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Propagation of measurement errors in reservoir modeling
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ABSTRACT: Successful modeling of flow and transport in geologic formations requires detailed characteri-
zation of their hydraulic properties. In practice, these properties are at best measured at selected locations
where their values are often corrupted by experimental and interpretive errors. Such data are further used in
model parameterization and subsequent numerical simulations. We investigate the propagation of measure-
ment errors through all stages of our modeling process: (1) data collection mimicked by numerical simula-
tions of transient pumping tests; (2) transient semilog data analysis; (3) geostatistical generation of perme-

ability distributions with nugget; and, finally, (4) flow simulations.

We demonstrate how even small

experimental and interpretive errors can manifest themselves in inaccurate predictions of the system states.

1 INTRODUCTION

Experimental data for hydraulic properties, such as
hydraulic conductivity, transmissivity, or perme-
ability, are inherently subject to errors. These pa-
rameters cannot be measured directly, but instead
are inferred from various forms of Darcy’s experi-
ments, which range from the classical laboratory ex-
periment of H. Darcy to field-scale pumping tests.
Consequently, permeability data are corrupted by
experimental, interpretive, and model errors. Ex-
perimental errors reflect inaccuracies of the instru-
ments and experimental procedures as well as op-
erator errors. Interpretive errors arise from a guess-
work associated with determining different test pa-
rameters such as radii of influence during pumping
tests and/or time it takes to reach steady-state.
Model errors are caused by misinterpretation of data
through use of a wrong conceptual model, for exam-
ple, not taking into account effect of leakage while
interpreting data for an aquifer. Some of these er-
rors can be eliminated or reduced by collecting data
under controlled conditions of the laboratory. How-
ever, recently discovered scale effects (e.g. Neuman
1994) make the use of such data for modeling field
scale processes questionable.

While the importance of measurement errors for
accurate prediction of fluid flow in geological for-
mations is fully appreciated (e.g. Clifton & Neuman
1982), there are virtually no attempts to analyze ef-
fects of error propagation through a modeling proc-
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ess. A typical modeling process starts with assign-
ing permeability values to nodes or cells of a
numerical mesh where experimental data are not
available. This can be accomplished via any of the
multiple stochastic or geostatistical approaches. In
these geostatistical approaches, which incorporate
experimentally observed data, the measurement er-
rors manifest themselves through a so-called nugget
effect.

The nugget effect can be caused by a combination
of sub-scale fluctuations as well as measurement er-
rors. It is important to separate the effects of the
two. Indeed, the small scale fluctuations have a
well-defined physical meaning and should be pre-
served through the nugget. On the other hand, at-
tempts should be made to completely eliminate the
sources of measurement errors or take into account
their effect on the resulting realizations. Clearly,
there is no point of honoring inaccurate data exactly.
If a decomposition of the nugget into the sub-scale
and measurement error components can be accom-
plished, then post-simulation filtering of Marcotte
(1995) can provide an efficient algorithm for condi-
tional prediction of flow. It is only recently that a
problem of simulating flow with data subject to
measurement errors has received due attention in the
geostatistics (Marcotte 1995, Oliver 1996).

In this paper, we examine propagation of meas-
urement errors through the modeling process, all the
way up to the flow simulation results. While we
analyzed oil flow, the same analysis can be extended



to groundwater flow. In Section 2 we generate syn-
thetic pumping test data that are analyzed by means
of the transient semilog model. Starting from the
premise that the parameters used in this analysis
(such as pumping rates and formation thickness) are
subject to the experimental and interpretive errors,
we derive in Section 3 expressions for mean and
standard deviation of the measured permeability.
The latter serves as a measurement error component
of the nugget effect. Section 4 is devoted to gener-
ating geostatistical realizations of the permeability
data. Permeability distributions are generated with
variogram models that take into account nugget ef-
fects based on the measurement errors. These distri-
butions are compared to the distributions generated
with variogram models that have zero nugget ef-
fects. Finally, in Section 5 we compare the effect of
these different permeability distributions on the flow
simulation results. This comparison demonstrates
clearly that even small experimental and interpretive
errors may lead to significant discrepancies in esti-
mating the production from an oil reservoir.

2 PROBLEM FORMULATION

Consider a synthetically generated reservoir. The
reservoir is discretized into 35 by 35 elements, and
permeability values assigned to each element are
considered to be our “ground truth” (Figure 1a).

This permeability field is used to generate syn-

thetic pumping test data at 100 selected locations
throughout the reservoir (Figure 1b).
These pumping tests are used to infer permeabilities
through semilog well test analysis (Horne 1995), de-
scribed in Section 2.2. Clearly, the “inferred” per-
meabilities will differ from the “true” permeabilities.
In our case, this discrepancy can be attributed to
numerical errors, as well as to the influence of the
surrounding cells; while in actual field tests it is at-
tributed to measurement errors.

