of a computational
domain (Xc) can often be neglected. Alternatively, one can
incorporate this temporal variability by relying on rigorous
homogenization results that relate pore-scale characteristics
of a porous medium to its macroscopic properties. In the
computational examples below we adopt the latter approach.

[37] At the pore scale, evolution of the solid matrix com-
posed of points xs(t) is governed by equation (4). The
changing pore space implies that the number of control vol-
umes in the pore-scale domain, nx and ny, varies with time.
Consequently, the size of the global linear system (19)
changes with time. The number of unknowns Nn

c at time
tg
n5nDg

t is obtained by modifying equation (20),

Nn
c 5NV 12NI�1

XNI�

I�51

f nðI�Þ; (21)

where f nðI�Þ5f ðI�Þ2½nn
s ðI�Þ12nn

si
ðI�Þ� is the number of

pore-scale unknowns in hybrid node I� at time tg
n5nDg

t , and
nn

s ðI�Þ and nn
si
ðI�Þ are the number of inner and interfacial

pore-scale elements representing the solid matrix in hybrid

node I� at time tg
n5nDg

t , respectively. We use a cellular
automaton algorithm (Appendix B) to determine active
control volumes of the pore-scale domain Xp at each time
step Dg

t .

4. Hybrid Model Verification

[38] As a test bed for our hybrid models, we use a much
studied problem of reactive solute transport in a single frac-
ture whose walls are located at y52H=2 and y5H=2. The
flow is driven by an externally imposed hydraulic head gra-
dient that is aligned with the x coordinate. The fluid carries
a solute, which undergoes a first-order heterogeneous reac-
tion with the fracture walls. The surface reaction rate rs(c)
in equation (3) takes the form

rs5kðc2ceq Þ; (22)

where k is the surface reaction rate constant and ceq is the
solute concentration in equilibrium with the solid. This
reaction rate law was used to model precipitation/dissolu-
tion processes [Tartakovsky et al., 2007], sorption reactions
[Berkowitz and Zhou, 1996], and microbial degradation
[Battiato et al., 2011]; the latter two studies used ceq 5 0.

4.1. Transport Without Surface Growth

[39] At early stages of the process, the surface reaction
(22) does not result in surface growth and the fracture wall
remains smooth. Away from the fracture edges, flow is
fully developed, i.e., pore-scale velocity u5ðuðyÞ; 0; 0Þ> is
given by the Poiseuille solution of flow equations (1),

uðyÞ
um

512
4y2

H2
; (23)

where um is the maximum velocity that occurs at the center
of the fracture (y 5 0).

[40] For this problem, the one-dimensional Darcy-scale
ARDE (6) is obtained by averaging the pore-scale ADE (2)
over y. Using this procedure, Dijk and Berkowitz [1998]
derived expressions for the Darcy-scale coefficients

D

Dm
511

8Pe2

945
2

8DaPe2

1350ð31DaÞ ; (24a)

U

um
5

2

3
1

4Da

15ð31DaÞ ; R5
Dm

H2

12Da

31Da
ðc2ceq Þ (24b)

where the P�eclet (Pe) and Damköhler (Da) numbers are
defined as

Pe5
umH

2Dm
; Da5

kH

2Dm
: (25)

[41] Darcy-scale concentration cðx; tÞ is the transverse
average of its pore-scale counterpart,

cðxd ; tdÞ5
1

H

ðH=2

2H=2
cðxd ; y; tdÞdy; (26)

where td54tDm=H2; xd5x=L, and L is a characteristic
length in the longitudinal direction. A solution of the
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Darcy-scale ARDE (6) with equation (23) and ceq 5 0 is
[Berkowitz and Zhou, 1996]

c5
c0

2
exp

K1bxd

2K2

� �
e2cbxd erfc

bxd22K2ctd

2
ffiffiffiffiffiffiffiffiffi
K2td
p

� �

1
c0

2
exp

K1bxd

2K2

� �
ecbxd erfc

bxd12K2ctd

2
ffiffiffiffiffiffiffiffiffi
K2td
p

� � (27)

