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A plasma stratum (cell free layer or CFL) generated by flowing blood interposed between

the red blood cell (RBC) core and the endothelium affects generation, consumption,

and transport of nitric oxide (NO) in the microcirculation. CFL width is a principal factor

modulating NO diffusion and vessel wall shears stress development, thus significantly

affecting NO bioavailability. Since the CFL is bounded by the surface formed by the

chaotically moving RBCs and the stationary but spatially non-uniform endothelial surface,

its width fluctuates randomly in time and space. We analyze how these stochastic

fluctuations affect NO transport in the CFL and NO bioavailability. We show that effects

due to random boundaries do not average to zero and lead to an increase of NO

bioavailability. Since endothelial production of NO is significantly enhanced by temporal

variability of wall shear stress, we posit that stochastic shear stress stimulation of

the endothelium yields the baseline continual production of NO by the endothelium.

The proposed stochastic formulation captures the natural continuous and microscopic

variability, whose amplitude is measurable and is of the scale of cellular dimensions. It

provides a realistic model of NO generation and regulation.

Keywords: microcirculation, wall shear stress, stochastic, nitric oxide, endothelium

1. INTRODUCTION

Nitric oxide (NO) plays a critical role in the local control of smooth muscle tone and the regulation
of blood flow at the microvascular level. Its distribution in the microcirculation is determined by
the balance between NO production and consumption in the blood and tissue compartments. The
local concentration of NO in blood results from the competition between NO diffusing from the
endothelium and NO scavenging by hemoglobin in red blood cells (RBCs) or at times dissolved
in plasma. Mathematical modeling was used (Vaughn et al., 1998a,b; Condorelli and George, 2002;
Kavdia and Popel, 2003; Lamkin-Kennard et al., 2004; Chen et al., 2006; Ong et al., 2011b; Sriram
et al., 2011) to determine the NO distribution in blood vessels simulated by cylindrical and parallel-
plate compartments, as a function of local transport parameters such as NO production rate,
scavenging reaction rate and diffusion coefficients in blood and tissue. All these analyses assume
deterministic boundary conditions.

Mechanotransduction generates a significant portion of the NO involved in the regulation of
blood flow (Condorelli and George, 2002; Chen et al., 2006). This mechanical effector links the
biochemistry of NO production by the endothelium with shear stress induced by blood flow
on the vascular wall (WSS). This coupling is tight because NO bioavailability in the vascular
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wall determines vessel diameter, the anatomical component of
vascular flow resistance. WSS is generated at the vascular wall
by tangential stresses caused by flowing blood whose RBC
concentration (hematocrit or Hct) diminishes from maximal at
the blood flow core to zero in the cell free layer (CFL) adjacent to
the vessel wall.

Blood in microcirculation can be modeled as a two-layer
system consisting of two immiscible fluids. Flow velocity profiles
are parabolic within the CFL and plug-like in the RBC core
region (Sharan et al., 1997; Martini et al., 2005; Sriram et al.,
2011) where the fluid exhibits non-Newtonian behavior. Such
models provide a coarse-grained description of more detailed
simulations of variations of the WSS induced by a passing
column of RBCs (e.g., Dupin et al., 2007). Changes of NO
production due to changes in WSS caused by the variation
of blood flow and plasma viscosity (Tsai et al., 1998) appear
to dominate other factors, such as changes in hemoglobin
concentration or Hct (Kavdia and Popel, 2003; Lamkin-Kennard
et al., 2004; Chen et al., 2006; Namgung et al., 2011; Sriram
et al., 2011). Experimental evidence (e.g., Kanai et al., 1995)
suggests that NO production rate by the endothelium varies
linearly with WSS (see also Andrews et al., 2010; Ong et al.,
2011b).

However, there is a fundamental difference in the rate of
NO production between steady and time-varying WSS (Frangos
et al., 1996; Ong et al., 2011b), the latter being significantly
greater. Temporal variability arises from action of the heart
and the respiratory cycle which although attenuated is present
in the microcirculation, or vasomotion which is rooted in the
microcirculation.

Endothelial response to shear stress is mostly studied in
parallel plate flow chambers, where endothelial cells grow
to confluent layers. However, it is generally recognized that
this experimental setup differs from in vivo conditions, since
it relies on perfusion with cell culture media fluid instead
of blood. (We are aware of a study by Yalcin et al., 2008
that did use RBC suspension, but it did not compare results
with incubation medium). Blood perfusion introduces other,
hitherto not considered, sources of temporal variability due to
the microscopic spatial fluctuations of the CFL width. Spatial
variability is generated by blood flowing over the spatially non-
uniform endothelial surface (Barbee et al., 1994; Sato et al.,
2000). Spatial and temporal variability is generated at the blood
boundary of the CFL due to the changes in motion, position
and shape of RBCs in the outer layer of the flowing blood
column. As a consequence of these phenomena fluid in the
CFL flows between a spatially variable endothelial boundary
and spatially and temporally highly irregular RBC surface (Kim
et al., 2006, 2007), both of which randomly affect WSS. These
effects are non-existent in the absence of RBCs. Furthermore,
as a consequence of their stochastic nature they potentially
include all forms of variability. The frequency of stochastic
fluctuations of the WSS due to spatio-temporal variability of
the CFL may significantly increase the bioavailability of NO.
Evidence for this hypothesis is provided by an observation
that exposing the tissue damaged by ischemia reperfusion to
diagnostic ultrasound improves microvascular functionality, an

effect that is significantly reduced by administration of L-
NAME (Hightower and Intaglietta, 2008).

These unpredictable fluctuations can be analyzed by treating
the CFL width at any given location as a random field that
determines the distance between the NO source and its sink.
The stochasticity of the CFL width also affects NO concentration
due to its repercussion on the local, microscopic variability of
the flow field, and therefore on shear rates and shear stresses.
While the random spatio-temporal fluctuations of CFL width
and its bounding surfaces clearly affect NO bioavailability and
production rate, most studies (including those mentioned above)
treat the interface between the RBC column and plasma as a
smooth deterministic surface. In the present study, we adopt a
more realistic approach by treating the surface between flowing
RBCs and the CFL as a random field whose statistics are obtained
from experimental studies (Ong et al., 2011a,b). Within this
conceptual framework, we formulate a model that determines the
distribution of NO concentration in the region of the interface
between blood and tissue at the blood vessel wall (RBC-rich core,
cell free layer, and tissue layer) (Vaughn et al., 1998a).

