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Abstract Development of a comprehensive theory of the formation of vegetation pat-
terns is still in progress. A prevailing view is to treat water availability as the main
causal factor for the emergence of vegetation patterns. While successful in capturing
the occurrence of multiple vegetation patterns in arid and semiarid regions, this hypoth-
esis fails to explain the presence of vegetation patterns in humid environments. We
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explore the rich structure of a toxicity-mediated model of the vegetation pattern for-
mation. This model consists of three PDEs accounting for a dynamic balance between
biomass, water, and toxic compounds. Different (ecologically feasible) regions of the
model’s parameter space give rise to stable spatial vegetation patterns in Turing and
non-Turing regimes. Strong negative feedback gives rise to dynamic spatial patterns
that continuously move in space while retaining their stable topology.

Keywords Turing pattern · Negative feedback · Bifurcation analysis ·
Numerical simulations

1 Introduction

The occurrence of regular vegetation patterns has been studied by plant ecologists for
a long time (Watt 1947; White 1971). Different patterns, such as spots, labyrinths,
gaps, and stripes, as well as plant rings and fungal fairy rings (Valentin et al. 1999;
Bonanomi et al. 2012, 2013), occur in a variety of natural environments (Boale and
Hodge 1964; Wickens and Collier 1971; Leprun 1999; Okayasu and Aizawa 2001).
It has been hypothesized that their development is affected by global phenomena like
climate change (Rietkerk et al. 2002; Dekker et al. 2009). An extensive analysis of data
from 249 geographical locations supports this hypothesis by correlating the observed
regular vegetation patterns with climatic variables and soil properties (Deblauwe et al.
2008). Such studies suggest that vegetation patterns in arid and semiarid environments
might provide early warning signs of climate shifts and critical transitions (van de
Koppel et al. 1997; Rietkerk et al. 1997, 2004; Scheffer et al. 2009).

Development of a comprehensive theory of the formation of vegetation patterns is
still in progress. Phenomenological models of Lefever and Lejeune (1997) and Lejeune
et al. (1999, 2002) postulate two feedback mechanisms of pattern formation: short-
range facilitation of plants under their aerial structures and long-range competition
between plants by overlapping root zones. A more prevailing theory identifies water
availability as the main causal factor for the emergence of vegetation patterns. It
is usually formulated in terms of two coupled partial differential equations (PDEs)
governing the dynamics of plant biomass and (surface or soil) water (Klausmeier
1999; Hardenberg et al. 2001; Rietkerk et al. 2002; Meron et al. 2004; Ursino and
Contarini 2006; Gilad et al. 2007a, b; Kealy and Wollkind 2012; Nathan et al. 2013).
In these and other similar models, vegetation patterns emerge solely due to a feedback
between biomass and water (e.g., water infiltration and/or evaporation, plant water
uptake, and surface water runoff). Treating water availability as the only controlling
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mechanism of pattern formation fails to explain the occurrence of vegetation patterns
in humid environments (Rietkerk and Koppel 2008, and references therein).

A plant–soil negative feedback (NF) provides an alternative mechanism of the emer-
gence of vegetation patterns. Mechanisms involved in the NF include the presence of
soilborne pathogens, the changing composition of soil microbial communities (Kul-
matisky et al. 2008), and the accumulation of autotoxic compounds from decomposing
plant litter (Mazzoleni et al. 2007; Bonanomi et al. 2011). The experimental evidence
reported by Mazzoleni et al. (2014) suggests that litter autotoxicity and plant–soil NF
are manifestations of the inhibitory effects of extracellular DNA. The large amount of
evidence presented in these studies reinforces the relevance of autotoxicity in the set-
ting of temporal and spatial dynamics of plant systems. The NF was shown to play an
important role in plant-species coexistence and biodiversity (Mazzoleni et al. 2010),
and in the occurrence of ring patches in clonal plants (Cartení et al. 2012; Bonanomi
et al. 2014). The latter study proposed a model consisting of two coupled PDEs, which
described the dynamics of biomass and toxicity. Marasco et al. (2013) supplemented
this model with a third PDE, which was used to govern the dynamics of soil water.
The resulting three-PDE model reproduced the emergence of vegetation patterns even
when water is not a limiting resource.