where b52L=ðHPeÞ; c5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

1 14K0K2

p
=ð2K2Þ;K053Da=

ð31DaÞ;K15U=um, and K25D=ðDmPe2Þ.
[42] We use the analytical solution (27) to verify our

hybrid algorithm. Unless otherwise specified, the simula-
tions reported below correspond to
H5231024 m;Dm51029 m2=s, and um51025 m=s , i.e., to
Pe 5 1. Following the problem formulation in Berkowitz
and Zhou [1996], we choose pore-scale boundary condi-
tions cðxd50; y; tdÞ5c0 and cðxd51; y; tdÞ50 and the initial
condition cðxd ; y; td50Þ50. The corresponding Darcy-scale
conditions are obtained from equation (26). The hybrid
simulations are conducted with DX 51025 m and
Dx5Dy51026 m.

[43] Figure 2 exhibits temporal snapshots of the relative
Darcy-scale concentration cðxd ; tdÞ=c0 computed with the
analytical solution (27) (lines with crosses) and hybrid sim-
ulations (lines with squares) for k51025 (full lines) and
1023 m/s (dashed lines). (Time stepping DTd 5Dtd 51021

and 1 was used for the simulations reported in Figures 2a
and 2b, respectively.) The agreement between the two solu-
tions demonstrates the accuracy of our hybrid algorithm.

4.2. Transport With Uniform Surface Growth

[44] As time progresses, the surface reaction (22) causes
the wall geometry to change due to either solute precipita-
tion on the walls or the wall dissolution. Consequently, the
fracture’s aperture varies in space and time, H5Hðx; tÞ.
Since the fracture walls consist of points xs5ðx;6H=2Þ>,
the solid surface growth equation (4) takes the form

dH

dt
52

2k

qs

½cðx;H=2; tÞ2ceq �; Hðx; 0Þ5H0: (28)

[45] For the purpose of algorithm verification, we con-
sider a transport regime in which the pore-scale solute con-
centration at the walls remains constant during the
simulation time, cðx;H=2; tÞ � c0. (This somewhat artifi-
cial setting is dispensed with in the following section.)
Then, equation (28) predicts a linear decrease of the frac-
ture aperture with time (for small enough t),

HðtÞ5H02
2k

qs

ðc02ceq Þt: (29)

[46] This temporal variability of the pore-scale simula-
tion domain is handled by the cellular automaton algo-
rithm. The temporal variability of the fracture aperture (29)
affects the Darcy-scale one-dimensional ARDE (6) by ren-
dering the macroscopic coefficients (24) time dependent.

[47] Figure 3 shows the relative Darcy-scale concentra-
tion c=c0 computed with the Darcy-scale one-dimensional
ARDE (6) (lines with crosses) and hybrid simulations (lines
with squares) for (a) k 5 1025 m/s at times td 5 2 3 103

(full lines) and 8 3 103 (dashed lines) and (b) k 5 1023 m/s
at times td 5 2 3 101 (full lines) and 8 3 101 (dashed
lines). The solid phase density qs is set to 104 g/m3. The
agreement between the two solutions demonstrates the
accuracy of our hybrid algorithm.

5. Application to Fracture Clogging

[48] The test cases used above dealt with idealized situa-
tions in which the Darcy-scale flow and transport equations
were valid at every point of a simulation domain. Even in
such cases, the complex interplay between changes in pore-
geometry induced by heterogeneous (bio)chemical reac-
tions and macroscopic transport characteristics manifests
itself in the presence of phenomenological constitutive
laws (e.g., relationships between hydraulic conductivity
and porosity or between porosity and solute concentration)
in Darcy-scale equations of reactive transport. Moreover,
the applicability of Darcy-scale transport models is not

Figure 2. Relative Darcy-scale concentration, c=c0, com-
puted with the analytical solution (27) (lines with crosses)
and hybrid simulations (lines with squares) for reaction rate
k51025 (solid lines) and 1023 m=s (dashed lines) at
dimensionless times (a) td51 and (b) td510. Squares repre-
sent pore-scale simulation domains.
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universal ; instead, it is limited to certain flow and transport
regimes that can be characterized by their P�eclet (Pe) and
Damköhler (Da) numbers [Battiato et al., 2009; Battiato
and Tartakovsky, 2011; Boso and Battiato, 2013].

