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Dynamics of wetting fronts in porous media
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We propose a phenomenological approach for describing the dynamics of wetting front propagation in
porous media. Unlike traditional models, the proposed approach is based on the dynamic nature of the relation
between capillary pressure and medium saturation. We choose a modified phase-field model of solidification as
a particular case of such a dynamic relation. We show that in the traveling wave regime the results obtained
from our approach reproduce those derived from the standard model of flow in porous media. In a more general
case, the proposed approach reveals the dependence of front dynamics upon the flow regime.
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The dynamics of fluids in porous media has been a sub
of numerous theoretical and experimental studies becaus
its importance for engineering and environmental appli
tions @1–3#. Among the most challenging problems in th
area is modeling fluid flow through a partially saturated m
dium, in particular the propagation of wetting~or drying!
fronts. This has been addressed on both ‘‘microscopic’’~or
pore-scale! and ‘‘macroscopic’’~on scales larger than pore
size! levels. The fluid dynamics in the pore networks h
been studied by numerous authors both theoretically@4# and
experimentally@5,6#. These studies on the microscopic sca
provide valuable insight into the underlying mechanisms
fluid transport in porous media. A microscopic descripti
requires the detailed information of the pore structure a
pore-size distribution. When this information is not ava
able, as often happens for large domains, one has to
upon a macroscopic description. This description is use
for determining such integral characteristics as the width
propagation velocity of moving wetting fronts, the influen
of its curvature on the dynamics, etc.

The subject of the present work is the dynamics of w
ting fronts in porous media when a liquid phase~water! dis-
places air. A straightforward description of this process c
sists of treating wetting fronts as sharp interfaces, wh
separates completely wet and dry regions@5,7#. However, in
many realistic cases the structure of the transitional z
~wherein water saturation varies gradually! cannot be ne-
glected. One can either describe the dynamics of the liq
and air phases separately, or noting that air pressure is c
to atmospheric, consider only the dynamics of the liqu
phase. These two approaches generally produce simila
sults~Ref. @8#, p. 213!. The latter approach seems to be mo
attractive due to its simplicity.

Within the framework of the chosen approach water fl
is described by Darcy’s law which, similarly to Ohm’s la
for electric current, stipulates the proportionality between
flux and gradient of a potential~see, e.g.,@7#!. For flow
through porous media a water pressure, averaged over m
pore sizes, plays the role of the potential. Richards@9# has
PRE 581063-651X/98/58~5!/5245~4!/$15.00
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empirically generalized Darcy’s law onto flow in partiall
saturated porous media~PSPM! by letting the proportionality
coefficient depend on saturationu of the medium~0,u,1!.
Coupled with the mass conservation law, the generali
Darcy’s law constitutes the existing macroscopic descript
of the fluid dynamics in PSPM. To complete this descriptio
one needs to specify a relation betweenu and capillary pres-
sure~normalized by the product of fluid densityr and gravi-
tational accelerationg) c. Traditionally this relation is as-
sumed to be algebraic@1,10#. However, this contradicts the
numerous experimental evidences revealing the depend
of theu-c relation upon the conditions of the experiment.
particular, this relation exhibitshysteresisfor wetting and
drying of a medium@1,10,11#.

In the present Rapid Communication we propose a p
nomenological approach to describe the propagation of w
ting fronts in porous media, which is based on adynamic
u-c relation. Our description consists of two dynamic equ
tions foru andc coupled by nonlinear sources. This implie
that the traditional algebraicu-c correspondence is replace
by a nonlocal~integro-differential! relationship. The pro-
posed model is an application of the well-known ‘‘phas
field’’ approach used to describe solidification, electrodep
sition, and other physical problems@12–17#. We show that,
under certain conditions, dynamics of the wetting front
our approach reproduce that in the traditional approach.
same is true for the pressure profiles associated with the
ting fronts obtained from both models. We demonstrate th
under different conditions, this equivalence breaks dow
with our model revealing a dynamic nature of theu-c rela-
tion.

The generalized Darcy’s law for fluxq through PSPM has
a form q52K(u)“(c2x3), where K is the saturation-
dependent conductivity of the medium andx3 is the vertical
coordinate~positive downward! that stands for the gravita
tional component of pressure~normalized byrg). Herec is
measured relative to the ambient atmospheric pressure
that c,0 for the partially saturated andc>0 for the fully
R5245 © 1998 The American Physical Society
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saturated medium. Combined with the mass conserva
law, ]u/]t52“•q, this leads to the equation introduced b
Richards@9#

]u

]t
5“•@K~u!“~c2x3!#. ~1!

Over the years a number of algebraicu-c andK(u) relations
have been proposed empirically~see, e.g.,@18–20#!. The Ri-
chards equation~RE! ~1! combined with such a relation con
stitutes the traditional approach to describe flow in PSP
Since algebraic relations are not supported by experime
data, in what follows we propose an approach with a
namicu-c relation.