2. MATHEMATICAL MODEL OF NO
TRANSPORT

2.1. Model Formulation
Our analysis deals with NO transport in the geometrical
configuration associated with the standard Krogh tissue cylinder
model. We consider an arteriolar cross-section that consists of
the RBC-rich core (E1 : 0 ≤ r ≤ r1), the CFL (E2 : r1 < r ≤ r2),
the endothelial-cell region (E3 : r2 < r ≤ r3), and the smooth-
muscle region (E4 : r3 < r ≤ r4). Stochastic fluctuations of
the interface formed by flowing RBCs, r1(θ, t), are modeled by
treating it as a random function of both angular coordinate θ and
time t, i.e., r1 = r1(θ, t;ω) with ω ∈ � indicating a realization
(“coordinate”) in the probability space �. This renders the CFL
width w = r2 − r1 random, i.e., w = w(θ, t;ω). Our goal is
to capture the effects of stochastic fluctuations of the RBC-CFL
interface r1(θ, t;ω) on distribution of NO concentration, CNO, in
the Krogh tissue cylinder D = {(r, θ) : 0 ≤ r ≤ r4, 0 ≤ θ ≤ 2π}.

In each region of the computational domain, Ei (i = 1, . . . , 4),
the concentration CNO satisfies a reaction-diffusion equation

∂CNO

∂t
= Di∇

2CNO − kiCNO, (r, θ) ∈ Ei, (1)

where Di and ki are the diffusion coefficient and degradation
(reaction) rate in the i-th region, respectively. These four
equations are coupled by the continuity conditions at the
interfaces ri (i = 1 . . . , 3),

C−
NO = C+

NO, F−n − F+n = q̇i, r = ri. (2)

Here the superscripts − and + indicate the left and right limits of
the corresponding quantities at the i-th interface, Fn = Fi · ni is
the normal component of Fick’s flux Fi = −Di∇CNO at the i-th
interface whose outward unit normal is ni, and q̇i denotes the NO
production rates at the interface r = ri. Since only endothelium
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cells are involved in NO production, q̇1 ≡ 0. We assume that
no nitric oxide leaves the outer boundary of the smooth-muscle
region, r = r4, so that

n · ∇C = 0, r = r4. (3)

The coupling of the reaction-diffusion Equations (1) at the
interfaces r = ri (i = 1, 2, 3) propagates uncertainty
(randomness) in the topology of the RBC-CFL interface
r1(θ, t;ω) through the modeling process, leading to randomly
varying NO concentration CNO(r, θ, t;ω) throughout the Krogh
tissue cylinder.

The problem formulation given by Equations (1)–(3)
implicitly assumes that blood flow is laminar, fully-developed,
and incompressible, vessel walls are impermeable to blood
flow, NO concentration at the vessel inlet equals that at the
vessel outlet, and all the reaction rates are spatially uniform.
In the deterministic setting with a uniform CFL width, these
assumptions imply that the radial (ur) and angular (uθ)
components of flow velocity u = (ur, uθ,V)

⊤ are ur = uθ ≡ 0,
its longitudinal component is V = V(r), and NO concentration
CNO = CNO(r). This results in advective flux of NO in the blood
vessel, u · ∇CNO, that is identically zero. In the stochastic setting
with randomly fluctuating CFL width, advective flux u · ∇CNO is
zero in the mean (Tartakovsky and Xiu, 2006; Park et al., 2012).

2.2. Model Parameterization
While the reaction rates ki in the endothelium (i = 3) and
tissue (i = 4) can be considered constant, the reaction rate in
the RBC-rich core (k1) is related to hemoglobin levels. The latter
depends on hematocritH(r) and radial component of blood flow
velocityV(r, θ, t). Let ks denote a reference rate of NO scavenging
by RBCs at a reference level of hematocrit Hs. Then, the NO
scavenging rate k1 corresponding to a given hematocrit level Hc

is given by Ong et al. (2011b) and Chen et al. (2006)

k1 =
Hc

Hs
ks. (4)

The hematocrit ratioHc/Hs is determined by mass conservation,

2π
∫

0

r2
∫

0

H(r, t)V(r, θ, t)rdrdθ = Hs

2π
∫

0

r2
∫

0

V(r, θ, t)rdrdθ. (5)

In the general stochastic framework we advocate here, blood
is a two-phase fluid that exhibits non-Newtonian behavior in
the RBC-rich core and Newtonian one in the CFL, with the
random surface r1(θ, t;ω) separating the two regions. This
implies that flow velocity V(r, θ, t;ω) is random as well,
being given by a solution of corresponding flow equations in
random domains (Park et al., 2012). To focus on NO transport,
we simplify the flow calculations by adopting two alternative
approximations.

The first is based on a lubrication approximation in which
random geometry parameterizes an otherwise deterministic

velocity profile (Tartakovsky and Xiu, 2006). This approach yields
a random velocity profile V(r, θ, t;ω),

V

Vmax
=



























1−
µp

µc

r2

r22
−

(

1−
µp

µc

)

r21
r22

0 ≤ r ≤ r1

1−
r2

r22
r1 ≤ r ≤ r2

(6)

where Vmax = Jr22/(4µp) is the (maximum) centerline velocity, J
is the externally imposed pressure gradient, andµp andµc are the
viscosities of the plasma and RBC-rich core. In this formulation,
the only source of the non-Newtonian behavior of the RBC-rich
core is the dependence of the core viscosity µc on the (random)
CFL width. Following Martini et al. (2005) and many others, we
assume a linear relationship µc = 0.1678Hc − 4.348 between
a hematocrit level Hc and the viscosity of the RBC core µc.
Specifying a (random) radial distribution of hematocrit, H =

H(r, t;ω), as a step function

H

Hc
=

{

1 0 ≤ r ≤ r1

0 r1 < r ≤ r2
(7)

enables one to compute the randomly fluctuating NO scavenging
rate k1(t;ω) by combining Equations (4)–(7). First, the system of
Equations (5)–(7) was solved using Matlab function “solve” to
compute Hc for µp = 1.2 cP and two values of Hs. Then k1(t;ω)
was obtained from Equation (4).

The second alternative for obtaining k1(t;ω) treats blood as a
single-phase fluid with a parabolic velocity profile

V

Vmax
= 1−

r2

r22
, 0 ≤ r ≤ r2. (8)

This formulation replaces the CFL and the random RBC-CFL
interface r1(θ, t;ω) with a radial distribution of hematocrit,

H

Hc
=



















1 0 ≤ r ≤ r1

(

r2 − r

r2 − r1

)2

r1 ≤ r ≤ r2

. (9)

Substituting Equations (8) and (9) into Equations (4) and (5)
yields an alternative expression for the NO scavenging rate
k1(t;ω). This approach was used by Ong et al. (2011a) in the
deterministic context that treated r1(θ, t) as constant.

