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ABSTRACT
Simultaneous horizontal injection of two immiscible fluids into a porous medium gives rise to three regions of constant satura-
tion. Due to gravity impact, the region with fluid saturation reflecting the volume fraction and viscosity ratio of the injected fluids
morphs into two horizontal layers fully saturated with one fluid or the other. The location of the discontinuity separating constant
saturation regions is often estimated with the Stone–Jenkins (SJ) formula. Our numerical simulations of multiphase flow in porous
media demonstrate that, for a wide range of hydraulic parameters of practical significance, the SJ formula has substantial error. We
derive an approximate analytical solution, which neglects the vertical component of flow velocity and introduces a correction factor to
enforce mass conservation. Comparison with numerical simulations reveals that our solution is accurate in the parameter regimes for
which the SJ formula is not and vice versa. The two solutions are complementary, covering the entire range of physically realizable
parameters.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0003325., s

I. INTRODUCTION

Segregation of fluids in porous media plays an important role
in a plethora of applications, which range from volcanology1 and
petroleum geology2 to metallurgy3 and cell biology.4 Despite the
superficial similarity between these phenomena, the mechanisms
leading to fluid segregation are application-specific. We focus on the
effects of gravity on flow and segregation of two immiscible fluids in
a porous medium.

Macroscopic models of multiphase flow in porous media rely
on a coupled system of highly nonlinear parabolic equations, which
describe the spatiotemporal evolution of saturations of individual
phases. Except in a few special cases, the solution of these equa-
tions requires sophisticated numerical algorithms,5,6 often employ-
ing computationally intense commercial simulators. One such case
is steady-state horizontal two-phase flow in a homogeneousmedium
with negligible capillary forces. When gravitation and viscous forces

are of the same order of magnitude and considering certain domain
geometries with a boundary condition of uniform injection, result-
ing flows are two-dimensional. This flow regime is observed in a
number of porous media applications such as water-alternating-gas
enhanced oil recovery,7,8 foam injection into oil reservoirs,9–11 CO2-
oil coreflooding,12 and CO2-water coreflooding13 related to CO2
sequestration.14,15 Impact of gravity on horizontal multiphase flow
is important in many coreflooding experiments, e.g., in drainage
by N2 or CO2, wherein it can alter the estimation of core relative
permeability.13,16

Several previous investigations focused on gravity segregation
of steady-state horizontal multiphase flow in homogeneous porous
media. A heuristic analytical expression, first derived by Stone7 and
Jenkins (SJ)8 and henceforth referred to as the SJ formula, posits
that a flow domain consists of three constant-saturation regions
separated by discontinuities. This approximate expression has been
shown to agree with numerical simulations under certain conditions
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and proved to be useful in applications.17–19 Yet, its heuristic nature,
i.e., the lack of rigorous derivation of the SJ formula, precludes one
from both quantifying its predictive error and identifying the limits
of its applicability. Analyses by Rossen and Van Duijn9 and Rossen
et al.20 demonstrated that the SJ formula predicts exactly the dis-
tance at which full segregation occurs. However, these studies left
unexplored the shape of the boundaries between the three saturation
regions and, more specifically, its conformance with full numerical
simulations.

We present an approximate analytical solution to gravity seg-
regation in steady-state, two-dimensional, immiscible two-phase,
horizontal flow. This solution is derived by assuming that the ver-
tical component of total flow velocity is negligible, i.e., that the
sum of wetting- and nonwetting-phase vertical velocities is much
smaller than the total horizontal velocity. A similar approximation
was used by Zhou et al.21 (Sec. II A) in the context of gravity-
dominated crossflow to classify flow regions without solving any
specific flow problem. Kuo and Benson13 neglected the total verti-
cal velocity to derive a semi-empirical model of gravity–capillary–
viscous flow; their solution involves a number of fitting parame-
ters, which are obtained by matching numerical simulations. To the
best of our knowledge, the assumption of zero total vertical veloc-
ity has not yet been rigorously implemented to solve flow problems
of horizontal two- or three-dimensional flows in the presence of
gravity.

Our analysis starts by invoking the assumption of negligible
total vertical velocity to simplify the governing equations. Then,
we analyze this approximation and show that it only applies to
the unlikely case of isoviscous fluids, contradicting mass con-
servation when phase viscosities are unequal. Hence, the solu-
tion necessitates introducing a correction term. This finding is
important due to its implications on past and future investiga-
tions employing this approximation. The resulting governing equa-
tions for the two-dimensional saturation distribution are solved
by using the method of characteristics. The solution describes
the distance and depth at which full segregation occurs. These
predictions are in agreement with previous publications; how-
ever, unlike existing literature, our solution also predicts the
shape of the boundaries separating the three constant saturation
regions.

The second part of our study provides a comparison between
our solution, the SJ formula, and a direct numerical solution of
the multiphase flow equations. This comparison establishes the lim-
its of applicability of the two analytical solutions. It shows that
for a wide range of parameters, our analytical solution is more
accurate than the SJ formula. We identify threshold values of the
hydraulic parameters for which the SJ formula is more accurate
than ours. For example, the SJ formula should be used when the
dimensionless gravity number is small, while beyond a certain
threshold value of this number, our analytical solution is more
accurate.

In Sec. II, we formulate the governing equations and boundary
conditions using dimensionless parameters. Section III contains an
analysis of the new approximation and discusses its failure to honor
mass conservation. In Sec. IV, we derive an analytical solution to
the problem, formulated with a correction that ensures mass conser-
vation. In Sec. V, numerical results for saturation are presented for
a wide range of parameters and compared with the analytical and

SJ solutions. Section VI provides an analogous solution in cylindri-
cal coordinates. Finally, in Sec. VII, we provide a summary of our
findings and list major conclusions.