Mathematical analyses of such coupled PDEs often focus on bifurcation points,
which give rise to Turing patterns (Turing 1952). The latter occur when the stability
of a homogeneous steady state is lost with respect to heterogeneous perturbations.
Turing patterns were observed in chemical (Rovinsky and Menzinger 1993; Jensen
et al. 1994; Coullet and Riera 2000), physical (Tlidi et al. 1994; Kessler and Werner
2003), and biological (Meinhardt 1995; Murray 1988) systems described by coupled
reaction–diffusion equations. A key indicator of the emergence of Turning patterns is
a high contrast between diffusion coefficients in the governing PDEs.

Despite its popularity, Turing instability is not the only mechanism leading to pat-
tern formation in systems of reaction–diffusion PDEs. A number of theoretical and
numerical studies (Petrovskii et al. 2001; Volpert and Petrovskii 2009; Kéfi et al. 2010;
Banerjee and Petrovskii 2011) demonstrated the emergence of vegetation patterns even
when the Turning condition is not satisfied. One such regime, called by Petrovskii et
al. (2001) a “dynamic stabilization” leads to the formation of a transitory unstable
plateau behind a diffusive front and can be thought of as an opposite of the Turing
regime.

The analysis presented below explores the rich structure of a toxicity-mediated
model of the vegetation pattern formation. This model consists of three PDEs account-
ing for a dynamic balance between biomass, water, and toxic compounds (negative
feedback). Different (ecologically feasible) regions of the model’s parameter space
give rise to stable spatial vegetation patterns in Turing and non-Turing regimes. It
reduces to the two-PDE model of Kealy and Wollkind (2012) in the absence of tox-
icity feedback. Strong negative feedback gives rise to dynamic spatial patterns that
continuously move in space while retaining their stable topology. In contrast to the
modeling predictions of Rietkerk et al. (2002), Meron et al. (2004), and Gilad et al.
(2007a, b), the distribution of biomass within the patterns is not symmetric.

Our paper is organized as follows. Section 2 contains a formulation of the
toxicity-mediated model of the vegetation pattern formation. In Sect. 3, we present
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Fig. 1 A soil–plant–atmosphere
system accounts for the
feedback between plant biomass
(B), toxic compounds (T ), and
soil water (W ). The continuous
lines represent transfers of
matter between the
compartments, while the dashed
lines represent the influences
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simulation results representative of an ecologically feasible range of the model para-
meters. A linear stability analysis of the model’s homogenous stationary solutions to
both homogeneous and inhomogenous perturbations is presented in Sect. 4. A discus-
sion of ecological implications of the toxicity-mediated model is presented in Sect. 5.

2 Mathematical Model

Following Cartení et al. (2012) and Marasco et al. (2013), we postulate that vegetation
patterns emerge as a result of the competition between biomass B (kg/m2), water W
(kg/m2), and toxic compounds T (kg/m2). Figure 1 provides a schematic representa-
tion of the interactions between these three quantities at any spatial point x = (x, y)�
and time t : Growth of biomass B is mediated by water availability, its intrinsic mor-
tality, and the toxic compounds; availability of water W is affected by precipitation,
evaporation, and transpiration (plant water uptake); and toxic compounds T are pro-
duced by the decomposition of dead plants and removed from the soil by intrinsic
degradation and precipitation.

These processes are described by a system of coupled PDEs

∂ B

∂t
= DB∇2 B + fB(B, W, T ), fB ≡ cB2W − (d + sT )B; (1a)

∂W

∂t
= DW ∇2W + fW (B, W ), fW = p − r B2W − lW ; (1b)

∂T

∂t
= fT (B, T ), fT = q(d + sT )B − (k + wp)T (1c)

where the real positive constants DB and DW represent dispersal and effective diffusion
coefficients of biomass and water, respectively. Their values, as well as those of model
parameters c > 0, d > 0, p > 0, q > 0, r > 0, l > 0, s ≥ 0, w ≥ 0 and k ≥ 0,
are either chosen in accordance with Klausmeier (1999) and Cartení et al. (2012) or
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Table 1 Model parameters and their values