Finally, we allow the NO production rates by the endothelium,
i.e., q̇2 and q̇3 in Equation (2), to vary with the wall shear stress τw
exerted on the endothelium walls by blood flow. Following Ong
et al. (2011a,b), Vaughn et al. (1998a) and others, we assume a
linear relation

q̇2 = q̇3 =
τw

τ⋆
w

q̇⋆, τw = µp
Ve

w
, (10)

where τ⋆
w is the reference wall shear stress, q̇⋆ is the control NO

production rate, and Ve is the mean velocity at the outer edge
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of the RBC core. These production rates fluctuate randomly, i.e.,
q̇2(t;ω) and q̇3(t;ω), due to their dependence on the random
flow velocity V and the CFL width w(θ, t;ω) = r2 − r1(θ, t;ω).

In the numerical results reported below we assume the
diffusion coefficients Di in Equation (1) to be the same and equal
toD. Its value and the values of the remaining parameters used in
our are model are reported in Table 1.

We represent spatio-temporal variations of the RBC-CFL
interface,

r1(θ, t;ω) = [rt + r′t(t;ω)][rθ + r′θ(θ;ω)], (11)

as the product of mutually uncorrelated temporal and angular
fluctuations rt(t;ω) and rθ(θ;ω), respectively. A Reynolds
decomposition is used to represent each of these fields, r = r+ r′,
as the sum of its ensemble mean r and zero-mean fluctuations
r′. Setting rθ = 1 yields the mean and variance of the RBC-CFL
interface: r1 = rt and σ 2

r = r2t σ
2
θ
+σ 2

t (1+σ 2
θ
). The coefficient of

variation of the CFL width, CVw = σw/w, is given by

CV2
w =

(

rt

w

)2

σ 2
θ + CV2

t (1+ σ 2
θ ) (12)

where w = r2 − r1 is the mean CFL width and σw is its standard
deviation.

Since the random field r′
θ
(θ,ω) is periodic, a truncated

Fourier-type expansion

r′θ(θ;ω) ≈ σθ

Nθ
∑

n=−Nθ

νn(ω)e
−inθ (13)

provides its natural representation. Here the eigenvalues νn(ω)
are complex zero-mean random variables, whose real and
imaginary parts are mutually independent for all n. Each has zero
mean and variance σ 2

n = Cn/4, where

Cn =
1

π

2π
∫

0

C
p
θ
cos(nθ)dθ, −N ≤ n ≤ N (14)

are coefficients of the Fourier cosine expansion of a 2π-periodic
covariance function C

p
θ

of the random field r′
θ
(θ,ω). It is

constructed as follows. First, we note that statistics of r′
θ
(θ;ω)

are rotationally invariant on the circle, such that a covariance
function Cθ is

〈r′θ(θ1;ω)r
′
θ(θ2;ω)〉 = Cθ(1θ), 1θ = |θ1 − θ2| . (15)

Then C
p
θ
is constructed by extending the covariance function

Cθ of the random field r′
θ
(θ,ω) to a 2π-periodic periodic

domain. We employ a Gaussian covariance function Cθ(1θ) =

exp(−12
θ
/l2

θ
) with the correlation length lθ. The decay of the

Fourier cosine coefficients Cn determines the number of terms
Nθ in the expansion in Equation (13) that is required to achieve a
given truncation error. As the correlation length lθ decreases, Nθ

increases.
We represent the random field r′t(t;ω) via a truncated

Karhunen-Loéve expansion,

r′t(t,ω) = σt

Nt
∑

m=1

√

λmfm(t)Ym(ω), (16)

where Ym(ω) (m ≥ 1) are independent random variables, and λm
and fm(t) are, respectively, the eigenvalues and eigenfunctions of
Fredholm equations,

T
∫

0

ρt(t, t
′)fm(t

′)dt′ = λmfm(t), m ≥ 1. (17)

For an exponential correlation function ρt(t, t
′) = exp(−|t −

t′|/lt) with the correlation length lt > 0, the eigenvalue problems
in Equation (17) admit an analytical solution (Lin et al., 2010),

λm =
2lt

l2t γ
2
m + 1

, fm =
ltγm cos(γmt)+ sin(γmt)
√

(l2t γ
2
m + 1)T/2 + lt

(18)

TABLE 1 | Model parameters and their values.

Parameter Symbol Value Units Source

Vessel radius r2 23.3 µm
Ong et al., 2011a

Blood lumen width r1 = r̄1 + r′ random µm –

Mean cell free layer width w̄ = r2 − r̄1 2.73 or 3.22 µm Ong et al., 2011a

Endothelial cell thickness r3 − r2 2.5 µm Kuo et al., 1990

Tissue layer thickness r(∞)− r3 2500.0 µm –

Diffusion coefficient D 3300.0 µm2/s Vaughn et al., 1998b

Control NO production rate q̇⋆
NO

2.65 ·10−14 µmol/(µm2s) Vaughn et al., 1998b

NO scavenging rate at Hc 40% ksys 382.5 1/s Chen et al., 2006

NO scavenging rate in endothelium kEC 0.1 1/s Lamkin-Kennard et al., 2004

NO scavenging rate in tissue kT 0.1 1/s Lamkin-Kennard et al., 2004

Plasma viscosity µp 1.2 cP Zhang et al., 2009

Reference wall shear stress τw,ref 2.4 Pa Kavdia and Popel, 2003
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where γm are solutions of (l2t γ
2 − 1) sin(γT) = 2ltγ cos(γT)

and m ≥ 1. The truncation error of the Karhunen-Loéve
expansion in Equation (16) depends on the correlation length
lt . The smaller the correlation length, the more terms Nt are
necessary to represent the random field r′(t,ω) with a given
degree of accuracy.

Within the statistical framework adopted here, the random
RBC-CFL interface is characterized by four parameters: variances
σ 2

θ
and σ 2

t , and correlation lengths lθ and lt . Experimental data,
such as those reported by Kim et al. (2007), can be used to
estimate these statistics. Table 2 contains the values of these
parameters used in our simulations.

2.3. Numerical Solution
2.3.1. Mapping onto Deterministic Domain
We introduce a new coordinate system (ξ1, ξ2), which maps the
original stochastic domain D onto a rectangle B = {(ξ1, ξ2) :

−1 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 2π}. A mapping D = ∪4
i=1E

i → B
is accomplished analytically by the coordinate transformation

r = ri− 1 +
ξ1 + 1

2
(ri − ri−1), θ = ξ2; (r, θ) ∈ Ei (19)

where i = 1, . . . , 4 and r0 = 0. The random RBC-CFL interface
r1(θ, t;ω) is represented by the expansions described above.