II. PROBLEM FORMULATION
We consider horizontal flow in a homogeneous porous

medium due to the simultaneous injection of two immiscible flu-
ids. Both the porous medium and fluids are assumed to be incom-
pressible and the medium’s permeability to be isotropic. The flow is
described by the continuity and Darcy equations,

ϕ@Sj
@t

+∇ ⋅ uj = 0 (1)

and

uj = −kkrj(Sw)�j
∇(pj + ρjgz), (2)

where ϕ is the porosity of the rock, Sj is the saturation of phase j (j
= w for wetting phase and j = nw for nonwetting phase), uj is the
velocity vector of phase j, krj is the relative permeability to phase j,
�j is the viscosity of phase j, k is the absolute permeability, pj is the
pressure of phase j, ρj is the phase density, g is the gravitational accel-
eration, and z is the vertical coordinate. The saturations satisfy the
constraint Sw + Snw = 1, and assuming negligible capillary pressure,
the wetting and nonwetting phase pressures are equal, pw = pnw
= p. The problem formulation is completed by specifying functional
forms of the constitutive laws krj = krj(Sw).

The flow domain is a parallelepiped (0 ≤ x ≤ L, 0 ≤ y ≤ L, and 0≤ z ≤H), with injection of fluids at one of its faces (x = 0) and extrac-
tion at the opposite face (x = L). Since permeability is assumed to be
isotropic and homogeneous (kx = ky = kz = const), this flow regime
is two-dimensional (in the {x, z} Cartesian coordinate system). The
steady-state flow regime is described by the combination of (1) and
(2) without the time derivative,

∇ ⋅ [krj(Sw) ⋅ ∇(p + ρjgz)] = 0. (3)

The boundary conditions of the problem are a given x-direction
Darcy velocity for each phase at the inlet,

uj = −kkrj�j
@p
@x
= Uj, x = 0, (4)

no perpendicular flow at the top and bottom boundaries,

@p
@z
= 0, z = 0 and z = H, (5)

and an open boundary at the outlet x = L. The injected velocity of
phase j is denoted as Uj.

The two equations given by (3), together with the boundary
conditions of Eqs. (4) and (5), form a system for the two unknowns
p(x, z) and Sw(x, z). These can be applied to describe a number of
processes related to injection of fluid mixtures into porous media,
e.g., two-phase flow coreflooding experiments22 and enhanced oil
recovery. The solution for spatial variation of pressure and satura-
tion is generally a function of parameters L, H, �j, krj, Uj, k, and
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�ρ = ρw − ρnw . Applying dimensional analysis using length scale
L, time scale L/U, and mass �nwL2/U, where U = Uw + Unw is the
total injection velocity, we arrive at dimensionless parameters. If we
also assume Brooks–Corey23 relative permeability functions of the
form

krw = (1 − Snw)n, krnw = Snnw , (6)
then six dimensionless parameters control the flow and these are

�R = �w
�nw

, R = H
L
, U∗w = Uw

U
,

�ρ∗ = �ρgL2

�nwU
, K = k

L2
and, n.

(7)

To solve Eqs. (3)–(5), we will apply an approximation of the
small total vertical velocity. The total velocity is defined by ut= (utx,utz) = uw + unw , and from Eq. (1) at steady state, we obtain
the relationship

∇ ⋅ ut = 0, (8)

i.e., the flow is incompressible. The basic intuition for neglecting
total vertical velocity, i.e.,

utz � utx, (9)

comes from the fact that we impose flow in the horizontal direction.
However, this approximation is only valid for some cases, which will
be discussed in Sec. III.

Neglecting utz in Eq. (8) immediately results in utx = const = U.
Using this result (uw ,x + unw ,x = U) together with Darcy’s law, we
write the following expressions for the nonwetting phase velocities:

unw,x = U
1 + λw�λnw , (10)

unw,z = kλw�ρg
1 + λw�λnw , (11)

where λj = krj/�j is the phasemobility. Substituting Eqs. (10) and (11)
in the steady-state form of Eq. (1) for j = nw gives

@

@x
� U
1 +M

� + @

@z
��ρg kλw

1 +M
� = 0, (12)

whereM = λw/λnw .
We use the nondimensional parameters x̃ = x�L and z̃ = z�H

in Eq. (12) and rearrange to arrive at the nondimensional equation,

@F1
@x̃

+
@F2
@z̃
= 0, (13)

where

F1(S) = 1
1 +M

, F2(S) = Ng
Mkrnw
1 +M

, (14)

and Ng = kL�ρg/(H�nwU) is the gravity number representing the
ratio of gravity to viscous forces. The saturation S in Eq. (14) is the
nonwetting phase saturation normalized to incorporate residual sat-
urations, i.e., S = (Snw − Swr)/(1 − Swr − Snwr), where Swr and Snwr are
the wetting/nonwetting phase residuals and Snw is the nonwetting
phase saturation. Equation (13) resembles the well-known Buckley–
Leverett equation,24 where time is replaced with x̃ and reservoir
length coordinate is replaced with z̃.

We seek the two-dimensional saturation solution S(x, z) of the
above problem, while pressure can be obtained once saturation is
known via Eqs. (10) and (11) by applying Darcy’s law. The boundary
conditions for saturation will be derived and these are depicted in
Fig. 1. At the inlet boundary, saturation Sin is obtained by applying
Eq. (10) at x̃ = 0 and replacing the velocity unw ,x with the injection
velocity Unw . The resulting equation is

λw(Sin)
λw(Sin) + λnw(Sin) =

krw(Sin)
krw(Sin) + �Rkrnw(Sin) = U∗w , x̃ = 0,

(15)
where �R = �w/�nw is the viscosity ratio and U∗w = Uw�U. Equa-
tion (15) can be easily solved to obtain Sin, once the structure of
relative permeability functions is determined [assumed here to be
Eq. (6)]. At the top and bottom boundaries, Eq. (11) with the no
flow condition suggests that

unw,z = −uw,z = kλw�ρg
1 + λw�λnw = 0, z̃ = 0, 1. (16)

Possible solutions are λw = 0 or λnw → 0, corresponding to S = 1 and
S = 0, respectively.

For a sufficiently large domain length L, the flow will become
fully segregated at a certain distance from the inlet, denoted by x′
(normalized by L), and the lighter phase will form a layer above the
heavier phase (see Fig. 1). We denote by z′ the dimensionless height
(normalized byH) at which the two segregated phases are in contact.
The point (x′, z′) is coined the segregation point. For demonstration
purposes, we will assume that the nonwetting phase is lighter (e.g.,
gas) than the wetting phase (e.g., water). Hence, for x̃ > x′, S = 0
at z̃ < z′ and S = 1 at z̃ > z′, i.e., the lighter phase is completely
above the heavier phase. Therefore, we specify the top and bottom
boundary conditions to be

S = 0 at z̃ = 0, S = 1 at z̃ = 1. (17)

These three boundary conditions given by Eqs. (15) and
(17) (inlet, top and bottom) are sufficient to solve the problem.

