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Dynamics of wetting fronts in porous media
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We propose a phenomenological approach for describing the dynamics of wetting front propagation in
porous media. Unlike traditional models, the proposed approach is based on the dynamic nature of the relation
between capillary pressure and medium saturation. We choose a modified phase-field model of solidification as
a particular case of such a dynamic relation. We show that in the traveling wave regime the results obtained
from our approach reproduce those derived from the standard model of flow in porous media. In a more general
case, the proposed approach reveals the dependence of front dynamics upon the flow regime.
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PACS numbes): 47.55.Mh, 47.55.Kf, 68.45.Gd, 87.22.As

The dynamics of fluids in porous media has been a subje@mpirically generalized Darcy’s law onto flow in partially
of numerous theoretical and experimental studies because séturated porous med{SPM by letting the proportionality
its importance for engineering and environmental applicacoefficient depend on saturatighof the medium(0<6<1).
tions [1-3]. Among the most challenging problems in this Coupled with the mass conservation law, the generalized
area is modeling fluid flow through a partially saturated me-Darcy’s law constitutes the existing macroscopic description
dium, in particular the propagation of wettingr drying of the fluid dynamics in PSPM. To complete this description,
fronts. This has been addressed on both “microscog@” one needs to specify a relation betwekand capillary pres-
pore-scalgand “macroscopic”(on scales larger than pore- sure(normalized by the product of fluid densityand gravi-
sizg levels. The fluid dynamics in the pore networks hastational acceleratiom) . Traditionally this relation is as-
been studied by numerous authors both theoreti¢alland  sumed to be algebrajd,10]. However, this contradicts the
experimentally{5,6]. These studies on the microscopic scalenumerous experimental evidences revealing the dependence
provide valuable insight into the underlying mechanisms ofsf the - relation upon the conditions of the experiment. In
fluid transport in porous media. A microscopic descriptionyarticylar, this relation exhibitiysteresisfor wetting and
requires the detailed information of the pore structure an%lrying of a mediun{1,10,11.
pore-size distribution. When this information is not avail- n
able, as often happens for large domains, one has to re
upon a macroscopic description. This description is usefu).
for determining such integral characteristics as the width an

propagation velocity of moving wetting fronts, the influence _"// relation. Our description consists of two dyna_ml_c equa-
of its curvature on the dynamics, etc. tions for @ and ¢ coupled by nonlinear sources. This implies

The subject of the present work is the dynamics of wetthat the traditiopal algebraie—z// gorrespc_)nden.ce is replaced
ting fronts in porous media when a liquid phaseate) dis- by a nonlocal_(|ntegro-dﬁfer(_ennaj relationship. The pro-
places air. A straightforward description of this process conPosed model is an application of the well-known “phase-
sists of treating wetting fronts as sharp interfaces, whicHield” approach used to describe solidification, electrodepo-
separates completely wet and dry regip6g]. However, in  sition, and other physical probleni$2—17. We show that,
many realistic cases the structure of the transitional zongnder certain conditions, dynamics of the wetting front in
(wherein water saturation varies graduglisannot be ne- our approach reproduce that in the traditional approach. The
glected. One can either describe the dynamics of the liqui¢ame is true for the pressure profiles associated with the wet-
and air phases separately, or noting that air pressure is clo§eg fronts obtained from both models. We demonstrate that,
to atmospheric, consider only the dynamics of the liquidunder different conditions, this equivalence breaks down,
phase. These two approaches generally produce similar r#4th our model revealing a dynamic nature of tha) rela-
sults(Ref.[8], p. 213. The latter approach seems to be moretion.
attractive due to its simplicity. The generalized Darcy'’s law for fluxthrough PSPM has

Within the framework of the chosen approach water flowa form q=—K(68)V(¢—x3), where K is the saturation-
is described by Darcy’s law which, similarly to Ohm'’s law dependent conductivity of the medium axglis the vertical
for electric current, stipulates the proportionality between thecoordinate(positive downward that stands for the gravita-
flux and gradient of a potentialsee, e.g.[7]). For flow tional component of pressufaormalized bypg). Herey is
through porous media a water pressure, averaged over manyeasured relative to the ambient atmospheric pressure, so
pore sizes, plays the role of the potential. Richdi@lshas that y<<0 for the partially saturated angli=0 for the fully

In the present Rapid Communication we propose a phe-
omenological approach to describe the propagation of wet-
ng fronts in porous media, which is based ordynamic
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saturated medium. Combined with the mass conservatiopressibility coefficients of the fluid, solid grains, and pores,
law, 96/ 9t=—V - q, this leads to the equation introduced by respectively. The total mass of the fluid is given b
Richards[9] =[,wp 6dx. For incompressible fluids and medi& (
=0), since D=K//S, Eq. (2) reads d60/dt=K(V?y
—d0/dx3), which conserves mass. For compressible fluids
and mediadM/dt=Q, where Q is the total mass flux
through the medium, provides the global constraint on the
Over the years a number of algebraia) andK(6) relations  system[Egs.(2) and(3)].