[49] Fracture clogging due to solute precipitation on
fracture walls provides an ideal setting to study such a
breakdown. Mikelic et al. [2006] used upscaling (averag-
ing) of pore-scale flow and transport equations (1)–(4) to
model Taylor-Aris hydrodynamic dispersion, which is
described by the one-dimensional version of ARDE (6)
with x 5 1 and the transport parameters

D

Dm
511

8Pe2

945
;

U

um
5

2

3
1

4Da

45
; (30a)

R5
2k

H
12

Da

3

� �
c: (30b)

[50] Note that these expressions are qualitatively similar
but not identical to formulae (24) derived by Dijk and

Berkowitz [1998]. Battiato and Tartakovsky [2011] identi-
fied a specific range of validity of this ARDE in terms of
the phase diagram in the space of Pe and Da. We use our
hybrid algorithm to model fracture clogging under condi-
tions of local breakdown of ARDE (6).

[51] Unless otherwise specified, the simulation results
presented in this section correspond to fracture width
H51024 m, fracture length L51023 m, maximum (center-
line) flow velocity um51025 m=s , molecular diffusion
coefficient Dm51029m2=s, and equilibrium concentration
ceq 50:0 g=m 3. The auxiliary conditions are cð0; y; tÞ5
c051:0 g=m 3; cðL; y; tÞ50:0 g=m 3, and cðx; y; 0Þ5
0:0 g=m 3. Note that this choice of parameters results in
Pe 5 0.5; several values of Da are considered below.

[52] In the present section, the Darcy-scale domain Xc

is discretized with DX 51024 m (length of continuum-
scale elements). Other discretization parameters are indi-
cated for each simulation. The hybrid implementation
relies on FFC with all b’s in (17) set to 1. In the absence
of heterogeneous reactions (section 5.1), flow velocity
u(y) is described by Poiseuille’s law (23). To account for
local surface growth due to solute precipitation (section
5.2), we solve the flow equations (1) in the pore-scale
simulation domains Xp.

5.1. Surface Chemistry at Fracture Inlet

[53] When reactive solute (with concentration c 5 c0)
enters a fracture that is in equilibrium with a host fluid
(c 5 ceq), the largest concentration gradients and, in accord-
ance with equation (22), the most appreciable solute depo-
sition on fracture walls occur at the fracture inlet. This can
lead to a significant reduction in hydraulic conductivity of
the fracture, even if overall porosity remains nearly
unchanged. Capturing this highly localized phenomenon
with a Darcy-scale model would require an artificial rig-
ging of the macroscopic parameters, while using a pore-
scale model throughout the whole fracture is not computa-
tionally feasible. This situation calls for the deployment of
a hybrid model that combines pore-scale simulations in the
vicinity of a fracture’s inlet with a Darcy-scale model else-
where. In the simulations reported in this section, the pore-
scale domain is 0 � x � L=5 and the Darcy-scale domain
is L=5 � x � L.

[54] Figure 4 provides temporal snapshots (at t 5 10 s) of
relative Darcy-scale concentration, cðx; tÞ=c0, plotted as a
function of the relative distance from the fracture inlet,
xd5x=L. The concentration cðx; tÞ was computed with the
pore-scale ADE (2) (solid red lines), the Darcy-scale
ARDE (6) (dashed blue lines), and the hybrid algorithm
(lines with squares). The discretization parameters are set
to Dx5Dy51025 m and Dt 5 1 s. Slow reaction rate con-
stants (k51026 m=s , i.e., Da 5 0.05, in Figure 4a) fall
within the theoretical range of validity of the Darcy-scale
ARDE (6) [Battiato and Tartakovsky, 2011]. In this regime,
both the pore-scale and Darcy-scale models accurately pre-
dict the Darcy-scale concentration (see Figure 4a);
although not shown here, the same level of agreement was
observed for k51025 m=s or, equivalently, Da 5 0.5.
Faster reaction rates correspond to larger values of Da,
leading to the breakdown of Darcy-scale descriptions based
on ARDEs. Figure 4b confirms this theoretical prediction
by demonstrating the inability of the Darcy-scale ARDE