FIG. 1. Schematic description of the problem, including 2D domain, coordinate
system, saturation boundary conditions, and segregation point (x′, z′).
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Nevertheless, we can also express the saturation at the segregation
line as

S = 1 at x̃ = x′, z′ < z̃ < 1,
S = 0 at x̃ = x′, 0 < z̃ < z′. (18)

Full segregation may not occur in the domain, i.e., when x′ > 1;
however, it will be shown that considering an imaginary segrega-
tion point (outside the domain) is useful in deriving a solution. The
solution to the approximate equations given by Eqs. (13)–(15) and
(17) is controlled by four parameters, i.e., �R,U∗w ,Ng , and n, two less
than the full problem detailed in Eq. (7).

III. ANALYSIS OF APPROXIMATION
We now investigate the proposed approximation of negligible

total vertical velocity [Eq. (9)]. The main goal is to assess its applica-
bility and to determine the parameters for which the assumption is
reasonable. First, we can test the approximation by considering the
conservation of mass at the segregation line x̃ = x′. Since flow is only
in the x direction at both x = 0 and x̃ = x′, we can write an equation
of mass balance between the two lines for each phase as follows:

� 1

z′
unw,xd z̃ = Unw , (19a)

� z′

0
uw,xd z̃ = Uw . (19b)

Substituting Darcy’s law in Eq. (19) and integrating it, we arrive at

(1 − z′)λnw @p
@x
= Unw , (20a)

z′λw @p
@x
= Uw , (20b)

which leads to an expression for the segregation height,

z′ = 1
Unw�nw
Uw�w + 1

. (21)

On the other hand, we can obtain z′ using the zero total vertical
velocity assumption by substituting Eq. (10) in Eq. (19a), which after
integration leads to

(1 − z′)U
1 + λw�λnw = Unw . (22)

FIG. 2. Vertical to horizontal total veloc-
ity ratio averaged over the domain as a
function of (a) viscosity ratio, (b) dimen-
sionless permeability, and (c) dimension-
less density difference. Arrows with per-
cent values indicate the portion of grid
blocks with negative (downward) vertical
velocity.
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Remembering that λw = 0 because Snw = 1 in the region z′ < z̃ < 1
of the segregated zone, we arrive at

z′ = 1
Unw�Uw + 1

. (23)

This result for z′ is clearly different than the previous one in Eq. (21)
known to be correct. It shows that the approximation does not incor-
porate the effects of the viscosity ratio in the fully segregated flow.
An additional, mathematically rigorous proof of the incompatibil-
ity between the approximate and full equations is presented in the
Appendix. The reason for the failure of the approximation will be
discussed in the next paragraphs; however, it is important to stress
the implications of this finding. Noncompliance with basic mass bal-
ance is a major problem and puts in question the previous and future
applications of the zero total vertical velocity assumption. In this
work, we will overcome this issue by applying a correction, which
will be discussed in Sec. IV.

Next, we test the approximation by calculating utz using numer-
ical solutions. The full problem, given by Eqs. (1) and (2), is solved
using Stanford’s General Purpose Research Simulator (GPRS25) on
simulation grids of 200 × 200 until steady state is reached. The ratio
between total vertical and horizontal velocities, i.e., �utz�utx�, is cal-
culated in each grid block and we generally expect this ratio to be
small when the approximation applies. Figures 2(a)–2(c) present the
velocity ratio averaged over the domain in the region 0 < x̃ < x′, 0< z̃ < 1 for changing viscosity ratio (�R), dimensionless permeability
K = k/L2, and density difference �ρ∗ = �ρgL2/(�nwU).

Figure 2(a) reveals that away from �R = 1, there is a jump in
the velocity ratio, indicating inadequacy of the approximation and
in line with our previous finding that mass conservation fails for
�R ≠ 1. This non-negligible vertical velocity, resulting from the vis-
cosity difference between the phases, leads to a shift in z′, as the
more viscous phase will occupy a thicker layer in segregated flow.
This is seen in Fig. 2(a), where each data point is accompanied by
an arrow indicating the percent of grid blocks that have downward
direction velocity (i.e., utz < 0). It is clear that for �R < 1, almost all
the non-negligible vertical velocity is downward, while for �R > 1, it
is all upward. This corresponds to the decrease in z′ for the former
and increase for the latter [see Eq. (21)]. Points in the plot that have
no indicated percentage pertain to cases with small vertical velocity
(less than 10% of grid blocks with �utz�utx� > 0.1) so that the direc-
tion is immaterial. Comparison with the vertical velocity direction
in Figs. 2(b) and 2(c) shows that the direction is significantly more
mixed between upward and downward and is not associated with a
change in z′.

Despite the local increase in �utz�utx� away from �R = 1, a strong
decrease is seen in Fig. 2(a) for large �R. This is a result of the
solution approaching one of constant saturation with only hori-
zontal flow and a segregation point that is far outside the domain
(x′ � 1). The same phenomenon occurs for small K and �ρ∗ in
Figs. 2(b) and 2(c), respectively. This decrease is associated with a
smaller gravity number, which, in fact, leads to a constant satura-
tion solution as gravity effects become negligible. A larger gravity
number, i.e., increasing K and �ρ∗, leads to more segregated solu-
tions in which only a small region near the inlet consists of mixed
phases. Figures 2(b) and 2(c) show that these solutions have increas-
ingly large vertical velocities, which must be attributed to near inlet
regions.