Parameter Description Units Values

c Growth rate of B due to water uptake m4 d−1 kg−2 0.002

d Death rate of biomass B d−1 0.01

k Decay rate of toxicity T d−1 0.01 or 0.2

l Water loss due to evaporation and drainage d−1 0.01

p Precipitation rate kg d−1 m−2 [0, 2]
q Proportion of toxins in dead biomass – 0.05

r Rate of water uptake m4 d−1 kg−2 0.35

s Sensitivity of plants to toxicity T m2 d−1 kg−1 0 or 0.2

w Washing out of toxins by precipitation kg day−2 m−2 0.001

DB “Diffusion coefficient” for biomass m2 d−1 0.01

DW “Diffusion coefficient” for water m2 d−1 0.8

selected from within an order-of-magnitude feasibility range. They are summarized
in Table 1. Equations (1) are defined on the bounded domain Ω = {0 ≤ x ≤ Lx , 0 ≤
y ≤ L y} and are subject to the boundary and initial conditions

∂n B = 0, ∂nW = 0, ∂nT = 0, x ∈ ∂Ω, t ≥ 0 (2a)

and

B(x, 0) = B0(x), W (x, 0) = W0(x), T (x, 0) = 0, x ∈ Ω (2b)

where ∂Ω is the boundary of Ω; ∂n is the normal derivative on ∂Ω; B0 and W0 are
initial spatial distributions of biomass and water, respectively.

Three-equation model (1) accounts for the negative soil–plant feedback due to plant
toxicity that is absent in the two-equation models of Klausmeier (1999) and Kealy
and Wollkind (2012). The latter two models attribute the occurrence of vegetation
patterns solely to competition between biomass growth and water availability. Setting
s = 0 in (1) decouples pattern formation from the effects of toxicity and reduces
the structure of our model to that introduced by Kealy and Wollkind (2012). It is
worthwhile emphasizing that their simulations and analysis were carried out for an
infinite domain, while we define our model on bounded domain Ω .

3 Pattern Formation: Simulation Results

The simulations reported below are performed on a square lattice of 100 × 100 ele-
ments, with initial biomass B0 = 0.2 in N0 = 5,000 randomly selected elements
(or the total initial biomass Btot

0 = 1,000) and B0 = 0 in the remaining nodes. The
simulation time tmax = 274 years consists of 100,000 time steps Δt = 0.01 days.
In all simulations, eight of the eleven dimensional model parameters (i.e., two out of
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Fig. 2 Spatial vegetation patterns formed at time tmax = 274 years for several values of precipitation rate
p (columns), toxicity decay rate k (rows), and plant sensitivity to toxic compounds s. Darker shades of the
gray scale maps represent higher values of biomass density B(x, tmax). In the absence of toxicity feedback
(s = 0, first row), our three-equation model (5) reduces to the two-equation model of Kealy and Wollkind
(2012) and reproduces steady state patterns reported for arid and semiarid environments. Weak negative
feedback (s = 0.2 with k = 0.2, second row) gives rise to the stable patterns that are qualitatively similar
to their toxicity-free counterparts. Strong negative feedback (s = 0.2 with k = 0.01, third row) leads to the
formation of dynamic patterns that continuously evolve in time without reaching a steady state

the five dimensionless parameters) are assigned the unique values listed in Table 1.
The remaining three parameters—decay rate of toxicity (k), precipitation rate (p),
and sensitivity of plants to toxicity (s)—define a parameter space, which determines
the structure of vegetation patterns. The system of Eq. (5) was solved with forward
Euler integrations of the finite-difference equations resulting from discretization of
the diffusion operator with reflecting boundary conditions. This numerical scheme is
identical to that used by Rietkerk et al. (2002).

Figure 2 shows the spatial distributions of plant biomass B(x, tmax) predicted with
our model for several values of p, k, and s. Plants not affected by toxicity (s = 0, the
first row in Fig. 2) form stable spatial patterns typical of arid and semiarid environments
(Rietkerk et al. 2002; Gilad et al. 2007a, b; Kéfi et al. 2010). As precipitation rate p
increases, spatial distributions of plant biomass transition from bare soil (B ≡ 0 for
p = 0.4) to homogeneous cover (constant B for p ≥ 1.2), forming the spot (p = 0.6
and 0.8), gap (p = 1.0), and labyrinth (p = 1.1) patterns in between.