2.3.2. Transformed Stochastic Equations
The mapping defined by Equation (19) renders the
transformation Jacobian

J(ξ1, ξ2,ω) ≡
∂(r, θ)

∂(ξ1, ξ2)
= J[ξ1, ξ2,Y1(ω), · · · ,YK(ω)]. (20)

and other related metrics stochastic, i.e., dependent on a set of
K = 2Nθ + Nt independent random variables {Yi(ω)}

K
i=1. The

first Nt variables Y1, . . . ,YNt coincide with those introduced
in Equation (16) and the remaining 2Nθ variables represent
their counterparts in Equation (13), such that YNt+1 =

ν−Nθ
, . . . ,YK = νNθ

. Consequently, the deterministic reaction-
diffusion Equations (1) are transformed into stochastic equations
of the form (Appendix)

∂CNO

∂t
=

2
∑

i,j= 1

∂

∂ξi

(

DAij
∂CNO

∂ξj

)

− kCNO (21)

where the random coefficientsA11,A12 = A21, andA22 are given
by Equation (A2) in the Appendix.

These stochastic differential equations on the deterministic
domain B can be solved with a variety of well-established
techniques, including perturbation-based moment
equations (Tartakovsky and Winter, 2001), stochastic finite
elements (Ghanem and Spanos, 1991), and stochastic collocation
on sparse grids (Lin et al., 2010, and the references therein).
In the subsequent numerical simulations we employ the latter
approach (Appendix).

3. RESULTS

Solutions of the stochastic system of transport Equations (1)–(3)
are given in terms of their statistical moments. Ensemble means,
e.g., meanNO concentration C̄NO, serve as unbiased predictors of
the system behavior; variances, e.g., NO concentration variance
σ 2
C, act as a measure of predictive uncertainty.

TABLE 2 | Statistical parameters and summary of simulation results.

Case Dt Dθ σt σθ lt lθ CVw R ω̄ (µm)

Temporal variation 39 0.15 0.008 0.327 5.6 3.22

39 0.203 0.008 0.442 12.7 3.22

39 0.24 0.008 0.523 20.8 3.22

45 0.12 0.007 0.309 5.2 2.73

45 0.15 0.007 0.386 9.3 2.73

45 0.172 0.007 0.443 13.7 2.73

45 0.2 0.007 0.515 34.0 2.73

Temporal and spatial variation 39 6 0.203 0.07 0.008 1 0.515 16.2 3.22

39 6 0.203 0.1 0.008 1 0.582 22.0 3.22

39 9 0.203 0.07 0.008 0.6 0.543 18.1 3.22

39 9 0.15 0.07 0.008 0.5 0.446 10.7 3.22

39 9 0.15 0.1 0.008 0.5 0.543 19.9 3.22

39 9 0.15 0.12 0.008 0.5 0.615 33.1 3.22

45 9 0.12 0.07 0.007 0.5 0.432 10.6 2.73

45 9 0.12 0.1 0.007 0.5 0.531 20.3 2.73

45 9 0.12 0.12 0.007 0.5 0.603 34.0 2.73
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3.1. Data-driven Model Parameterization
The CFL width measurements (Ong et al., 2011a) are used to
construct a probabilistic model for the random input parameter
w(θ, t;ω) = r2 − r1 in which the random RBC-CFL interface
r1(θ, t;ω) is given by Equation (11). These data, which represent
temporal fluctuations of w at a single spatial location (say, θ =

0), give rise to the histogram and auto-correlation reported in
Figures 1 and 2, respectively. This histogram (and the obvious
fact that the CFL width is both non-negative and smaller than
the vessel radius r2) indicates that the random field w(θ, t;ω)
is non-Gaussian. We fit the histogram in Figure 1 with a beta

distribution fw(W) = B−1r
1−α−β
2 Wα−1(r2 − W)β−1, where

B(α, β) = Ŵ(α + β)/[Ŵ(α)Ŵ(β)] is the beta function, Ŵ(·) is the

FIGURE 1 | Frequency distribution of the temporally fluctuating CFL

width w reported by Ong et al. (2011a) and the fitted β-distribution.

FIGURE 2 | Auto-correlation of the temporally fluctuating CFL width w

reported by Ong et al. (2011a) (solid line) and the fitted exponential

correlation function ρ(1t) = exp(−1t/lt) with the correlation length

lt = 0.007 s (dashed line).

complete gamma function, 0 ≤ W ≤ r2, and α > 0 and β > 0
are shape parameters. Setting α = 4.358 and β = 32.9 provides
the best data fit, resulting in the mean CFL width w̄ = 2.73
µm. The auto-correlation data in Figure 2 were fitted with an
exponential correlation function ρ(t, t′) = exp(−|t − t′|/lt),
yielding the correlation length lt = 0.007 s.

Experimental limitations preclude data acquisition at multiple
azimuths θ, which requires us to postulate a probabilistic
model for rθ(θ;ω). In analogy with its temporal counterpart
rt(t;ω), we chose rθ(θ;ω) to have the beta distribution with
unit mean and variance σ 2

θ
and the exponential correlation

function with correlation length lθ. In the formulation provided
by Equation (12), the amplitude of spatio-temporal (in the
angular coordinate θ and time t) fluctuations of both the RBC-
CFL interface r1(θ, t;ω) and CFL width w(θ, t;ω) = r2 − r1
increases with the variances σ 2

θ
and σ 2

t , while the smoothness
of these fluctuations increases with the correlation lengths lθ and
lt . This behavior, which reflects chaotic motion of RBCs in the
blood core, is demonstrated by two representative realizations of
the random CFL width shown in Figure 3.

3.2. Random Fluctuations of Wall Shear
Stress
The CFL widthw in Equation (10) is inversely proportional to the
wall shear stress (WSS) τw. Hence the random spatio-temporal
fluctuations in w induce corresponding fluctuations in τw. In the
computations of the WSS we use the values of the edge velocity
Ve = 0.54 mm/s and the corresponding pressure gradient J =

2.15 × 104 computed by fitting the smooth-wall model to the
experimentally observed peak NO concentration of 11.2 nM.

The statistic commonly available from experimental studies
similar to Kim et al. (2006, 2007) and Ong et al. (2011a) is the
coefficient of variation of the CFL width, CVw = σw/w̄. Figure 4
shows how the mean WSS τ̄w, normalized with the smooth-
vessel smooth-vessel WSS τ⋆

w, increases with CVw. (Recall that

FIGURE 3 | Realizations of temporal fluctuations of the CFL width w at

angular coordinate θ = 0.0 corresponding to two sets of statistical

parameters.
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the fixed/smooth boundaries of the CFL correspond to CVw = 0
and τ̄w/τ⋆

w = 1). The rate of growth of themeanWSS depends on
themodel’s statistical parameters, some of which, especially lθ, are
not found in the experiments (Kim et al., 2006, 2007; Ong et al.,
2011a). Fortunately, Figure 4 reveals that the meanWSS is nearly
insensitive to lθ, being dominated by the temporal fluctuations
statistics that are more readily measurable.