IV. SOLUTION
We now derive an analytical solution to the approximate prob-

lem given by Eqs. (13)–(15) and (17). The solution is obtained using
the method of characteristics, following the approach detailed in the
work of Bedrikovetsky.26 Rewriting Eq. (13) as

@S
@x̃

+ F′ @S
@z̃
= 0, (24)

where

F′(S) = @F2
@S
�@F1

@S
, (25)

allows us to define the slope of the characteristic curves, d z̃�dx= F′(S). Assuming Brooks–Corey relative permeability functions in
Eq. (6), F′/Ng is a function only of n and �R. We plot F̂ = F′�Ng
for varying n and �R in Figs. 3(a) and 3(b). Characteristic lines are
determined by F̂ at S = 0, S = 1, and S = Sin, corresponding to the
lines originating from the bottom, top, and inlet.

FIG. 3. F̂′ = F′�Ng [Eq. (25)] as a function of S for (a) varying n and (b) varying
�R. The points (Sin, F̂′(Sin)) are indicated with filled circles.
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Figures 3(a) and 3(b) show that for all �R and n values, F′ = −1
at S = 1, and therefore, all characteristic curves from the top bound-
ary will be 45○ to the x axis (for Ng = 1). This can be seen in Fig. 4
where the characteristics for the case of Ng = 1, n = 2, and �nw/�w
= 1 are drawn. On the other hand, curves from the bottom of the
domain will have gradients varying with �nw/�w , but not n, as deter-
mined by F′(0). Curves at the inlet will vary with n and slightly with
�R, determined by F′(Sin). These curves also depend on U∗w (taken
to be unity in the figures), since the injection velocities impact Sin, as
seen in Eq. (15). Figure 4 presents characteristic curves of the prob-
lem for an example case. It can be seen that top and bottom curves
are ±45○ from the horizontal and the inlet curves are parallel to x̃
axis. This corresponds to F̂′(0) = 1, F̂′(1) = −1, and F̂′(Sin) = 0, as
seen in Fig. 3(b) for �R = 1. The characteristic curves show that the
solution consists of three regions of constant saturation, S = 1, S = 0,
and S = Sin, separated by three shock waves, i.e., discontinuities. Fur-
thermore, the whole domain is covered by characteristics indicating
that there are no rarefaction waves and the Lax27 condition holds.
This is the case for any choice of parameters �R, n, U∗w , and Ng , as
shown in Figs. 3(a) and 3(b).

To complete the solution, it is necessary to find equations
describing the discontinuity lines separating the three regions of
constant saturation. For this, we apply the Rankine–Hugoniot28 con-
dition and obtain the line gradients, often termed “velocity of the
waves.” A simple wave solution is assumed, i.e., ζ = z̃ −Dix̃ (i = 1, 2,
3), whereD1 describes the gradient of the discontinuity beginning at
the lower boundary, D2 begins at the upper boundary, and D3 is the
angle of the segregation boundary at z̃ = z′. Plugging the transfor-
mation into Eq. (13), integrating, and rearranging give an expression
for D as follows:

D = F2(S+) − F2(S−)
F1(S+) − F1(S−) , (26)

where S+ and S− are the saturation above and below the discontinu-
ity, respectively. Then D for each discontinuity is

D1 = F2(Sin) − F2(0)
F1(Sin) − F1(0) =

F2(Sin)
F1(Sin) , (27)

FIG. 4. Characteristic lines for the problem given by Eqs. (13)–(15) and (17).
Parameter values of Ng = 1, �R = 1, U∗w = 1, and n = 2 are taken.

D2 = F2(1) − F2(Sin)
F1(1) − F1(Sin) =

−F2(Sin)
1 − F1(Sin) , (28)

D3 = F2(1) − F2(0)
F1(1) − F1(0) = 0, (29)

where we have substituted F1(0) = 0, F1(1) = 1, F2(0) = 0, and F2(1)
= 0 [see Eq. (14)]. As expected, the line in the segregated zone is
simply horizontal, i.e., D3 = 0.

The location of the segregation point (x′, z′) can be found by
the relationship D1x′ = 1 + D2x′, leading to

x′ = 1
D1 −D2

, z′ = D1

D1 −D2
. (30)

Substituting Eqs. (27) and (28) in (30) gives z′ = 1 − F1(Sin)= 1�[1 + λw(Sin)�λnw(Sin)]. Using Eq. (15), it is obvious that
this expression for z′ is consistent with mass conservation at the
outlet boundary given by Eq. (23). As discussed previously in
Sec. III, this expression is only correct when �R = 1 and the cor-
rect expression is given by Eq. (21). Therefore, the discontinuity
described by Eqs. (27) and (28) does not always honor mass con-
servation. However, this solution also leads to the horizontal coor-
dinate of segregation by substitution in Eq. (30), which is now
given by

x′ = F1(Sin)[1 − F1(Sin)]
F2(Sin) = F1(Sin)

Ngkrnw(Sin) , (31)

and this is accurate for any choice of parameters, as shown previ-
ously by Rossen and Duijn,9 Stone,7 and Jenkins,8 and will be shown
here in Sec. V.

We now apply a correction to the solution forD1 andD2 so that
the intersection of the discontinuity lines will remain at distance x̃= x′, yet the height of intersection z′ is corrected to be
that of Eq. (21). This is ensured by defining D̂1 = z′�x′
and D̂2 = (z′ − 1)�z′ (since the shock lines are z̃ = D̂1x̃
and z̃ = 1 + D̂2x̃). Substituting Eqs. (21) and (31) in
these expressions gives the final result for discontinuity
gradients,

D̂1 = z′Ngkrnw(Sin)
F1(Sin)

= Ngkrnw(Sin)� 1
1 −U∗w ��

1
�R
� 1
U∗w − 1� + 1�−1, (32)

D̂2 = (z′ − 1)Ngkrnw(Sin)
F1(Sin) = −Ngkrnw(Sin)�U∗w(�R − 1) + 1�−1.

(33)

The final solution in the nondimensional form can be written
as

S(̃x, z̃) =
�����������
0, {x̃ < x′ and z̃�̃x < D̂1} or {x̃ > x′ and z̃ < z′}
Sin, {̃z�̃x > D̂1 and (̃z − 1)�̃x < D̂2}
1, {x̃ < x′ and (̃z − 1)� x̃ > D̂2} or {x̃ > x′ and z̃ > z′}.