The toxicity-induced (s = 0.2) negative feedback (NF), which is significantly
ameliorated by a high toxicity decay rate (k = 0.2, the second row in Fig. 2), gives
rise to the stable patterns that are qualitatively similar to their toxicity-free counterparts.
The toxicity is degraded too fast to affect the fundamental characteristics of pattern
formation. Its only visible effect is to shift the emergence of homogeneous cover
(constant B) to higher values of precipitation (p = 2.0).

As the toxicity’s impact becomes more persistent, i.e., its decay rate is reduced
to k = 0.01 (the third row in Fig. 2), the negative feedback leads to the for-
mation of dynamic patterns for precipitation rates 0.6 ≤ p ≤ 1.1. In this
regime, the spots (p = 0.6 and 0.8) and labyrinths (p = 1.0 and 1.1)
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Fig. 3 Temporal evolution of biomass density B(xc, t) at the central pixel of the simulation domain (black
line) and of the biomass density Bave(t) averaged over the entire lattice (gray line), for several values of
precipitation rate p (columns), toxicity decay rate k (rows), and plant sensitivity to toxic compounds s.
The time t on the horizontal axis varies from 0 to tmax = 274 years, with 100,000 time steps. The lack of
(s = 0, first row) or weak (s = 0.2 with k = 0.2, second row) toxicity-induced negative feedback results in
stable steady state asymptotes after exhibiting transitory fluctuations at early times. Strong toxicity-induced
negative feedback (s = 0.2 with k = 0.01 and 0.6 ≤ p ≤ 1.1, third row) gives rise to persistent temporal
fluctuations of B(xc, t), indicating that vegetation patterns continue to evolve without reaching a stable
spatial configuration

continuously evolve in time, without reaching a steady state (see also the Supple-
mentary Material, SPOT_k=0.01_p=0.6.avi, LABYRINTH_k=0.01_p=1.0.avi and
GAP_k=0.01_p=1.1.avi). This dynamic behavior represents the biomass “escaping
from the toxicity” that accumulates in the soil patches previously occupied by the
vegetation.

Figure 3 elucidates this phenomenon by exhibiting the temporal evolution of both
biomass B(xc, t) at the central pixel (black line) and the average biomass of the entire
lattice Bave(t) (gray line). The lack of (s = 0, first row) or weak (s = 0.2 with
k = 0.2, second row) toxicity-induced negative feedback results in stable steady
state asymptotes Bst(xc) after exhibiting transitory fluctuations at early times. For
bare soil (first column) and uniform cover (last column), the biomass values Bst(xc)

coincide with the average values Bave(tmax). This stable behavior is in sharp contrast to
the persistent temporal fluctuations of B(xc, t) introduced by strong toxicity-induced
negative feedback (s = 0.2 with k = 0.01 and 0.6 ≤ p ≤ 1.1, third row). In this
regime, the biomass density B(xc, t) oscillates indefinitely, i.e., vegetation patterns
continue to evolve without reaching a stable spatial configuration (see also videos in
the Supplementary Material).

Our model predicts asymmetric distributions of biomass within individual spots
and stripes (Fig. 4). The biomass peak within each spot is shifted toward the direction
of the spot’s movement, escaping the zone with the highest toxicity accumulation.
The degree of asymmetry increases as toxicity decay rate k decreases (right panel in
Fig. 4). The biomass distribution exhibits a tail on the side opposite to the direction of
the spot’s movement. The length of this tail depends on the persistence of toxicity in
the soil: Low values of k result in a short biomass tail due to the high toxicity left in the
previously occupied soil, while higher k values degrade the soil toxicity and allow a
larger portion of biomass to persist in the tail. Such asymmetric biomass distributions
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Fig. 4 Horizontal cross sections of a single biomass spot at different levels of toxicity decay rate k and
plant sensitivity to toxic compounds s. In the absence of the negative feedback (s = 0, left panel), a stable
isolated vegetation spot has a symmetric distribution of biomass with a peak in its center. The negative
feedback (s = 0.2, right panel) modifies the shape of the biomass curve within a continuously moving
vegetation spot, for three levels of k. The arrow indicates the direction of the moving biomass front. The
top-right corner of each panel shows the positioning of the plane view of simulated spots

are absent in models (e.g., Rietkerk et al. 2002; Meron et al. 2004; Gilad et al. 2007a, b;
Kéfi et al. 2010; Meron 2011) that ignore plant toxicity (left panel in Fig. 4).