3.3. NO Production Rate
It follows from Equation (10) that the rate of NO production by
the endothelium, q̇2, is directly proportional to the WSS. When
normalized by the control production rate q̇⋆, it is equal to the
ratio τw/τ⋆

w. In other words, the statistics of the ratios q̇2/q̇
⋆ and

τw/τ⋆
w coincide. Therefore, Figure 4 also demonstrates how the

mean NO production rate by the endothelium, ˙̄q2/q̇
⋆, increases

with the coefficient of variation of the CFL width, CVw.

3.4. Mean Profiles of NO Concentration
Unless specified otherwise, the results reported below correspond
to the hematocrit-dependent reaction rate k1 in Equation (4)
given by the constitutive model in Equations (8) and (9). We
start by computing a (deterministic) reference NO concentration
c⋆NO(r) as a solution of Equations (1)–(3) with smooth (constant)
interfaces r1 and r2. It serves as an initial condition for transient
stochastic simulations.

The mean concentration profiles computed with these
simulations, C̄NO(r), are exhibited in Figure 5. While the NO
production rates (q̇2 and q̇3) on both sides of the endothelium
(r = r2 and r3) are the same, the NO scavenging rate in the RBC
core (0 ≤ r ≤ r1) is higher than that in the muscle tissue (r > r3).
That is why the peak NO concentration is at the endothelium
surface facing the tissue (r = r3).

Figure 5 also reveals that random fluctuations of the CFL
width increase the NO availability relative to that predicted by

FIGURE 4 | Mean WSS, normalized with the smooth-vessel WSS τ⋆
w ,

(and mean NO production rate, normalized with the control production

rate q̇⋆) as a function of the coefficient of variation (CVw = σw/w̄) of

the CFL width for several combinations of constitutive statistical

parameters.

the model that ignores them. This is to be expected, since these
fluctuations enhance the NO production by the endothelium
(Figure 4). NO production and availability increase with the
the degree of roughness of the random RBC-CFL interface
r1(θ, t;ω): the higher CVw and/or the smaller the correlation
lengths lt and lθ, the rougher the interface is.

The simulation results reported in Table 2 demonstrate the
relative importance of temporal and angular fluctuations of the
CFL width on NO availability. The latter is reported in terms
of the ratio of the peak NO concentrations, R = (C̄max −

C⋆
max)/C

⋆
max, where C⋆

max = C⋆
NO(r3) and C̄max = C̄NO(r3).

Larger values of R indicate stronger impact of the CFL width
fluctuations.

3.5. Effect of Constitutive Models
The above-made estimates of NO production and availability rely
on the NO scavenging rate k1(t;ω) given by the constitutive law
in Equations (8), (9), which treats blood as a single-phase fluid.
The alternative constitutive model for k1(t;ω), which explicitly
accounts for the CFL presence, is given by Equations (6) and
(7). Our simulations demonstrate that the difference between the
mean peak NO concentrations predicted with the two models
is less than 1% (Table 2). This provides a confirmation of the
robustness of our predictions of expected NO production and
availability with respect to model selection for the scavenging
rate.

3.6. Effect of Dextran Infusion
In the experiments reported by Ong et al. (2011a), infusion of a
plasma expander dextran increases the average CFL width from
w̄ = 2.73 to 3.22 µm. It also enhances fluctuations of the
CFL width, increasing CVw from 0.443 to 0.509 while leaving
the correlation length lt practically unchanged (it increases from

FIGURE 5 | Radial profile of mean NO concentration for several

degrees of spatio-temporal variability of CFL quantified by

CVw = 0.442 (lθ = 0.0 and σθ = 0.0), CVw = 0.515 (lθ = 1.0 and σθ = 0.07),

and CVw = 0.582 (lθ = 1.0 and σθ = 0.1); in all three cases, lt = 0.008 and

σt = 2.03. Also shown is NO concentration corresponding to constant uniform

CFL width. The vertical lines indicate the inner and outer surfaces of the

endothelium.
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FIGURE 6 | Mean peak NO concentration (A) and mean WSS ratio (B)

corresponding to temporal and spatial variations of CFL whose mean

value is w̄ = 2.73 µm or 3.22 µm.

0.007 s before the dextran infusion to 0.008 s after). To match
the decrease in the reported peak NO concentration from 11.2
to 9.5 nM, we recalculated the value of the pressure gradient
J = 2.15× 104 and 1.72× 104.

Figure 6 demonstrates that changing the mean CFL width
(from 2.73 to 3.22 µm) does not significantly change the mean
WSS, but has a more pronounced effect on the mean peak NO
concentrations. The peak NO concentration ratio R reported in
Table 2 further emphasizes this effect.

4. DISCUSSION

We developed a computational framework to quantify the
impact of spatio-temporal fluctuations in the CFL width on
the production and transport of NO. This is accomplished by
treating the RBC-CFL interface (and the corresponding CFL
width) as a space-time correlated random field. This surface is
represented via Karhunen-Loéve and Fourier expansions. The
differential equations describing blood flow and NO production

and transport, defined on random simulation domains, were
solved by using a stochastic collocation method.

Our analysis demonstrates that the two-phase nature of
microcirculatory flow, partitioned between a central blood
column and a peripheral cell free plasma layer, causes stochastic
flow variability in the CFL that influences NO bioavailability. Our
findings are qualitatively comparable to those obtained with the
deterministic analysis conducted by Ong et al. (2011a). However,
they differ in an important way since the statical parameters on
which they are based can be used to predict NO production, as
well as other effects related to the variability of the CFL, with data
from other experiments where the same statistical properties can
be assessed.

Flow variability has a homeostatic role in the microcirculation
where it is a factor in the control of blood flow and inflammation
through biochemical mechanotransduction modulation of the
production of NO and prostaglandins. Large Reynolds numbers
and flow variability in the central circulation can cause the
up-regulation of virtually all atherogenic or pro-inflammatory
genes ultimately promoting the development of atherosclerotic
plaques (Cabrales et al., 2011). Experimentally it is shown that
a principal effect of flow (and shear stress) variability is the up
and down regulation of the expression of a multitude of genes in
endothelial cell cultures (Yee et al., 2008).