(34)
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V. RESULTS
The solution derived in Sec. IV will now be analyzed for a wide

range of controlling parameters. A comparison will be held with a
numerical solution of the full problem (3) using GPRS, as described
in Sec. III. We emphasize that simulation results have been tested
carefully for convergence. The following “base case” parameters are
defined: �R = 1, n = 2, R = 2.18, K = 9.5 ⋅ 10−12, and �ρ∗ = 3.23 ⋅
1011, chosen so that the solution has significant S variation, i.e., (x′,
z′) is near the domain center. These values will be used in the tests
that follow, usually changing one or two of the parameters at a time.
Furthermore, we will compare the analytical solution with a previous
formula suggested by Stone7 and Jenkins8 (which we have referred
to as the SJ formula),

z̃u(̃x) = �1 − 1 − x′�̃x
krw(Sin)��1 +

1
�R
� 1
U∗w − 1� −

1 − x′�̃x
krw(Sin)�

−1
, (35a)

z̃l(̃x) = �1 + 1
�R
� 1
U∗w − 1� −

1 − x′�̃x
krw(Sin)�

−1
, (35b)

for the upper and lower discontinuities, respectively, where x′ is
given by Eq. (31). These two discontinuity curves honor the bound-
ary conditions and conservation of mass [Eq. (21)], i.e., z̃u = 1, z̃l = 0
at x̃ = 0, and z̃u = z̃l = z′ at x̃ = x′.

Figure 5 presents the solution S(̃x, z̃) for different values of Ng ,
as indicated below each plot. Base case parameters are considered
apart from U∗w = 2�3 and varying �ρ∗. It can be seen that the solu-
tion consists of three regions of constant saturation: S = Sin, S = 0,
and S = 1 as discussed previously in the results for characteristic
lines (Fig. 4). The meeting point of the three regions is the segre-
gation point (x′, z′), and it is apparent that the analytical results
for this point (intersection of red solid lines) given by Eqs. (21)
and (31) are in agreement with the numerical results. This is pre-
sented quantitatively in Table I, where it can be seen that values
of Sin, x′, and z′ match almost perfectly for all cases in this figure
and the following figures as well. Missing values in the table are for
cases in which a segregation point does not exist in the domain,
e.g., Fig. 5(d).

The impact of Ng on the saturation solution is seen in Fig. 5.
For large values [Fig. 5(a)], gravity dominates, and the domain
consists almost entirely of segregated flow and the transition zone

FIG. 5. Two-dimensional saturation solu-
tion for numerical simulations (colored
areas), analytical solution, and the SJ
formula. Different values of Ng are con-
sidered, as indicated below plots (a)–(d).
Errors between numerical results and the
analytical solution (E) or the SJ model
(ESJ ) are detailed.
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TABLE I. Values of Sin, x′, and z′ for both the analytical and numerical solutions. Results pertain to the cases in Figs. 5–7.

Sin x′ z′
Figure Analytical Numerical Analytical Numerical Analytical Numerical

5(a) 0.41 0.41 0.133 0.135 0.67 0.67
5(b) 0.41 0.41 0.33 0.34 0.67 0.66
5(c) 0.41 0.41 0.808 0.81 0.67 0.66
5(d) 0.41 0.41 . . . . . . . . . . . .
6(a) 0.68 0.68 0.162 0.165 0.18 0.18
6(b) 0.53 0.53 0.269 0.27 0.44 0.44
6(c) 0.31 031 0.785 0.785 0.83 0.83
6(d) 0.24 0.24 . . . . . . . . . . . .
7(a) 0.25 0.25 0.24 0.25 0.9 0.9
7(b) 0.5 0.5 0.114 0.115 0.5 0.5
7(c) 0.5 0.5 0.3 0.3 0.5 0.5
7(d) 0.75 0.75 0.25 0.25 0.1 0.1
7(e) 0.5 0.5 0.849 0.855 0.5 0.51

with S = Sin is in a small region near the inlet. The decrease in Ng
[Figs. 5(b) and 5(c)] leads to larger x′ as the transition zone expands
due to the increase in viscous effects. When viscous forces dominate
[Fig. 5(d)], segregated flow does not occur and only small regions at
the top and bottom of the domain have S = 1 and S = 0, respectively.
These regions tend to zero with Ng → 0, and the solution becomes
uniform with S = Sin. We note that Ng does not impact the segre-
gation height z′ or the transition zone saturation S = Sin, as seen in
Eqs. (21) and (15).

Since the analytical solutions for Sin, x′, and z′ are exact, accu-
racy will be determined by the discontinuity curves separating satu-
ration regions. In general, these curves change shape from concave
[Figs. 5(c) and 5(d), numerical results] to convex [Fig. 5(a), numeri-
cal results] for the upper curve and vice versa for the lower curve.
The analytical solution consists of linear curves, while the SJ for-
mula [Eq. (35)] is generally concave (for the upper curve). Therefore,
Figs. 5(c) and 5(d) show high accuracy of the SJ formula (compared
with numerical results) as both are concave. In Fig. 5(b), the analyt-
ical solution is seen to be accurate as the curves are linear, while the
SJ model loses its accuracy. Figure 5(a) shows that both approximate
solutions are not accurate due to the convex curve structure; how-
ever, the analytical solution seems to have less error. Below each plot
in Figs. 5–7, we specify a measure for the accuracy of the approx-
imate solutions (analytical and SJ) by comparison to the numeri-
cal results. The overall error is defined as the average difference in
saturation, i.e.,

E = ��Sapprox(̃x, z̃) − Snumerical(̃x, z̃)��, x̃ < x′, (36)

where Sapprox is the saturation for the analytical solution (E) or the
SJ model (ESJ), Snumerical is the numerical solution, and �� represents
spatial averaging.

Figure 6 presents results for the varying viscosity ratio �R. For
small values of �R [Fig. 6(a)], the wetting phase has a higher Darcy
velocity due to a smaller viscosity, and thus, the layer of segregated
wetting phase is seen to be much thinner than the nonwetting phase

layer [small z′ in Eq. (21)]. As �R is increased, z′ will increase accord-
ingly, and when the nonwetting phase is more viscous than the
wetting, it will also become the thinner layer of the two [Fig. 6(c)].
The viscosity ratio has an additional impact on the solution via
Eq. (31) for x′. Larger �R results in a larger transition region,
and this can be seen in Figs. 6(a)–6(d). This leads to a break in
symmetry as seen by comparing Figs. 6(a) and 6(c), showing that
the solution for a less viscous wetting (heavy) phase is different
than the solution for a less viscous nonwetting (light) phase. Accu-
racy of the approximate solutions is similar to that discussed pre-
viously, with better accuracy of the analytical solution for small
�R (small x′), while the SJ model is more accurate for larger �R
(larger x′).