Figure 3. Relative Darcy-scale concentration, c=c0, com-
puted with the Darcy-scale ARDE (6) (lines with crosses)
and the hybrid algorithm (lines with squares), for (a)
k51025 m=s at times td523103 and 83103 and for (b)
k51023 m=s at times td523101 and 83101.
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(6) to correctly predict Darcy-scale concentration (i.e., to
predict the pore-scale simulation results, which are treated
as exact) for reaction rate k5531025 m=s ðDa52:5Þ. Even

in this transport regime, the hybrid algorithm accurately
captures the Darcy-scale solute concentration profile pre-
dicted with the pore-scale simulations. It does so at the
fraction of the computational cost of the latter, reducing the
number of unknowns in the global linear system by almost
an order of magnitude. The numbers of unknowns used in
the hybrid model to capture the Darcy-scale behavior (Fig-
ure 4a) and the pore-scale variability (Figure 5) are 131 and
2611, respectively, whereas the pore-scale model requires
1000 and 25000 unknowns to obtain the same results.

[55] By their very nature, the hybrid models provide
more information than is contained in the Darcy-scale
descriptions. By way of example, Figure 5 exhibits pore-
scale variability of the relative solute concentration,
cðx; y; tÞ=c0, in the pore-scale region of the hybrid model,
at time t510s for k51026; 1025, and 531025 m=s . (In
these simulations, we set the discretization parameters to
Dx5Dy5231026 m and Dt 5 1 s.) As reaction rate constant
k increases, transverse variability of the concentration
cð�; y; �Þ becomes more pronounced, invalidating a key
assumption that underpins the Taylor-Aris theory of
(Darcy-scale) hydrodynamic dispersion. At the same time,
faster reaction rates result in sharper reaction fronts, i.e., in
a narrower transition zone in which cðx; �; �Þ decays from 1
to 0. This suggests that the domain of computationally
expensive pore-scale simulations, Xp, decreases in size as
reaction rate constant k increases.

[56] As time increases, the heterogeneous reaction leads
to solute deposition on the fracture’s wall and to decrease
in the fracture’s aperture H(t). We define a characteristic
time tc for the fracture to close halfway as a solution of
equation HðtÞ5H0=2, where H(t) is given by equation (29).
For the parameter values considered in this study, this
yields tc52:53105s if k51026 m=s ; tc52:53104s if
1025 m=s , and tc553103s if 531025 m=s . Figure 6 shows
the fracture walls (solid black) in the end of time period tc
for each of the three values of reaction rate constant k. The
discretization parameters are Dx5Dy5231026 m and
Dg

t 5103s for k51026 and 1025 m=s , and 102 s for
k5531025 m=s . Also shown in this figure are the corre-
sponding solute concentrations that range from 1 (dark red
at the fracture’s inlet, x 5 0) to 0 (dark blue at the fracture’s

Figure 4. Relative Darcy-scale concentration, c=c0, com-
puted with the pore-scale ADE (2) (solid red lines), the
Darcy-scale ARDE (6) (dashed blue lines), and the hybrid
algorithm (lines with squares), at time t510s for (a)
k51026 m=s and (b) k5531025 m=s . The pore-scale sim-
ulation domain is 0 � xd � 0:2.

Figure 5. Relative concentration, cðx; y; t510sÞ=c0, com-
puted with the hybrid model for (a) k51026 m=s , (b)
k51025 m=s , and (c) k5531025 m=s . The two-
dimensional pore-scale description at the fracture’s inlet is
coupled with the one-dimensional Darcy-scale representa-
tion in the rest of the domain. Relative concentration ranges
from 1 (dark red at x 5 0) to 0 (dark blue at x5L).

Figure 6. Solute deposition on the fracture’s walls (solid
black) at the characteristic times tc corresponding to reac-
tion rate constants (a) k51026 m=s , (b) k51025 m=s , and
(c) k5531025 m=s . Also shown are respective relative
concentration, cðx; y; tcÞ=c0 that range from 1 (dark red at
x 5 0) to 0 (dark blue at x5L). Both are computed with the
hybrid algorithm that combine two-dimensional pore-scale
simulations in the vicinity of the fracture’s inlet with the
one-dimensional Darcy-scale simulations elsewhere in the
fracture.
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outlet, x 5 L). As the value of reaction rate constant k
increases, the width of the fracture’s region with appreci-
able surface growth decreases and the fracture closes faster.