Transition from stationary to dynamic vegetation patterns depends on the interplay
between toxicity decay rate k, plant’s sensitivity to toxicity s, and precipitation rate
p (with other model parameters being fixed to their values in Table 1). Figure 5
shows the (k, s) phase space for several values of precipitation rate p. The area above
the p = const curves represents the parameter region that gives rise to dynamic
vegetation patterns that continuously evolve in time; the area below the p = const
curves represents the parameter region that gives rise to stationary vegetation patterns.
The former region decreases, and the latter region correspondingly increases, with
precipitation rate p.

Figure 6 shows the effect of the initial total biomass Btot
0 , the precipitation p, and

the decomposition rate k on the emergence of spatial patterns. We conducted a number
of simulations in which a value of Btot

0 is selected from the interval [400, 1,600], and
N0 = Btot

0 /B0 randomly selected elements are assigned initial biomass B0 = 0.2.
The weak negative feedback (k = 0.2, Fig. 6a) causes the bare soil to emerge for
precipitation rate p = 0.4 independently of Btot

0 values, while the more pronounced
negative feedback (k = 0.01, Fig. 6b) does the same for p = 0.6 if Btot

0 < 800 or for
p = 0.8 if Btot

0 < 600. Regardless of the value of Btot
0 , both the weak (k = 0.2) and

pronounced (k = 0.01) negative feedback regimes lead to the formation of uniform
vegetation cover for p ≥ 1.4 and p = 1.2, respectively. Non-trivial vegetation patterns
emerge for all other combinations of the parameters. The toxicity acts to reduce the
area of pattern formation.

In order to further understand the effects of toxicity on biomass movement, we
conducted one- and two-dimensional simulations in which biomass initially covers
the left half of the simulation domain. Supplementary video One-dimensional.avi
shows that shortly after the beginning of the one-dimensional simulations, the biomass
aggregates into a single central spot and starts moving toward the half of the domain
that was not occupied before since it is clear of toxicity. Moreover, the formation of
a toxicity peak right behind the biomass front drives its continuous movement. The
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Fig. 5 (k, s) phase space for several values of precipitation rate p. The area above the p = const curves
represents the parameter region that gives rise to dynamic vegetation patterns, which continuously evolve
in time; the area below the p = const curves represents the parameter region that gives rise to stationary
vegetation patterns. The former region decreases, and the latter region correspondingly increases, with
precipitation rate p. The curves are obtained with numerical simulations in which the (k, s) space is
discretized by the 25 × 41 elements

Fig. 6 Effect of precipitation rate p, initial biomass B0, and decomposition rate k on pattern formation.
The panels k = 0.2 (a) and k = 0.01 (b) show the emerged spatial pattern as a function of precipitation
rate (0.4 ≤ p ≤ 2.0) and of initial value of the biomass B. White, gray, and black zones correspond to bare
soil, vegetation pattern (i.e., spot, labyrinth, or gaps), and homogeneous vegetation, respectively

two-dimensional biomass dynamics is reflected in its temporal snapshots in Fig. 7.
Shortly after the beginning of the simulation, the biomass in the left half of the domain
starts to decrease, giving rise to a biomass front invading the empty half of the domain
that is clear of toxic compounds (second column in Fig. 7). A toxicity peak is formed
right behind the biomass front (third column in Fig. 7); it forces the front to keep
traveling in the same direction and impedes the diffusion of biomass to the left. After
the first front, the residual biomass in the left part of the domain starts creating new
traveling fronts (fourth column in Fig. 7) until the vertical symmetry is broken and the
linear fronts become continuously moving spots (fifth column in Fig. 7).
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Fig. 7 Temporal evolution of the system starting from homogeneous biomass cover in the left half of the
simulation domain. The first row panels show two-dimensional maps of the biomass density. The second
row panels represent plots of B, W , and T along the central horizontal transect of the domain. Parameter
values are set to p = 0.8, s = 0.2, and k = 0.01

4 Pattern Formation: Linear Stability Analysis

Systematic analysis of mathematical properties of ecological problems consisting of
more than two PDEs is notoriously challenging (Sherratt 2005; Sherratt and Lord
2007; Sherratt 2010). Quasi-steady state approximations, which are often employed
to perform stability analyses and to verify the presence of Turing bifurcations, are
based on the phenomenological assumption that the dynamics of one state variable is
much faster than those of the others (HilleRisLambers et al. 2001; Kéfi et al. 2010).
Since this approach presents some drawbacks in the context of vegetation modeling
(Flach and Schnell 2006), we do not adopt it here.