The rate of production of NO by mechanotransduction differs
between steady and time-dependent flows, the latter resulting
in a significantly higher production of NO. This phenomenon
has been evidenced in studies using horizontal parallel plates
flow chambers in which endothelial cells grow to a confluent
layer (Ruel et al., 1995). Continuous changes of flow or “ramp”
flow (Frangos et al., 1996) and step changes (Andrews et al.,
2010) yielded significantly greater NO production than constant
steady flow. Experimental studies also show that the rate of NO
production is higher for sinusoidal flow vs. steady flow with the
same mean (Noris et al., 1995; Li et al., 2005). There is evidence
that flow variation frequency of about 1 Hz, independent of
shear, is a determinant of the endothelial responses to pulsatile
flow (Balcells et al., 2005).

Although vessel wall shear rates and shear stress (WSS)
are similar throughout the circulation, as proposed by the
“uniform shear stress hypothesis” (Kassab and Fung, 1995), flow
variability is quite different. The main source of flow variability
is the periodic action of the heart, which can also cause flow
instabilities in locations with large Reynolds numbers. This
variability decreases from the systemic blood vessels to the
microcirculation where it is attenuated to an amplitude of 1–2%
of mean flow (Intaglietta et al., 1971) in the arterioles.

Blood flow in microvessels also undergoes periodic flow
changes whose amplitude can reach 100% of mean flow due to
the phenomenon of vasomotion. This activity has fundamental
frequency of the order of minutes for the larger arterioles,
increasing as vessel size decreases (Colantuoni et al., 1984). This
phenomenon has received many interpretations since it has been
found in some normal conditions but not all, and is elicited by
ischemic and low pressure states (Schmidt et al., 1992).

Our analysis and results show the importance of amicroscopic
random flow variability, whose primary effect is to increase the
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bioavailability of NO at the vessel/CFL interface. This variability
has two components: a vessel wall component due to the
unevenness of the endothelium (Barbee et al., 1994; Barbee, 2002)
and the blood/CFL interface component. The latter is absent in
experimental studies of cell culture flow chambers perfused with
culture media, i.e., in the majority of studies.

There is presently no specific evidence of the effect
on mediator production rate by stochastically induced
mechanotransduction. However, since random excitation
contains all the spectral components of sinusoidal, ramp and step
flow variability it is likely that random excitation increases the
rate of mediator production. These effects are largely unexplored,
since endothelial mechanotransduction has been primarily
studied with non-blood, steady or varying flow conditions on a
scale that is macroscopic relative to the dimensions of endothelial
cells (Chien, 2007). Yet, cell-scale variations of shear stress can
cause large shear stress gradients (Davies et al., 2003; Leiderman
et al., 2008). Experimental studies to determine the physiological
role of this variability are not available.

Stochastic variability of WSS is fundamentally distinct from
the temporal variability studied in cell cultures. The latter is
macroscopic and has primarily a local effect in that it is absent
in the microcirculation, where temporal flow changes occur in
a time frame of minutes to hours, a condition of quasi steady
state. The stochastic fluctuations of the CFL width generate
a persistent time-dependent microscopic component of WSS,
which is not tested by current experimental methods. Our
results and these considerations suggest that endothelial flow

chamber experiments aimed at understating the consequences
of mechanotransduction on cardiovascular regulation should
include the conditions that preserve the stochastic nature of the
blood flow/microvessel wall interaction, i.e., use blood as the flow
medium. This appears to be the only significant source of time-
dependent variability of shear stress in the microcirculation. It
may be significantly affected by changes in the composition of
either blood (due to hemorrhage and anemia) or plasma (possibly
due to diabetes and hypertension).

AUTHOR CONTRIBUTIONS

SP carried out numerical implementation of the proposed
algorithms, participated in the design of the study and drafted
the manuscript; MI formulated the physiological problem,
participated in the design of the study, and helped draft
the manuscript; DT designed and coordinated the study, and
helped draft the manuscript. All authors gave final approval for
publication.

FUNDING

This research was supported in part by NIH under award
numbers R01-HL064395 and R24-HL64395, Air Force Office of
Scientific Research under award number DE-FG02-07ER25815,
and by National Science Foundation under award number DMS-
1522799.

REFERENCES

Andrews, A. M., Jaron, D., Buerk, D. G., Kirby, P. L., and Barbee, K. A.

(2010). Direct, real-time measurement of shear stress-induced nitric oxide

produced from endothelial cells in vitro. Nitric Oxide 23, 335–342. doi:

10.1016/j.niox.2010.08.003

Balcells, M., Fernández Suárez, M., Vázquez, M., and Edelman, E. R. (2005). Cells

in fluidic environments are sensitive to flow frequency. J. Cell Physiol. 204,

329–335. doi: 10.1002/jcp.20281

Barbee, K. A. (2002). Role of subcellular shear-stress distributions in

endothelial cell mechanotransduction. Ann. Biomed. Eng. 30, 472–482.

doi: 10.1114/1.1467678

Barbee, K. A., Davies, P. F., and Lal R. (1994). Shear stress-induced reorganization

of the surface topography of living endothelial cells imaged by atomic force

microscopy. Circ. Res. 74, 163–171. doi: 10.1161/01.RES.74.1.163

Cabrales, P., Zanini, G. M., Meays, D., Frangos, J. A., and Carvalho, L. J. (2011).

Nitric oxide protection against murine cerebral malaria is associated with

improved cerebral microcirculatory physiology. J. Infect. Dis. 203, 1454–1463.

doi: 10.1093/infdis/jir058

Chen, X., Jaron, D., Barbee, K. A., and Buerk, D. G. (2006). The influence of radial

RBC distribution, blood velocity profiles, and glycocalyx on coupled NO/O2

transport. J. Appl. Physiol. 100, 482–492. doi: 10.1152/japplphysiol.00633.2005

Chien S. (2007). Mechanotransduction and endothelial cell homeostasis: the

wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292, H1209–H1224. doi:

10.1152/ajpheart.01047.2006

Colantuoni, A., Bertuglia, S., and Intaglietta M. (1984). Quantitation of rhythmic

diameter changes in arterial microcirculation. Am. J. Physiol. 246, H508–H517.

Condorelli, P., and George, S. C. (2002). Free nitric oxide diffusion in the bronchial

microcirculation. Am. J. Physiol. Heart. Circ. Physiol. 283, 2660–2670. doi:

10.1152/ajpheart.00003.2002

Davies, P. F., Zilberberg, J., and Helmke, B. P. (2003). Spatial microstimuli

in endothelial mechanosignaling. Circ. Res. 92, 359–370. doi:

10.1161/01.RES.0000060201.41923.88

Dupin, M. M., Halliday, I., Care, C. M., Alboul, L., and Munn, L. L. (2007).