2.1 Data acquisition

At each of the 100 wells we numerically simulated a
typical pumping test. In these simulations a grid cell
with a well was subdivided into 11 by 11 sub-celis.
Each sub-cell was assigned the hydraulic character-
istics of the parent cell. The wells were located at
the center of the corresponding parent cells.

The grid refinement was performed to better iden-
tify boundaries of the pressure disturbance due to
pumping. To minimize the influence of the sur-
rounding grid-blocks, only early pressure-time data
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Figure 1a. Reference (true) permeability distribution.
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Figure 1b. A schematic of the numerical grid and locations of
the wells used for data collection.

were used for permeability calculation. In real field
tests, the data collected at initial times are corrupted
by the wellbore storage effects, and should be sepa-
rated from the data used for calculating a slope of
the pressure-time curve. This procedure is some-
what subjective and often serves as a source of in-
terpretive errors. This source of error does not affect
the data used in this study, since the synthetic well
test data were generated without well bore storage.
Each well was operated at a constant pumping
rate, ¢ = 5 Stock Tank Barrel (STB) per day, and



simulated pressure responses were recorded. The
following parameters were used in our numerical
simulations, formation thickness, h = 25 feet; oil
formation volume factor, B = 1.12 Reservoir Barrels
(RB) per STB, and oil viscosity i = 4 centipoise.
Figure 2 shows a data set derived from these simu-
lations for one of the pumping wells.

2.2 Data analysis

Next, we employ the semilog well test analysis to
interpret these synthetic pumping test data. This
technique is based on the analytical solution of the
transient flow equation, which gives the dependence

of wellbore bottom hole pressure, P, , on time, t,
gBu
P,=P —162.6—leog(t) (H

where P, = initial reserveir pressure, and k = perme-
ability.

The following assumptions are essential for de-
riving this solution: (i) the reservoir is of infinite
extent; (ii) the wellbore storage effects are ne-
glected; and (iii) formation damage or skin effect is
absent. Each of these assumptions can introduce
significant interpretive errors, which are left out of
the scope of the present investigation.

The synthetic well test pressure data were used to
infer permeability from Equation (1). The compari-
son of the permeability data derived from our nu-
merical pumping tests with the underlying, “true”
permeability values reveals that the derived values
are subject to errors as high as 20%.

Given the “true” and derived values of permeabil-
ity, evaluating the measurement errors is trivial. In
reality, however, the true values are unknown, and
estimating measurement errors is often challenging.
In the following section we evaluate these errors by
assuming that a model used for data analysis, i.e.
Equation (1), is correct and that all errors stem from
imprecise measurements and their faulty interpreta-
fion.
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Figure 2. An example synthetic well test data.
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3 ERROR ANALYSIS

The synthetic experimental data were used to calcu-
late the slope, s, of the semilog pressure-time curve.
Then permeability is readily inferred from Equation

M,

L @)
sh
where A = 162.6. We further assume that the

pumping rate, q, viscosity, W, and the formation
factor, B, are subject to experimental errors, while
the slope, s, and formation thickness, h, are subject
to experimental and interpretive errors. Conse-
quently, we represent these quantities, x, as a sum of
their (ensemble) means, X, and zero mean random
fluctuations, x’ (e.g. q=g+q’). In this context,
X can be thought of as the true value of x, while x’

represents measurement errors. The condition x'=0
indicates that the measurements are unbiased. Oth-
erwise, the instruments should be re-calibrated, and
the bias be subtracted from the mean.

3.1 General analysis

1t follows from Equation (2) that the ensemble mean
of permeability, or its “true” value, can be evaluated
by taking the mean of
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To evaluate this mean, one has to make some as-
sumptions regarding statistical distributions of the
random errors in Equation (3). Assuming that these
errors are mutually uncorrelated, we obtain the first-
order (in o, /X, where o, is the standard deviation
of x) approximation of k,
_ﬁ_
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In deriving Equation (4), it was assumed that
o, /X << 1. Alternatively, one can easily derive an

k
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exact expression for k by specifying a particular
distribution for the errors in Equation (3). We prefer
to use Equation (4), since the condition o, /X << 1

is satisfied in most experiments, while the data
needed for deriving probability distributions are
rarely available.



Measurement errors can now be characterized by
permeability variance, o},

=k -]

where the first-order approximation of k* is given
by
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In field experiments, ci is determined by the pre-

(6)

cision of the flow rate measuring device, while vari-
ances of the remaining parameters, as well as their
ensemble means, can be inferred from repeated ex-
periments. Equations (4) — (6) can be used for the
error sensitivity analysis.

3.2 Data error analysis

In analyzing measurement errors, we assume the
values of the parameters q, s, B, h, and |, used to
generate the synthetic well test data, to be identical
to their corresponding ensemble mean counterparts.
Standard deviations of these parameters were calcu-
lated as a percentage of the corresponding means.
Parameters h and s are often corrupted by interpre-
tive errors, while parameters q, B, and [t are subject
to smaller experimental errors. Consequently, stan-
dard deviations of the first group of parameters were
taken to be 1-10% of the corresponding means;
while 1-5% range was chosen for the second group.
Note that all these random fields are statistically in-
homogeneous.