To describe flow in PSPM, we modify the phase-fie
model ~PFM! from @12#

]c

]t
5D¹2c2

1

S

]u

]t
2D

]u

]x3
, ~2!

t
]u

]t
5W2¹2u1@2u212l~c2c f !u~12u!#u~12u!,

~3!

whereD5Ks /S is the diffusion coefficient,Ks is the con-
ductivity of a fully saturated medium,S is the specific stor-
age~measure of compressibility of the fluid and medium!, t
is a characteristic time scale of the saturation dynamics,
W is the width of a moving wetting front. The model param
eter l will be determined as a function of macroscopic p
rametersKs, W, and t. The constantc f is the normalized
capillary pressure along the moving front in the sha
interface limit. We will demonstrate below thatc f coincides
with the pressure in the dry medium far ahead of the wett
front. Since the width of the capillary zone, associated w
the localized wetting fronts, is much smaller than the typi
scale of the pressure variation, the following holds:W2/t
!D. We have added the last term in Eq.~2! to PFM @12#, to
account for the gravitational force.

Our model is phenomenological in the sense that p
ently we do not provide a rigorous physical motivation f
the nonlinear source term on the right-hand side of Eq.~3!.
Nevertheless, the model captures the main features of
wetting fronts’ propagation in porous media. In particul
numerous experiments@21,22# have shown that under certa
conditions the wetting fronts remain localized and propag
in a self-similar manner. The medium is fully saturatedu
51) behind the front region and completely dry (u50)
ahead of the front. The cubic polynomial in Eq.~3! provides
for such a structure of the wetting front~similar to the PFM
for solidification!. The fact that the liquid moves in the d
rection opposite to the pressure gradient is accounted fo
the term proportional to (c2c f) in Eq. ~3!, since its pres-
ence makes the depths of the two minima of the correspo
ing potential energy different.

Equations~2! and~3! have to be supplemented by a co
straint to ensure conservation of mass. The specific stora
related to the compressibility of the fluid and porous medi
as S5rgv(b f2bs1bp) ~Ref. @8#, p. 108!. Here v is the
medium porosity~fraction of pore volume in the total vol
ume v of the medium!, and b f ,bm , and bp are the com-
n
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pressibility coefficients of the fluid, solid grains, and pore
respectively. The total mass of the fluid is given byM
5*v v r u dx. For incompressible fluids and media (S
50), since D5Ks /S, Eq. ~2! reads ]u/]t5Ks(¹

2c
2]u/]x3), which conserves mass. For compressible flu
and mediadM/dt5Q, where Q is the total mass flux
through the medium, provides the global constraint on
system@Eqs.~2! and ~3!#.

SinceS is thespecificstorage of a medium, the effect o
the compressibility of fluids and media on flow dynamics
characterized by the dimensionless parameterSL, whereL is
a typical domain size. For many practical applications, su
as the flow of water through low porosity rocks,S;1025

21027 m21 and L;10212103 m. Thus SL!1, and the
fluid and medium are virtually incompressible.

We consider propagation of one-dimensional~1D! wet-
ting fronts in a slightly compressible medium withSL!1.
The dynamics of these fronts is described by 1D Eqs.~2!,~3!,
and the mass conservation constraint is satisfied autom
cally. Two different situations exist: horizontal~gravity-free!
and vertical front propagation. To maintain propagation o
self-similar front, we choose the constant flux conditi
](c2x3)/]xi52q/Ks at xi50, and the no-flux condition
for capillary force]c/]xi50 at xi5L. Here i 51 or i 53
for horizontal or vertical flow, respectively, andq is an ex-
ternal velocity flux. At the boundary behind the front,xi
50, the medium is fully saturated (u51), and at the bound-
ary ahead of the front,xi5L, the medium is dry (u50).

Let us apply a traveling wave ansatzz5xi2Vt, for a
front moving with velocityV, to 1D Eqs.~2! and ~3!. Rela-
tions W;Vt and W2/t!D give rise to a small paramete
Pe!1, where Pe5VW/D is the Pe´clet number. The perturba
tion analysis around Pe50, similar to that performed in@12#,
gives a front moving with velocityV5q, and saturation and
capillary pressure profiles

u~z!5
1

2F12tanhS z

2A2W
D G1O~Pe!, ~4!

c~z!5c f1JH WA2 ln 22
z

2
1WA2 lnFcoshS z

2A2W
D G J

1O~Pe2!. ~5!

HereJ is an absolute value of the capillary pressure gradi
at the boundary. It is given byJ5q/Ks for a horizontally
propagating front, and byJ5(q/Ks21) for a vertically
propagating front. A vertical wetting front does not exi
whenq<Ks , i.e., when the external flux is not large enou
to compensate for the effect of the gravity force, and th
develop a saturated zone.