have been proposed empiricallsee, e.9.[18—-20). The Ri- SinceS is the specificstorage of a medium, the effect of
chards equatiofRE) (1) combined with such a relation con- the compressibility of fluids and media on flow dynamics is
stitutes the traditional approach to describe flow in PSPMcharacterized by the dimensionless param8terwhereL is
Since algebraic relations are not supported by experimental typical domain size. For many practical applications, such
data, in what follows we propose an approach with a dy-as the flow of water through low porosity rockS;~10~°

a0
=V KOV (§—x3)]. M

namic 6- ¢ relation. —10" m ! andL~10"1-10®* m. ThusSL<1, and the
To describe flow in PSPM, we modify the phase-field fluid and medium are virtually incompressible.
model (PFM) from [12] We consider propagation of one-dimensiofiaD) wet-
ting fronts in a slightly compressible medium wiglL<1.
W oy, 199 590 (2  Thedynamics of these fronts is described by 1D EZs(3),
ot S ot X3’ and the mass conservation constraint is satisfied automati-

cally. Two different situations exist: horizonta@ravity-free
0 oo and vertical front propagation. To maintain propagation of a
T =WIVEOH[20—1-MyY—¢r) 61— 0)]0(1—0), self-similar front, we choose the constant flux condition
3) d(p—xgz)lax;=—q/Kg at x;=0, and the no-flux condition
for capillary forcedy/ox;=0 atx;=L. Herei=1 ori=3
whereD=K,/S is the diffusion coefficientK, is the con- for horizontal or vertical flow, respectively, amfis an ex-
ductivity of a fully saturated mediung is the specific stor- ternal velocity flux. At the boundary behind the from,
age(measure of compressibility of the fluid and medjum =0, the medium is fully saturated)& 1), and at the bound-
is a characteristic time scale of the saturation dynamics, anary ahead of the front; =L, the medium is dry =0).
W s the width of a moving wetting front. The model param- Let us apply a traveling wave ansatzx;—Vt, for a
eter\x will be determined as a function of macroscopic pa-front moving with velocityV, to 1D Egs.(2) and (3). Rela-
rametersK, W, and ~. The constant/; is the normalized tions W~V7 and W?/7<D give rise to a small parameter
capillary pressure along the moving front in the sharp-Pe<l, where PeVW/Dis the Pelet number. The perturba-
interface limit. We will demonstrate below thet coincides  tion analysis around Re0, similar to that performed ifl2],
with the pressure in the dry medium far ahead of the wettingives a front moving with velocity/=q, and saturation and
front. Since the width of the capillary zone, associated withcapillary pressure profiles
the localized wetting fronts, is much smaller than the typical
z
1 tan?‘( > \/EW

scale of the pressure variation, the following holtlg?/
z
W(z)= z,/;f+J[W\/§In 2— §+W\/§In

1

<D. We have added the last term in Eg) to PFM[12], to 0(2)=5 +0(Ps), 4
account for the gravitational force.

Our model is phenomenological in the sense that pres-
ently we do not provide a rigorous physical motivation for cos}{ z )H
the nonlinear source term on the right-hand side of B§. 22w
Nevertheless, the model captures the main features of the
wetting fronts’ propagation in porous media. In particular, +0O(Pé). 6)
numerous experimenfg1,22 have shown that under certain
conditions the wetting fronts remain localized and propagatéiereJ is an absolute value of the capillary pressure gradient
in a self-similar manner. The medium is fully saturatet! ( at the boundary. It is given by=q/K for a horizontally
=1) behind the front region and completely drg<0)  propagating front, and byl=(a/Ks—1) for a vertically
ahead of the front. The cubic polynomial in H) provides ~ propagating front. A vertical wetting front does not exist
for such a structure of the wetting fro(gimilar to the PFM  whenqs<Kg, i.e., when the external flux is not large enough
for solidification. The fact that the liquid moves in the di- to compensate for the effect of the gravity force, and thus
rection opposite to the pressure gradient is accounted for bgevelop a saturated zone.

the term proportional to®— ;) in Eq. (3), since its pres- The saturation profilé4) is evaluated in the zeroth order
ence makes the depths of the two minima of the correspondn Pe, since, for the localized wetting fronts, saturation varies
ing potential energy different. in the narrow regionW< /D 7. Hence the higher order cor-