The impact of U∗w is shown in Figs. 7(a), 7(c), and 7(d). Larger
U∗w [Fig. 7(a)] leads to a thicker wetting phase layer in the segregated
flow, and smaller U∗w leads to a thinner layer [Fig. 7(d)]. Further-
more, it is apparent that the solution for 0 < U∗w < 0.5 is symmetric
with that for 0.5 < U∗w < 1, seen by comparing Figs. 7(a) and 7(d).
This is due to the fact that U∗w does not influence x′, while it has
a symmetric impact on z′, seen in Eq. (21). For this reason, the
impact of U∗w on the accuracy of the analytical solution is limited,
since most of the error variations occur with changes in x′. Fig-
ures 7(b), 7(c), and 7(e) present results for varying n. The impact
of n is slightly hidden since it appears in krw and krnw in Eq. (6),
which then impacts x′. It is seen in the figures that x′ increases with
larger n, while z′ is not affected by n variations. The shape of discon-
tinuity curves and the related error in approximate solutions appears
to vary in the same manner as discussed previously, with a convex
shape for small n and a concave shape for large n. However, the
change in shape is much more pronounced than that is observed
in Figs. 5 and 6.

To further test the applicability and accuracy of the analyti-
cal solution and to compare with the SJ model, we plot the over-
all errors E and ESJ , given by Eq. (36), as a function of the six
parameters of the full problem: �ρ∗, �R, R, U∗w , K, and n. Results are
presented in Fig. 8 using base case parameters apart from the varying
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FIG. 6. Two-dimensional saturation solu-
tion for numerical simulations (colored
areas), analytical solution, and the SJ
formula. Different values of �R are con-
sidered, as indicated below plots (a)–(d).
Errors between numerical results and the
analytical solution (E) or the SJ model
(ESJ ) are detailed.

parameter specified in the axes and U∗w = 2�3 in Fig. 8(a). It is evi-
dent that the error curves in Figs. 8(a) and 8(e) have a very similar
structure. Furthermore, E in Fig. 8(c) (red curve) also has a simi-
lar structure as those in Figs. 8(a) and 8(e) when considered back-
wards, i.e., from high to low values of R. This similarity is because
the three parameters �ρ∗, R, and K comprise the gravity number,
i.e., Ng = �ρ∗K/R, and their impact is rather similar when con-
sidered separately. This is the reason the analytical solution, which
depends onNg and not on the three parameters separately, is a useful
approximation.

Observing the analytical solution and SJ model errors in
Figs. 8(a), 8(c), and 8(e), we find that for small Ng (i.e., small �ρ∗
and K or large R), the error is small. This is due to the fact that
solutions in this range of parameters consist of very large x′ and
uniform S = Sin covers practically the entire domain. This solution
is rather trivial and easily matched by the approximations. As Ng
is increased (i.e., increasing �ρ∗ and K or decreasing R), the solu-
tion takes the form of three regions (S = Sin, S = 0, and S = 1), and
errors grow due to the inaccuracy of the discontinuity curves [see
Fig. 5(d)]. It is apparent that errors for the analytical solution grow
much more rapidly than for the SJ model in this range since the

concave discontinuity curves are estimatedmuchmore accurately by
the latter. The analytical solution reaches a point of local maximum
error as the discontinuities present maximum curvature. Then, dis-
continuities begin a transition from concave to convex shape, which
leads to a reduction in error of E and a sharp increase in error of
ESJ . A local minimum for E is reached when the discontinuities
are linear [e.g., Fig. 5(b)]. As Ng become very large and x′ is very
small, both E and ESJ grow. This is mainly due to the small region
(̃x < x′) that is considered in error calculations [see Eq. (36)] so that,
essentially, only erroneous grid blocks on discontinuity curves are
included.

Figure 8(f) presents errors for varying n. The general trend
is somewhat similar to that in Fig. 8(c) with the increase in
error for smallest n values (when x′ is small) and the decrease in
error for largest n (when solution tends to uniform S = Sin). The
errors in between are related to the curvature of the discontinu-
ities with a minimum for the analytical solution when the cur-
vature is zero (n � 2). The main difference from the figures dis-
cussed previously is that n has a more pronounced impact on the
curvature of the discontinuities leading to very large errors for
E, surpassing values of 0.1. As a result, for large n, it is highly
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FIG. 7. Two-dimensional saturation solu-
tion for numerical simulations (colored
areas), analytical solution, and the SJ
formula. Different values of U∗w are con-
sidered in (a),(c), and (d), while varying
values of n are shown in (b), (c), and (e),
specified below each plot.

advantageous to use the SJ formula rather than the analytical solu-
tion. We note that different relative permeability models were not
tested; however, we expect the behavior of different models to be
similar to those discussed above since any monotonic kr curves with
large convex curvature should approximately correspond to large n.

Curves with large concave structures should approximately corre-
spond to small n, and curves with small curvature should be similar
to n ∼ 1.

Substantially different error curve structures are presented
in Figs. 8(b) and 8(d). Figure 8(d) is symmetric as expected,
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FIG. 8. Errors E and ESJ between
approximate and numerical solutions for
varying parameters of the full problem
[Eq. (3)], as indicated in the axes of plots
(a)–(f).

considering the symmetric impact of U∗w discussed previously
regarding Fig. 7. Varying U∗w does not significantly change x′ or the
curvature of the discontinuity curves, and therefore, the analytical
solution error is fairly constant. It is also small since base case param-
eters lead to small errors. The SJ model error, on the other hand, has
some variation with a maximum error for U∗w = 0 when the dis-
continuity curves are equal in length. Figure 8(b) shows error for
varying �R. A minimum in analytical solution error and a maximum

in the SJ model error are obtained for �R = 1 when the disconti-
nuity curves are linear. For larger �R, the error increases for E and
decreases for ESJ as the discontinuity curves become concave, and
finally, for even larger �R, both errors decrease as the solution tends
to one of uniform S = Sin. For �R < 1, E increases as the disconti-
nuities become convex; however, ESJ decreases as the curves become
unequal in length. Even for very small �R, the errors continue to be
decreasing despite x′ → 0, which is contradictory to small values of
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R or n in Figs. 8(c) and 8(f). The reason is that here, z′ → 0 when x′→ 0, and thus, the long discontinuities curve remains fairly linear,
while the short curve becomes negligibly small.