The saturation profile~4! is evaluated in the zeroth orde
in Pe, since, for the localized wetting fronts, saturation var
in the narrow regionW!ADt. Hence the higher order cor
rections tou influence the nonlocal pressure profile~5! only
in the second order. The solvability condition for the equ
tion for u in the first order~similar to @12#! yields t/l'
20.313W2J/q.

We now compare our approach with the traditional~Ri-
chards! approach. One of the most widely used examples
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algebraic functionsu(c) and K(u), complementary to RE
~1!, has been proposed by Gardner@10,18#,

u~c!5eac, K~u!5Ksu, ~6!

where a is the pore-size distribution parameter. The fi
equation in Eq.~6! is valid for c,0 ~when the medium is
partially saturated! while, for c>0 ~for a fully saturated me-
dium!, u[1. The same boundary conditions as before
used. Substituting Eq.~6! into 1D Eq.~1!, and applying the
traveling wave ansatz gives, after a series of transformati
the solution for the pressure profile

c~z!5
ln 2

a
1cL2

Jz

2
1

1

a
lnFcoshS aJ

2
zD G , ~7!

wherecL is a large negative number corresponding to
pressure in the dry medium far ahead of the front.

Comparing Eq.~7! with Eq. ~5! we find that the pressur
profiles obtained from both models coincide, provided t
the relations between the parametersA2WJ5a21 and c f
5cL hold. Figure 1~a! shows the resulting pressure profi
from both models. Substituting Eq.~7! into the first relation
in Eq. ~6! we obtain the saturation profile for the Richar
model. The result is compared with the saturation profile~4!
in Fig. 1~b!. Although the saturation profiles differ within th
capillary zone, this difference occurs on the very small sc
W. An unphysical sharp kink that appears in the Richa
model foru(z) is absent in our model. Comparing Fig. 1~b!
with the experimental data presented in Figs. 2–5 of R
@22# shows that the saturation profile obtained by our mo
agrees with the experiments.

Though in the traveling wave regime our model rep
duces the results obtained from the Richards model, it is
capable of capturing the dynamicu-c relation in different
regimes, without adjusting the parameters. This is not
case for the Richards model, where one needs to adjus
parametera in Eq. ~6! to different experimental regimes. T
demonstrate the dynamic nature of theu-c relation in our
model, we have performed the numerical simulations of

FIG. 1. ~a! Normalized capillary pressure (c2c f)Ks /qW and
~b! saturation profiles in the traveling wave coordinate. In~b! nor-
malized capillary pressure in a dry medium is taken,c fKs /qW5
210.
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Eqs. ~2!,~3! under several boundary conditions. We solv
the system@Eqs. ~2!,~3!# using finite differences. Note tha
though in our simulationsSL!1, we keep the termS]c/]t
in Eq. ~2!. Despite being small, this term provides a rela
ational feature to a numerical solution of Eq.~2!, which sta-
bilizes the numerical algorithm. Figure 2 showsu(c) ob-
tained from these simulations for horizontal flow. The so
line in the figure corresponds to the traveling wave regim
resulting from the previously described boundary conditio
The dashed line representsu(c) at timet51000 correspond-
ing to the wetting with the constant pressure atx150 and the
same no-flux condition atx15L.

Note that in the limit of the narrow capillary zone,W
→0, our model describes the dynamics of sharp interfa
which separates completely wet (u51) and completely dry
(u50) regions. This is in analogy with the PFM of solidifi
cation that reduces to the free-boundary problem@12#. It fol-
lows from Eq.~5! that in this limit c(0)5c f and cz(0)5
2J. Moreover, Eq.~2! reduces to a diffusion equation
which is commonly used to describe flow in saturated med

In conclusion, we have proposed an approach to desc
the dynamics of wetting fronts in porous media. Unlike t
traditional approach, our phenomenological approach refl
the dynamic nature of the relationship between capill
pressure and saturation of a medium. We have found that
relationship varies with the flow regimes, which is support
by experimental data. We have demonstrated that, in
traveling wave regime, the proposed model reproduces
results obtained from the standard approach. We plan to
tend our approach to two- and three-dimensional media,
corporating in the description the front curvature and anis
ropy of the medium. We expect to develop experimen
support for the proposed approach by measuring quantita
features of the wetting fronts in porous media, such as
dependence of the front width on external flux.

We are grateful to R. Camassa, G. Forest, M. Hym
S.-Y. Chen, and J. Glazier for fruitful and clarifying discu
sions.

FIG. 2. Dynamicu-c relation for both the traveling wave an
non-traveling-wave regimes. Parameters of the simulations arD
51, W50.1, S50.005, t51. For the traveling wave regimeq
5Ks . The value ofl is calculated according to the selection res
t/l'20.313W2J/q. System sizeL510 and number of grid points
is 201. Time stepdt50.001.
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