Equations(2) and (3) have to be supplemented by a con- rections toé influence the nonlocal pressure profi® only
straint to ensure conservation of mass. The specific storage iis the second order. The solvability condition for the equa-
related to the compressibility of the fluid and porous mediuntion for 8 in the first order(similar to [12]) yields 7/\~
as S=pgw(B;— Bs+ By) (Ref.[8], p. 108. Herew is the  —0.313V2J/q.
medium porosity(fraction of pore volume in the total vol- We now compare our approach with the traditiofRl-
umewv of the medium, and B;,8,, and B, are the com- chard$ approach. One of the most widely used examples of
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FIG. 1. (a) Normalized capillary pressurej(- ;)Ks/gW and
(b) saturation profiles in the traveling wave coordinate (b nor-
malized capillary pressure in a dry medium is takenKs/qW=
—-10.

algebraic function®(y) and K(6), complementary to RE
(1), has been proposed by Gardh&6,18,

o(yp)=e"’, K(6)=Ksb, (6)
where a is the pore-size distribution parameter. The first
equation in Eq(6) is valid for y<0 (when the medium is
partially saturatedwhile, for ¢»=0 (for a fully saturated me-
dium), #=1. The same boundary conditions as before ar
used. Substituting Eq6) into 1D Eq.(1), and applying the
traveling wave ansatz gives, after a series of transformation
the solution for the pressure profile

COSV(

where ¢ is a large negative number corresponding to th
pressure in the dry medium far ahead of the front.
Comparing Eq(7) with Eq. (5) we find that the pressure
profiles obtained from both models coincide, provided tha
the relations between the parametef2WJ=a "' and ¢
=y hold. Figure 1a) shows the resulting pressure profile
from both models. Substituting E¢?) into the first relation
in Eq. (6) we obtain the saturation profile for the Richards
model. The result is compared with the saturation prafije
in Fig. 1(b). Although the saturation profiles differ within the
capillary zone, this difference occurs on the very small scal
W. An unphysical sharp kink that appears in the Richard
model for 6(z) is absent in our model. Comparing Fight
with the experimental data presented in Figs. 2-5 of Ref

In N Jz+1|
a o 2 an
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¥(2) (@)

[22] shows that the saturation profile obtained by our mode[

agrees with the experiments.
Though in the traveling wave regime our model repro-
duces the results obtained from the Richards model, it is als
capable of capturing the dynami: ¢ relation in different
regimes, without adjusting the parameters. This is not th

parametew in Eq. (6) to different experimental regimes. To
demonstrate the dynamic nature of they relation in our

e
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FIG. 2. Dynamic6- ¢ relation for both the traveling wave and
non-traveling-wave regimes. Parameters of the simulationdare
=1, W=0.1, S=0.005, 7=1. For the traveling wave regime
=Ks. The value of\ is calculated according to the selection result
rIA~—0.313N?J/q. System sizé. =10 and number of grid points
is 201. Time stept=0.001.

Egs. (2),(3) under several boundary conditions. We solved
the system Egs. (2),(3)] using finite differences. Note that
though in our simulation§L<1, we keep the terr®d/ ot

in Eqg. (2). Despite being small, this term provides a relax-
ational feature to a numerical solution of Eg), which sta-
bilizes the numerical algorithm. Figure 2 showéy) ob-
ained from these simulations for horizontal flow. The solid

%ine in the figure corresponds to the traveling wave regime,

esulting from the previously described boundary conditions.

he dashed line represerttéyy) at timet= 1000 correspond-
ing to the wetting with the constant pressurexat 0 and the
same no-flux condition at;=L.

Note that in the limit of the narrow capillary zongy
—0, our model describes the dynamics of sharp interface,
which separates completely wed€1) and completely dry
(0=0) regions. This is in analogy with the PFM of solidifi-
cation that reduces to the free-boundary probjég. It fol-

Jows from Eq.(5) that in this limit /(0)= ¢ and ¢,(0)=

—J. Moreover, Eq.(2) reduces to a diffusion equation,

which is commonly used to describe flow in saturated media.
In conclusion, we have proposed an approach to describe

the dynamics of wetting fronts in porous media. Unlike the

traditional approach, our phenomenological approach reflects
the dynamic nature of the relationship between capillary
pressure and saturation of a medium. We have found that this

elationship varies with the flow regimes, which is supported
y experimental data. We have demonstrated that, in the

traveling wave regime, the proposed model reproduces the

esults obtained from the standard approach. We plan to ex-
end our approach to two- and three-dimensional media, in-
corporating in the description the front curvature and anisot-
ropy of the medium. We expect to develop experimental

(s)upport for the proposed approach by measuring quantitative

éeatures of the wetting fronts in porous media, such as the
case for the Richards model, where one needs to adjust tﬁj

eependence of the front width on external flux.

We are grateful to R. Camassa, G. Forest, M. Hyman,

S.-Y. Chen, and J. Glazier for fruitful and clarifying discus-

model, we have performed the numerical simulations of 1Dsions.
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