5.2. Heterogeneous Reaction Rate Constant

[57] Heterogeneous reaction rate constants, which give
rise to highly localized surface growth, provide another set-
ting where Darcy-scale models break down and must be
replaced with pore-scale or hybrid simulations. We con-
sider a piecewise constant reaction rate constant,

kðxÞ5
kc x 2 Xc

kh x 2 Xp

;

(
(31)

where kc corresponds to Damköhler numbers Da for which
the Darcy-scale ADE (6) is valid, and kh to Da values for
which the Darcy-scale ADE (6) breaks down. We set
kh5 531025 m=s ðDa52:5Þ at x51:531024; 3:531024

and 5:531024 m; and kc51027 m=s ðDa50:005Þ;
531027 m=s ðDa50:025Þ, or 1026 m=s ðDa50:05Þ in the
rest of the simulation domain. The initial concentration is
cðx; y; 0Þ51:0 g=m 3, and boundary conditions are
cð0; y; tÞ5c051:0 g=m 3 and @c=@x50 at x 5 L. The discre-
tization parameters are set to Dx5Dy52:531026 m and
Dg

t 5102s.
[58] Figure 7 shows the localized fracture wall growth

and corresponding solute concentrations at time
t563104s. While none of the considered values of kc is
sufficient to induce widespread surface growth, they con-
tribute to surface growth in the neighborhoods of hot spots
with k5kh by increasing the spatial variability of solute
concentration in the fracture. When kc51027 m=s (Figure
7a), solute concentration is close to its initial value in
most of the fracture, and the localized fracture wall
growth is similar in all three hot spots. Increased back-
ground reaction rate constant (e.g., kc51026 m=s in Fig-
ure 7c) increases the longitudinal variability of solute
concentration and facilitates the differentiation in the
intensity of surface growth at hot spots.

6. Discussion and Conclusions

[59] We presented a new hybrid approach to model reac-
tive transport in fractured and porous media. It is capable
of handling transport processes, which cannot be described
with Darcy-scale models and occur in domains that are too
large to be covered with pore-scale simulations. Starting
from the premise that the failure of Darcy-scale models is
confined to small regions of a computational domain,
hybrid models combine pore-scale and continuum-scale
descriptions. They use pore-scale simulations in such
regions and Darcy-scale simulations elsewhere. In our
hybrid implementation continuity of concentration and
mass flux at the pore-scale/Darcy-scale interfaces is
enforced by a modified finite-volume method, which
explicitly integrates the continuity conditions into the
global linear system.

[60] Hybrid models are particularly useful for quantita-
tive analyses of highly localized phenomena involved in
solute precipitation onto the solid matrix and solid matrix
dissolution by fluid flowing through a porous material.
Such a localization can be induced either by high solute
concentration gradients at locations of solvent injection or
by spatial heterogeneity of surface reaction rate constants.
It occurs, for example, in geotechnical engineering where
cementation and clogging phenomena are used to modify
or restore soil properties [Ivanov and Chu, 2008]. Other
application areas vary from remediation of soils modified
by human activities to safety enhancement of subsurface
storage of toxic chemicals.

[61] Hybrid models provide a means of studying geomet-
ric pore-scale variability and/or effects of surface rough-
ness on macroscopic behavior of fluids and solutes in
porous media. This can be done by combining the pore-
scale component of a hybrid with stochastic representations
of pore geometry and roughness. The latter enables one to
derive effective characteristics of flow and transport in
terms of the statistics of solid surfaces (e.g., mean and
standard deviation of fracture aperture) [Tartakovsky and
Xiu, 2006; Park et al., 2012; Zayernouri et al., 2013].

[62] Hybrid models can also be incorporated into dis-
crete fracture-network descriptions of transport in fractured
rocks. Analyses of highly heterogeneous fracture networks
require an efficient representation of their organization,
which can be based on simplified models of flow and solute
redistribution at intersections of different fractures [Roubi-
net et al., 2010a]. Hybrid models that combine a simple
(e.g., one-dimensional Darcy-scale) representation of each
fracture and a pore-scale description of processes at their
intersections would facilitate such analyses.