Observing Fig. 8, we can divide the parametric space into
regions in which the analytical solution is more accurate and other
regions of higher SJ model accuracy. Generally, we find that larger
gravity numbers indicate a preference for the analytical solution.We
can define threshold parameter values in which E < ESJ for Figs. 8(a),
8(c), and 8(e) as follows: �ρ∗ > 2 × 1011, K > 6 × 10−12, and R< 2.5 corresponding to a threshold of Ng � 1–4. Outside this range,
i.e., for Ng � 1, the SJ formula is preferable. Figure 8(b) indicates
that for �R < 2, the analytical model is more accurate, while for �R> 2, the SJ model should be used. Figure 8(f) shows that for a range
of 1 < n < 2.7, the analytical solution is more accurate, while out-
side this range, the SJ model is a better approximation, particularly
for large n. Figure 8(d) does not reveal a range of U∗w values for a
preferred approximation; however, it appears that the large portion
of the intermediate values could have smaller error for the analyti-
cal solution, while the extreme values closer to 0 and 1 could have
smaller error for the SJ model.

VI. SOLUTION IN CYLINDRICAL COORDINATES
The formulation, solution, and results presented so far are

in Cartesian coordinates. We now extend the solution derived in

Sec. IV to cylindrical coordinates in order to apply for cases of radial
well injection.29 We begin with Eq. (8) in cylindrical coordinates,
given by

1
r
@(rutr)
@r

+
@utz
@z
= 0. (37)

Assuming negligible vertical velocity utz � utr in a similar manner to
Eq. (9), we arrive at

utr = Q
r
, (38)

where Q is the flux in the radial direction injected at r = 0. Substi-
tuting Darcy’s law in Eq. (38), we arrive at the expressions for the
nonwetting phase radial velocity,

unw,r = Q
r(1 + λw�λnw) , (39)

and unw ,z remains the same as in the previous formulation [see
Eq. (11)]. Substituting these in the steady state form of Eq. (1) for
j = nw and using cylindrical coordinates gives

1
r
@

@r
� Q
1 +M

� + @

@z
��ρg kλw

1 +M
� = 0. (40)

FIG. 9. Two-dimensional saturation solu-
tion for the analytical solution and the SJ
formula considering radial flow in cylin-
drical coordinates. Different values of Ng
are considered, as indicated below plots
(a)–(d).
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Using dimensionless parameters z̃ = z�H and r̃ = r�L (L is the
radial length of the domain) in Eq. (40), we arrive at

1
r
@F1
@ r̃

+
@F2
@z̃
= 0, (41)

where F1 and F2 are given by Eq. (14) and Ng = kL2�ρg/(H�nwQr).
Applying the nondimensional coordinate transformation ζ = r̃2�2,
we arrive at

@F1
@ζ +

@F2
@z̃
= 0, (42)

which is the same in structure as the previously derived Eq. (13).
The boundary conditions to complete the formulation are given by
Eq. (17) and

λw(Sin)
λnw(Sin) = Q∗w , (43)

where Q∗w = Qw�Q and Qw is the wetting phase injected at the well
(r = 0). The segregation height z′ is obtained in a similar derivation
to Eqs. (19) and (20) to arrive at

z′ = 1
Qnw�nw
Qw�w + 1

= � 1�R �
1
Q∗w − 1� + 1�−1, (44)

analogous to Eq. (21).
Equations (42)–(44) are solved in the samemanner as described

in Sec. IV to obtain S(ζ, z̃) given by Eq. (34). Then, the inverse
transformation is applied to arrive at the solution

S(̃r, z̃)=
�������������������

0, {̃r <�2ζ′ and 2̃z�̃r2 < D̂1} or {x̃ >�2ζ′ and z̃ < z′}
Sin, {2̃z�̃r2 > D̂1 and 2(̃z − 1)�̃r2 < D̂2}
1, {̃r <

�
2ζ′ and 2(̃z − 1)�̃r2 > D̂2} or

{̃r >�2ζ′ and z̃ > z′},
(45)

where ζ′ is given by Eq. (31) and D̂1 and D̂2 are given by Eqs. (32)
and (33) withU∗w replaced byQ∗w . The solution is presented in Fig. 9,
which corresponds to the parameters used in Fig. 5. It is apparent
that the discontinuity lines for the analytical solution are no longer
linear as in the cartesian case and present concave curvature (for the
top curve). Furthermore, the segregation length r′ =�2ζ′ is seen to
be larger than x′, particularly for larger Ng [Figs. 9(a) and 9(b)].

VII. SUMMARY AND CONCLUSIONS
This work derives approximate equations to two-phase immis-

cible flowwith gravity and viscous effects by implementing a negligi-
ble total vertical velocity approach (utz � 0). The problem considered
is of simultaneous injection of two phases, and the solution we seek
is the two-dimensional saturation distribution. First, the approxima-
tion is tested and shown to have a significant disadvantage due to the
violations of mass conservation when injected fluids are of unequal
viscosity, i.e., �w ≠ �nw . This is an important finding with implica-
tions to previous and future investigations, which utilize the utz � 0
approximation. Nevertheless, the solution does, in fact, present a
wide range of parameters in which utz << utx, when the approxima-
tion should apply. For this reason, we proceed to derive an analytical
solution for the approximate equations.