Modeling the flow of dense suspensions of deformable particles in three

dimensions. Phys. Rev. E 75:066707. doi: 10.1103/PhysRevE.75.066707

Frangos, J. A., Huang, T. Y., and Clark, C. B. (1996). Steady shear and step changes

in shear stimulate endothelium via independent mechanisms – superposition

of transient and sustained nitric oxide production. Biochem. Biophys. Res.

Commun. 224, 660–665. doi: 10.1006/bbrc.1996.1081

Ghanem, R., and Spanos P. (1991). Stochastic Finite Elements: A Spectral Approach

(New York, NY: Springer-Verlag).

Hightower, C. M., and Intaglietta M. (2008). Diagnostic frequency continuous

ultrasonography directly mitigates venular ischemia reperfusion damage. J.

Am. Coll. Surg. 206, 540–547. doi: 10.1016/j.jamcollsurg.2007.09.010

Intaglietta, M., Richardson, D. R., and Tompkins, W. R. (1971). Blood pressure,

flow, and elastic properties in microvessels of cat omentum. Am. J. Physiol. 221,

H922–H928.

Kanai, A. J., Strauss, H. C., Truskey, G. A., Crews, A. L., Grunfeld, S., and

Malinski T. (1995). Shear stress induces ATP-independent transient nitric oxide

release from vascular endothelial cells, measured directly with a porphyrinic

microsensor. Circ. Res. 77, 284–293. doi: 10.1161/01.RES.77.2.284

Kassab, G. S., and Fung, Y. C. (1995). The pattern of coronary arteriolar

bifurcations and the uniform shear hypothesis. Ann. Biomed. Eng. 23, 13–20.

doi: 10.1007/BF02368296

Kavdia, M., and Popel, A. S. (2003). Wall shear stress differentially affects NO level

in arterioles for volume expanders and Hb-based O2 carriers. Microvasc. Res.

66, 49–58. doi: 10.1016/S0026-2862(03)00008-6

Kim, S., Kong, R. L., Popel, A. S., Intaglietta, M., and Johnson, P. C.

(2006). A computer-based method for determination of the cell-free

Frontiers in Computational Neuroscience | www.frontiersin.org 9 October 2015 | Volume 9 | Article 131

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Park et al. Impact of stochastic fluctuations on NO bioavailability

layer width in microcirculation. Microcirculation 13, 199–207. doi:

10.1080/10739680600556878

Kim, S., Kong, R. L., Popel, A. S., Intaglietta, M., and Johnson, P.

C. (2007). Temporal and spatial variations of cell-free layer width in

arterioles. Am. J. Physiol. Heart Circ. Physiol. 293, H1526–H1535. doi:

10.1152/ajpheart.01090.2006

Kuo, L., Chilian, W. M., and Davis, M. J. (1990). Coronary arteriolar myogenic

response is independent of endothelium. Circ. Res. 66 860–866. doi:

10.1161/01.RES.66.3.860

Lamkin-Kennard, K. A., Jaron, D., and Buerk, D. G. (2004). Impact of the Fahraeus

effect on NO and O2 biotransport: a computer model. Microcirculation 11,

337–349. doi: 10.1080/10739680490437496

Leiderman, K. M., Miller, L. A., and Fogelson, A. L. (2008). The effects of spatial

inhomogeneities on flow through the endothelial surface layer. J. Theor. Biol.

252, 313–325. doi: 10.1016/j.jtbi.2008.01.013

Li, Y., Zheng, J., Bird, I. M., and Magness, R. R. (2005). Effects of

pulsatile shear stress on signaling mechanisms controlling nitric oxide

production, endothelial nitric oxide synthase phosphorylation, and expression

in ovine fetoplacental artery endothelial cells. Endothelium 12, 21–39. doi:

10.1080/10623320590933743

Lin, G., Tartakovsky, A. M., and Tartakovsky, D. M. (2010). Uncertainty

quantification via random domain decomposition and probabilistic collocation

on sparse grids. J. Comput. Phys. 229, 6995–7012. doi: 10.1016/j.jcp.2010.05.036

Martini, J., Carpentier, B., Negrete, A. C., Frangos, J. A., and Intaglietta

M. (2005). Paradoxical hypotension following increased hematocrit and

blood viscosity. Am. J. Physiol. Heart Circ. Physiol. 289, 2136–2143. doi:

10.1152/ajpheart.00490.2005

Namgung, B., Ong, P. K., Johnson, P. C., and Kim, S. (2011). Effect of cell-free

layer variation on arteriolar wall shear stress. Ann. Biomed. Eng. 39, 359–366.

doi: 10.1007/s10439-010-0130-3

Noris, M., Morigi, M., Donadelli, R., Aiello, S., Foppolo, M., Todeschini, M., et al.

(1995). Nitric oxide synthesis by cultured endothelial cells is modulated by flow

conditions. Circ. Res. 76, 536–543. doi: 10.1161/01.RES.76.4.536

Ong, P. K., Jain, S., and Kim S. (2011a). Temporal variations of the cell-free layer

width may enhance NO bioavailability in small arterioles: effects of erythrocyte

aggregation.Microvasc. Res. 81, 303–312. doi: 10.1016/j.mvr.2011.02.002

Ong, P. K., Jain, S., Kim, S. (2011b). Modulation of NO bioavailability by temporal

variation of the cell-free layer width in small arterioles. Ann. Biomed. Eng. 39,

1012–1023. doi: 10.1007/s10439-010-0216-y

Park, S. W., Intaglietta, M., and Tartakovsky, D. M. (2012). Impact of

endothelium roughness on blood flow. J. Theor. Biol. 300, 152–160. doi:

10.1016/j.jtbi.2012.01.017

Ruel, J., Lemay, J., Dumas, G., Doillon, C., and Charara J. (1995). Development

of a parallel plate flow chamber for studying cell behavior under pulsatile flow.

ASAIO J. 41, 876–883. doi: 10.1097/00002480-199541040-00011

Sato, M., Nagayama, K., Kataoka, N., Sasaki, M., and Hane K. (2000). Local

mechanical properties measured by atomic force microscopy for cultured

bovine endothelial cells exposed to shear stress. J. Biomech. 33, 127–135. doi:

10.1016/S0021-9290(99)00178-5

Schmidt, J. A., Intaglietta, M., and Borgström, P. (1992). Periodic hemodynamics

in skeletal muscle during local arterial pressure reduction. J. Appl. Physiol. 73,

1077–1083.