[63] While the present analysis employed a finite-
volume discretization, our hybrid modeling framework can
easily incorporate other numerical methods. For example,
the particle-tracking method of Roubinet et al. [2010b] can
be used to describe particle displacements in both pore-
scale and Darcy-scale transport models; a coupling method
would determine the pore-scale distribution of particles at
the pore-scale/Darcy-scale interfaces.

[64] In the follow-up studies, we will apply our hybrid
algorithm to model two-dimensional Darcy-scale transport
in porous media with realistic pore geometry. Doing
so would require one to express the pore-scale and

Figure 7. Solute deposition on the fracture’s walls (solid
black) at time t563104s in three hot spots
(x51:531024; 3:531024, and 5:531024 m) with high
reaction rate constant (kh5531025 m=s ); background
reaction rate constants are (a) kc51027 m=s , (b)
kc5531027 m=s , and (c) kc51026 m=s . Also shown are
respective relative concentration, cðx; y; tcÞ=c0 that range
from 1 (dark red at x 5 0) to 0 (dark blue at x5L). Both are
computed with the hybrid algorithm that combines two-
dimensional pore-scale simulations in the vicinity of the
hot spots with the one-dimensional Darcy-scale simulations
elsewhere in the fracture.
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Darcy-scale coupling on all the edges of a hybrid node and
to consider configurations where several Darcy-scale
hybrid nodes are present on each interface and related to a
given number of pore-scale nodes.

Appendix A: Global Linear System

[65] When concentration cðx; y; tÞ is evaluated in all the
pore-scale elements discretizing the hybrid node I�; f ðI�Þ
in equation (20) is expressed as f ðI�Þ5nxðI�Þ
nyðI�Þ12nyðI�Þ, where nxðI�Þ and nyðI�Þ are the number of
pore-scale control volumes discretizing the hybrid node I�

in the x and y directions, respectively. Let li;j denote the
index of component cðli;jÞ of vector c that represents pore-
scale concentration cn11

i;j at the center of pore-scale volume
vi;j at time tn115ðn11ÞDt. Let lk

i;j denote the index of com-
ponent cðlk

i;jÞ of vector c that represents pore-scale concen-
tration cn11

ik ;jk
at the center of volume vik ;jk , which shares the

edge k (k 5 w, e, s, or n) with volume vi;j.
[66] Finite-volume discretization (8) with pore-scale vol-

umes vi;j contributes the following components to the
global finite-volume matrix A in equation (19)

Aðli;j; li;jÞ5DxDy1hDtDyð~aw
i;j1~ae

i;jÞ

1hDtDxð~as
i;j1~an

i;jÞ
(A1)

and

Aðli;j; lk
i;jÞ52hDtDyak

i;j; k5w; e (A2)

Aðli;j; lk
i;jÞ52hDtDxak

i;j; k5s; n (A3)

where ~ak
i;j5ak

i;j2uk for k5w; s; ~ak
i;j5ak

i;j1uk for k5e; n ; uk

is the pore-scale flow velocity on the edge k ; and
ak

i;jðk5w; s; e; nÞ correspond to the coefficients ak (k 5 W, S,
E, N) in Versteeg and Malalasekera [2007, section 5.7]. The
pore-scale finite-volume representation also contributes
components to the right-hand side of global system (19),

bðli;jÞ5DxDycn
i;j2ð12hÞDtDy½qn

i;jðwÞ1qn
i;jðeÞ�

2ð12hÞDtDx½qn
i;jðsÞ1qn

i;jðnÞ�;
(A4)

where qn
i;jðkÞ is the discretized mass flux (10) at time

tn5nDt.
[67] The global system’s components (A1)–(A4) are modi-

fied for the interfacial volumes vi;j by incorporating the inter-
facial flux (14). Let lk