These values were subsequently used in Equations
4) — (6) to evaluate k and o’ for each of the 100

grid blocks where the measurements are available.
Table 1 shows how experimental and interpretive er-
rors (Columns I and 1II, respectively) get magnified
during the permeability estimation (Column III).
The values of experimental and interpretive errors
are tabulated as the coefficient of variation, o,/X,

where x = s, h for interpretive errors and q, B, p for
experimental errors and the corresponding perme-
ability coefficient of variation, o,/k. Column IV
shows the corresponding nugget value, which, in the
absence of sub-scale fluctuations, is given by the
variance of the maximum permeability measurement
errors for the 100 data points.
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Table 1. Coefficients of variation for the experimental (Column
I), interpretive (Column II), and inferred permeability (Column
1) errors and the corresponding nugget (Column IV).

1 11 11 v
0.01 0.01 0.022 0.140
0.02 0.01 0.037 0.390
0.05 0.01 0.088 2.160
0.01 0.02 0.033 0310
0.02 0.02 0.044 0.560
0.05 0.02 0.091 2.340
0.01 0.05 0.073 1.490
0.02 0.05 0.079 1.750
0.05 0.05 0.111 3.540
0.01 0.10 0.140 5.770
0.05 0.10 0.165 7.920
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Figure 3. Semi-variogram for permeability data.

One can see from Table 1 that even relatively small
experimental and interpretive errors give rise o sig-
nificant errors in the inferred permeability values.

4 GEOSTATISTICAL ANALYSIS

The next stage in the propagation of the measure-
ment errors consists of estimating unknown values
of permeability through geostatistical analysis. The
first step in this process is to obtain the spatial cor-
relation parameters from a semivariogram. Figure 3
depicts such a semi-variogram for 100 data points.

Fitting a power-law model to this variogram
yielded correlation length equal to 18 grid block
units, sill — 277, and power law exponent - 0.8. We
used these spatial correlation parameters to stochas-
tically generate permeability realizations using the
conditional sequential Gaussian simulation tech-
nique. The effect of measurement errors was studied
by changing the value of the nugget effect in the
variogram model. The nugget, or variance of the
measurement errors, was taken from Table 1.

The resulting permeability distributions are shown
in Figures 4 and 5, for nugget zero (no measurement
error) and 7, respectively.
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Figure 4. Permeability distribution resulted from zero nugget.
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Figure 5. Permeability distribution resulted from nugget = 7.

These distributions were generated using the same
random path and conditioned to the same perme-
ability data. One can see that the nugget effect adds
variability to the resulting distributions. We further
consider the effect of these realizations on fluid
flow.

5 FLOW SIMULATIONS

Flow simulation models were developed with the
geostatistically generated permeability fields. All of
the properties, except the permeability distribution,
were kept the same and the resulting oil production
predictions were compared. The results for two dif-
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responding to nuggets 0, 3 and 7.
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responding to nuggets 0, 3 and 7.

1 2000“

[Nuggct 0

s

40007

-4000

Production difference (barrels)

-8000+—————
800
Time (days)

Figure 8. Absolute differences for a single well production cor-
responding to nuggets 0, 3 and 7.

207
S Nugget 0
g 10
g
£ 0 Nugget 3 as
£
g
& -104
(3}
17
-20 ; . , .
0 400 800 1200 1600
Time (days)

Figure 9. Relative differences for a single well production cor-
responding to nuggets 0, 3 and 7.



ferent wells are shown in Figures 6 — 9. The Figures
show the differences in the cumulative oil produc-
tion for the permeability fields generated with nug-
gets 0, 3 and 7, and the “true” permeability field
shown in Figure la. Figures 6 and 8 show the ab-
solute difference, while Figures 7 and 9 show the
difference as a percentage of the prediction for the
“true” permeability field.

As can be seen from the Figures, the oil productions
differ significantly from their true value. The per-
meability realizations can both over-predict or un-
der-predict the production response from a well.
The difference (either positive or negative) increases
with the nugget value. It should be remembered that
the nugget in these realizations represents the vari-
ance in the measurement errors in the permeability
values:

6 CONCLUSIONS
Qur paper leads to the following major conclusions.

1. Experimental and interpretive procedures in-
volved in inferring permeability from the
pumping test data introduce errors in the calcu-
lated values. Permeability measurement errors
depend on the input parameter errors in a non-
trivial manner. We derive this dependence for
the semilog well test analysis model.

2. The ultimate errors can be significant even for
relatively small values of the measuring and in-
terpretive errors.

3. Measurement errors propagate further through
the modeling process as a nugget in semi-
variogram. The latter was used for geostatistical
reconstruction of permeability fields.

4. Flow response of these geostatistically generated
permeability fields can be significantly different
from the “true” response or even from a geosta-
tistical model with zero nugget effect.
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