The main advantage of applying the utz � 0 approximation is
that it allows us to derive an analytical solution using the method of
characteristics. To overcome mass conservation errors, we apply a
correction to the new solution, ensuring conservation. We find that
the solution consists of three zones of constant saturation, S = Sin,
S = 1, and S = 0, separated by linear discontinuity lines. The lines
intersect at the point (x′, z′), which is the segregation point, when
existing within the domain boundaries. The solution for the values of
Sin, x′, and z′ is an exact solution and is in agreement with previous
derivations found in the literature. However, the shape of the discon-
tinuity is approximated by the solution and has not been previously
discussed.

We carry out a detailed investigation of the new solution accu-
racy by carrying out comparisons with numerical simulations. Our
conclusions are that there is a range of parameters in which the
numerical solution does in fact have approximately linear discon-
tinuity curves, and therefore, the analytical solution is accurate. For
other cases, a formula presented by Stone7 and Jenkins,8 which has
concave shaped curves (for the top discontinuities), is more accu-
rate. We are able to find threshold values for the six controlling
parameters of the problem in which the transition from the analyt-
ical solution to the SJ formula occurs. In general, when the point
of segregation is closer to the inlet (small x̃), the analytical solution
is preferable, while for cases in which the segregation point is far
from the inlet or outside the domain (large x̃), the SJ formula should
be used. A typical threshold value for the transition is found for the
gravity number and is given byNg � 1–4, where for larger values, the
analytical solution is preferred, while for lower values, the SJ model
is recommended.

The derived solution is also extended to apply in cases with
cylindrical coordinates by using a simple transformation of vari-
ables. Overall, the solution could be useful for a range of two-phase
flow modeling problems in various applications. Furthermore, lin-
ear instability analysis30,31 could be applied in the future to investi-
gate the onset of fingers along the discontinuity boundaries.32,33 The
analytical solution allows immediate calculations for estimating the
regions in which fluids and gases will be fully segregated and the
mixed region in which they coexist. Using utz � 0 approximations in
more complex problems should be considered cautiously due to the
findings here.

NOMENCLATURE

D1 slope of the discontinuity curve originating at the lower
corner of the domain

D2 slope of the discontinuity curve originating at the upper
corner of the domain

D3 slope of the discontinuity curve between segregated fluid
layers

D̂j slope of discontinuity curves after applying correction
E error between analytical and numerical saturation solutions
ESJ error between SJ model and numerical saturation solutions
g gravity, m/s2
H domain height, m
K normalized permeability (k/L2)
k absolute permeability, m2

krj relative permeability to phase j
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L domain length, m
M mobility ratio (λw/λnw)
n Brooks–Corey relative permeability power
Ng gravity number
p pressure of both phases
pj pressure of phase j, pa
Q total flux in radial direction at inlet, m2/s
Qj radial flux of phase j at inlet
Q∗j normalized radial flux of phase j at inlet (Qj/Q)
r radial coordinate, m
r′ r̃ coordinate of the segregation point
r̃ normalized vertical coordinate
R normalized domain height (H/L)
S scaled wetting phase saturation
Sin saturation at inlet boundary
SJ Stone and Jenkins model
Sj saturation of phase j
Swi irreducible wetting phase saturation
t time, s
U total horizontal velocity at inlet, m/s
Uj horizontal velocity of phase j at inlet, m/s
uj velocity of phase j, m/s
uj ,r radial velocity of phase j, m/s
uj ,x horizontal velocity of phase j, m/s
uj ,z vertical velocity of phase j, m/s
ut total velocity, m/s
utr radial total velocity, m/s
U∗w normalized wetting phase inlet velocity (Uw/U)
utx horizontal total velocity, m/s
utz vertical total velocity, m/s
x horizontal coordinate, m
x′ x̃ coordinate of the segregation point
x̃ normalized horizontal coordinate
z vertical coordinate, m
z′ z̃ coordinate of the segregation point
z̃ normalized vertical coordinate
�ρ∗ normalized density difference
�ρj phase density difference, kg/m3

ζ transformed radial coordinate (̃r2�2)
ζ′ ζ coordinate of segregation point
λj mobility of phase j
�j viscosity of phase j, pa ⋅ s
�R viscosity ratio (�w/�nw)
ρj density of phase j, kg/m3

ϕ porosity

APPENDIX: INCOMPATIBILITY OF THE ut
z = 0

ASSUMPTION
In this appendix, we show that the assumption utz = 0 is incom-

patible with the full 2D system given by Eq. (3) when viscosities of
wetting and non-wetting phases are different, i.e., �w ≠ �nw . Substi-
tuting Darcy’s moment balance equations for each phase of Eq. (2)
into the expression of the zero total vertical velocity assumption
(utz = 0) yields

− λw�@p
@z

+ ρwg� − λnw�@p
@z

+ ρnwg� = 0. (A1)

After rearranging the terms and substitutingM, we arrive at

@p
@z

+ �M(1 +M)−1�ρg + ρnwg� = 0. (A2)

Taking the derivative by x of this results in

@

@x
�@p
@z
� = − @

@x
�M(1 +M)−1�ρg�. (A3)

The assumption of utz = 0 together with Eq. (8) leads to a constant
horizontal velocity [see Eq. (10)] given by

U = −kλnw(1 +M)@p
@x

. (A4)

Taking the derivative by x of this leads to

@

@z
�@p
@x
� = −U

k
@

@z
� 1
λnw(1 +M)�. (A5)

Combining Eqs. (A3) and (A5) results in

@

@x
� 1
1 +M

� + U
�ρkg

@

@z
� 1
λnw(1 +M)� = 0, (A6)

remembering that M(1 +M)−1 = 1 − (1 +M)−1. Substituting
Eq. (12) in the first term of Eq. (A6) and integrating in z yields

λwλnw
λw + λnw

+ �k�ρg
U
�2 1

λw + λnw
= f (x). (A7)

Applying boundary condition S = 0 at z̃ = 0, i.e., λnw(0) = 0, λw(0)
= 1/�w leads to

f (x) = �w�k�ρgU
�2, (A8)

while applying boundary condition S = 1 at z̃ = 1, i.e., λnw(1) =
1/�nw , λw(1) = 0 leads to a different expression for f (x) as follows:

f (x) = �nw�k�ρgU
�2. (A9)

The above contradiction between Eqs. (A8) and (A9) shows that the
assumption utz = 0 and the system of Eq. (3) are compatible only for
the case where the phase viscosities are equal.
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