ði;jÞ-k denote the index of component

cðlk
ði;jÞ-kÞ of vector c that represents pore-scale concentration

cn11
ði;jÞ-k at the edge ði; jÞ-k of the volume vi;j adjacent to inter-

face U. For k 5 w, equations (A1) and (A2) are replaced with

Aðli;j; li;jÞ5DxDy1hDtDyð~b
w

i;j1~ae
i;jÞ

1hDtDxð~as
i;j1~an

i;jÞ
(A5)

and

Aðli;j; l
w
ði;jÞ-wÞ52hDtDybw

i;j: (A6)

[68] For k 5 e, equations (A1) and (A2) are replaced with

Aðli;j; li;jÞ5DxDy1hDtDyð~aw
i;j1

~b
e

i;jÞ
1hDtDxð~as

i;j1~an
i;jÞ

(A7)

and

Aðli;j; l
e
ði;jÞ-eÞ52hDtDybe

i;j: (A8)

[69] In equations (A5)–(A8), ~b
k

i;j5bk
i;j2uk for k 5 w and

~b
k

i;j5bk
i;j1uk for k 5 e, where bk

i;j are the coefficients ak in
Versteeg and Malalasekera [2007, section 5.7] modified to
account for the Dirichlet boundary condition at the edge k.
This is done by discretizing the mass flux at the edge k
between the edge k and the center of the volume vi;j, instead
of discretizing between the centers of the volumes vik ;jk
and vi;j.

[70] Let lI denote the index of component cðlIÞ of vector
c that represents Darcy-scale concentration cN11

I at the cen-
ter of volume VI at time tN115ðN11ÞDT . Let lK

I denote the
index of component cðlK

I Þ of vector c that represents
Darcy-scale concentration cN11

IK
at the center of volume

VIK , which shares the edge K (K 5 W or E) with volume VI.
For reaction rate RðcÞ5~K ðc2ceq ) with a Darcy-scale reac-
tion rate constant ~K , finite-volume discretization (11) with
control volumes VI contributes the following components
to the global finite-volume matrix A in equation (19)

AðlI ; lI Þ5DXxN11
I 1hDT ð~A

W

I 1~A
E

I 1DX ~K
N11
I Þ (A9)

and

AðlI ; l
K
I Þ52hDT AK

I ; K5W ;E (A10)

where ~A
W

I 5AW
I 2UW ; ~A

E

I 5AE
I 1UE, and UK is the Darcy-

scale flow velocity on the edge K (K5W ;E). The Darcy-
scale finite-volume representation also contributes compo-
nents to the right-hand side of global system (19),

bðlI Þ5DXxN
I cN

I 1DXDT ½h~K
N11
I 1ð12hÞ~K N

I �ceq

2ð12hÞDT ½qN
I ðWÞ1qN

I ðEÞ1DX ~K
N
I cN

I �
(A11)

where qN
I ðKÞ is the discretized mass flux (13) at time

tN 5NDT , and ~K
N
I is the Darcy-scale reaction rate constant

in volume VI at time tN.
[71] The global system’s components (A9)–(A11) are

modified for the interfacial volumes VI by incorporating the

interfacial flux (15). Let lK
I-K denote the index of component

cðlK
I-KÞ of vector c that represents Darcy-scale concentration

cN11
I-K at the edge ðI-KÞ of the volume VI adjacent to interface.

For K 5 W, equations (A9) and (A10) are replaced with

AðlI ; lI Þ5DXxN11
I 1hDT ð~B

W
I 1~A

E

I Þ (A12)

and

AðlI ; l
W
I-W Þ52hDT BW

I : (A13)

[72] For K 5 E, equations (A9) and (A10) are replaced
with
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AðlI ; lI Þ5DXxN11
I 1hDT ð~A

W

I 1~B
E
I Þ (A14)

and

AðlI ; l
E
I-EÞ52hDT BE

I (A15)

[73] In equations (A12)–(A15), ~B
K
I 5BK

I 2UK for K 5 W
and ~B

K
I 5BK

I 1UK for K 5 E, where BK
I are the modified

coefficients BK
I that account for the Dirichlet boundary con-

dition at the edge K. This is done by discretizing the mass
flux at the edge K between the edge K and the center of the
volume VI instead of between the centers of the volumes
VIK and VI.