Sharan, M., Singh, B., and Kumar P. (1997). A two-layer model for studying the

effect of plasma layer on the delivery of oxygen to tissue using a finite element

method. Appl. Math. Modell. 21, 419–426. doi: 10.1016/S0307-904X(97)

00035-8

Sriram, K., Vázquez, B. Y.,S., Yalcin, O., Johnson, P. C., Intaglietta, M., and

Tartakovsky, D. M. (2011). The effect of small changes in hematocrit on

nitric oxide transport in arterioles. Antioxid. Redox Signal. 14, 175–185. doi:

10.1089/ars.2010.3266

Tartakovsky, D. M., and Winter, C. L. (2001). Dynamics of free surfaces

in random porous media. SIAM J. Appl. Math. 61, 1857–1876. doi:

10.1137/S0036139999358180

Tartakovsky, D. M., Xiu D. (2006). Stochastic analysis of transport in tubes with

rough walls. J. Comput. Phys. 217, 248–259. doi: 10.1016/j.jcp.2006.02.029

Tsai, A. G., Friesenecker, B., McCarthy, M., Sakai, H., and Intaglietta M. (1998).

Plasma viscosity regulates capillary perfusion during extreme hemodilution

in hamster skin fold model. Am. J. Physiol. Heart. Circ. Physiol. 275, H2170–

H2180.

Vaughn, M. W., Kuo, L., and Liao, J. C. (1998b). Effective diffusion distance of

nitric oxide in the microcirculation. Am. J. Physiol. Heart Circ. Physiol. 274,

1705–1714.

Vaughn, M. W., Kuo, L., and Liao, J. C. (1998a). Estimation of nitric oxide

production and reaction rates in tissue by use of a mathematical model. Am.

J. Physiol. Heart Circ. Physiol. 274, 2163–2176.

Yalcin, O., Ulker, P., Yavuzer, U., Meiselman, H. J., and Baskurt, O. K. (2008).

Nitric oxide generation by endothelial cells exposed to shear stress in glass tubes

perfused with red blood cell suspensions: role of aggregation. Am. J. Physiol.

Heart Circ. Physiol. 294, H2098–H2105. doi: 10.1152/ajpheart.00015.2008

Yee, A., Bosworth, K. A., Conway, D. E., Eskin, S. G., and McIntire, L. V. (2008).

Gene expression of endothelial cells under pulsatile non-reversing vs. steady

shear stress: comparison of nitric oxide production. Ann. Biomed. Eng. 36,

571–579. doi: 10.1007/s10439-008-9452-9

Zhang, J., Johnson, P. C., and Popel, A. S. (2009). Effects of erythrocyte

deformability and aggregation on the cell free layer and apparent

viscosity of microscopic blood flows. Microvas. Res. 77, 265–272. doi:

10.1016/j.mvr.2009.01.010

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Park, Intaglietta and Tartakovsky. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 October 2015 | Volume 9 | Article 131

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Park et al. Impact of stochastic fluctuations on NO bioavailability

APPENDIX A

Transformed Transport Equations
A general transformation of coordinates ξi(x1, x2) transforms
the Fickian flux F(x) = −D∇xCNO into a vector F(ξ) whose
contravariant components F1 and F2 are given by

Fi = D
1

J

2
∑

k= 1

Aik
∂CNO

∂ξk
, i = 1, 2 (A1)

where J is the transformation Jacobian in Equation 20 and

A11 =

(

∂x2

∂ξ2

)2

+

(

∂x1

∂ξ2

)2

, (A2a)

A12 =A21 = −
∂x2

∂ξ1

∂x2

∂ξ2
−

∂x1

∂ξ1

∂x1

∂ξ2
, (A2b)

A22 =

(

∂x2

∂ξ1

)2

+

(

∂x1

∂ξ1

)2

. (A2c)

Furthermore,

∇x · F =
1

J

(

∂F1

∂ξ1
+

∂F2

∂ξ2

)

≡
1

J
∇ξ · F. (A3)

Substituting Equations (A1)–(A3) into Equation (1) leads to
Equation (21).

APPENDIX B

Numerical Implementation
Let {9m(Y)}

M
m= 0 denote a set of multidimensional orthogonal

polynomials of the random vector Y(ω) ≡ (Y1, . . . ,YK)
T . The

polynomials are chosen to have the ensemble means 90 = 1
and 9k = 0 (k ≥ 1) and to satisfy the orthogonality condition
〈9i9j〉 = 〈92

i 〉δij, where the 〈·〉 operator is defined by

〈9i9j〉 ≡

∫

9i(Y)9j(Y)W(Y)dY1 . . . dYK, (A4)

δij is the Kronecker delta, and W(Y) is a weight function
corresponding to a given polynomial type. The size of the
polynomial set, M, is determined by the “stochastic dimension”
K and the order P of polynomials 9k, according to

M =
(K + P) !

K ! P !
− 1. (A5)

Polynomial chaos expansions represent a system state, e.g.,
u(ξ,ω), a random field whose ensemble statistics are to be
determined, as a series

u(ξ,ω) =

M
∑

k=0

ûk(ξ)9k[Y(ω)]. (A6)

Instead of stochastic Galerkin method, we adopt a stochastic
collocation method to solve the random boundary problem. This
method is described below.

APPENDIX C

Stochastic Collocation Method
Consider a stochastic partial differential equation

L(x, ξ(ω); u) = f (x, ξ(ω)). (A7)

Its solution is approximated by using a Lagrange formula

u(x, ξ(ω)) =

Nq
∑

k=0

uk(x, ξ
k)Lk(ξ), (A8)

where uk(x, ξ
k) is the solution at the set of collocation points

{ξk}
Nq

k=0
, Lk is the Lagrange polynomial of order Nq + 1, and

Li(ξj) = δij. Next, Equation (A8) is substituted into the inner
product formula given by Equation (A4) with the basis functions

chosen to be Dirac delta functions δ(ξ − ξk). Then Nq + 1
uncoupled deterministic problems are solved at the collocation
points,

L(x, ξk; uk) = f (x, ξk), for k = 0, . . . ,Nq. (A9)

Once the solutions at a set of collocation points are obtained,
their statistics are computed by using the corresponding
quadrature rule,

u(x) =

∫

Ŵ

u(x, ξ)p(ξ)dξ ≈

Nq
∑

k=1

u(x, ξk)wk (A10)

and

σ 2
u (x) =

∫

Ŵ

[u′(x, ξ)]2p(ξ)dξ ≈

Nq
∑

k=1

u(x, ξk)2wk − u2 (A11)

where {wk}
Nq

k= 1
is a set of weights corresponding to the set of

quadrature points {ξk}
Nq

k= 0
.
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