[74] The FCC implementation of the continuity condi-
tions along the pore-scale/Darcy-scale interface U com-
bines the first of equations (16) and the second of equations
(17). The former is expressed as

AðlK
I-K ; l

K
I-KÞ51 AðlK

I-K ; l
k
ði0;jÞ-kÞ52

Dy

HK
I

: (A16)

The latter takes the form

Aðlk
ði0 ;jÞ-k ; l

k
ði0;jÞ-kÞ5bk

i0;j (A17)

Aðlk
ði0;jÞ-k ; li0;jÞ5~b

k

i0;j (A18)

Aðlk
ði0 ;jÞ-k ; l

K
I-KÞ5bi0 ;jB

K
I (A19)

Aðlk
ði0;jÞ-k ; lI Þ5bi0 ;j

~B
K
I : (A20)

[75] The alternative FFC implementation of the continu-
ity conditions along the pore-scale/Darcy-scale interface U
combines the second of equations (16) and the first of equa-
tions (17). It replaces equations (A16)–(A20) with

AðlK
I-K ; l

K
I-KÞ5BK

I AðlK
I-K ; lI Þ5~B

K
I (A21)

and

AðlK
I-K ; l

k
ði0;jÞ-kÞ5

Dy

HK
I

bk
i0;j (A22)

AðlK
I-K ; li0 ;jÞ5

Dy

HK
I

~b
k

i0;j (A23)

Aðlk
ði0;jÞ-k ; l

k
ði0;jÞ-kÞ51 (A24)

Aðlk
ði0;jÞ-k ; l

K
I-KÞ52ai0;j: (A25)

Appendix B: Cellular Automaton

[76] We use a cellular automaton algorithm (CAA) to
model surface growth at the pore scale. The pore space is
discretized with a regular mesh. CAA assigns each element
of the mesh one of the two binary states: Solid Element
(SE) or Active Element (AE). The SE state is assigned to all
elements representing the solid matrix (e.g., fracture walls
or solid grains of a porous material). The AE state is
assigned to all other elements representing the pore space
occupied by fluid. An AE that shares at least one edge with
a SE is referred to as a Growing Element (GE). Such an
edge is called a Reactive Edge (RE). Each RE is character-

ized by its position in the associated AE and is assigned a
value of the reaction rate constant. The RE’s position
changes when the fluid/solid interface invades the corre-
sponding AE; its initial value is set to 0.

[77] Simulation time tg
n5nDg

t ðn50; . . . ; nt21Þ is discre-
tized into nt time steps Dg

t . Flow velocity and solute con-
centration are evaluated in all AEs. Given the elements’
positions and states at time tg

n , the following algorithm is
used to advance the system to time tg

n11.
[78] 1. Determine REs kim;jm in each GE ðim; jmÞ :
[79] i. Use equation (4) to find the position of the fluid/

solid interface, xn11
kim ;jm

, of RE kim;jm at tg
n11

xn11
kim ;jm

5xn
kim ;jm

1
rsðcn

im ;jm
Þ

qs

Dg
t (B1)

where cn
im;jm

is the concentration in GE ðim; jmÞ at tg
n

[80] ii. Compute the solid surface advancing into GE
ðim; jmÞ

sn11
kim ;jm

5xn11
kim ;jm

Dkim ;jm
(B2)

where Dkim ;jm
is the length of RE kim;jm defined by

Dkim ;jm
5

Dy if RE kim ;jm is west=east edge

Dx if RE kim ;jm is south=north edge

(

[81] iii. Compute the solid surface in GE ðim; jmÞ,

Sn11
im ;jm

5
XNim ;jm

kim ;jm 51

sn11
kim ;jm

; (B3)

where Nim;jm is the number of REs in GE ðim; jmÞ
[82] 2. Compare Sn11

im;jm
and the element’s area

[83] If Sn11
im;jm

< DxDy then
store xn11

kim ;jm
for each RE for next iteration

[84] If Sn11
im;jm
	 DxDy then

relabel this GE as SE;
update the list of GEs by identifying AEs surrounding
the new SE;
identify REs of the new GEs;
redistribute Sn11

im;jm
2DxDy between these REs.
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