The subsequent analysis is facilitated by transforming model (1) into its dimen-
sionless form. Let us introduce dimensionless independent and dependent variables

x̃ =
√

k

DW
x, t̃ = kt, B̃ = kr

cp
B, W̃ = k

p
W, T̃ = kr

cpq
T (3)

and corresponding dimensionless parameters

μ = DB

DW
, α = d

k + wp
, β = α2cpsq

d2r
, γ = α3c2 p2

d3r
, λ = αl

d
. (4)

Then, Eq. (1) take a dimensionless form (unless otherwise noted we omit the tildes)

∂ B

∂t
= μ∇2 B + fB(B, W, T ), fB ≡ γ B2W − (α + βT )B; (5a)

∂W

∂t
= ∇2W + fW (B, W, T ), fW = 1 − γ B2W − λW ; (5b)

∂T

∂t
= fT (B, W, T ), fT = αB − (1 − βB)T . (5c)
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In this dimensionless formulation, μ is the ratio of diffusion coefficients of biomass
(DB) and water (DW ); α represents the intrinsic death rate (a balance between a plant’s
intrinsic mortality d and the rate of loss of toxicity k + wp due to natural decay, k,
and dilution by rain, wp); β is the supplemental death rate caused by plant growth
(as quantified by growth rate c and precipitation p) and plant mortality (due to toxic
compounds released from a fraction of dead biomass, q, and its sensibility to toxicity,
s), both of which are ameliorated by the rate of loss of toxicity k + wp and water
uptake r ; γ is the ratio between the parameters controlling plant growth and toxicity
loss rate k + wp and water uptake r ; λ is the ratio between the water loss parameter l
and toxicity loss rate k + wp.

4.1 Linear Stability Under Spatially Homogeneous Perturbations

Toxicity-induced negative feedback (s > 0). Biologically feasible homogeneous equi-
librium points of model (5) are non-negative solutions of a system of algebraic equa-
tions

γ B2W − (α + βT )B = 0, 1 − γ B2W − λW = 0, αB − (1 − βB)T = 0. (6)

Within the range of ecologically relevant model parameters, this system admits three
equilibrium points,

(B1, W1, T1) = (0, λ−1, 0) (7)

(B2, W2, T2) =
(

γ + Δ

2(α + β)γ
,

2(α + β)βλ + γ − Δ

2λ(β2λ + γ )
,
−2αβλ + γ + Δ

2(β2λ + γ )

)
(8)

(B3, W3, T3) =
(

γ − Δ

2(α + β)γ
,

2(α + β)βλ + γ + Δ

2λ(β2λ + γ )
,
−2αβλ + γ + Δ

2(β2λ + γ )

)
(9)

where Δ ≡ √
γ [γ − 4(α + β)αλ] introduces a constraint γ ≥ 4(α + β)αλ.

A linear stability analysis reveals that “bare-soil” equilibrium point (B1, W1, T1) is
stable with respect to homogeneous perturbations; “coexistence” equilibrium points
(B2, W2, T2) and (B3, W3, T3) are stable and unstable (see Fig. 8), respectively.

Absence of negative feedback (s = 0). In this regime, our three-equation model (5)
reduces to the two-equation model analyzed by Kealy and Wollkind (2012). Within
the range of ecologically relevant model parameters, the resulting system admits three
equilibrium points,

(B0
1 , W 0

1 , T 0
1 ) = (0, λ−1, 0) (10)

(B0
2 , W 0

2 , T 0
2 ) =

(
γ + √

γ 2 − 4α2λγ

2αγ
,

α

γ B0
2

, αB0
2

)
(11)

(B0
3 , W 0

3 , T 0
3 ) =

(
γ − √

γ 2 − 4α2λγ

2αγ
,

α

γ B0
3

, αB0
3

)
(12)
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Fig. 8 Bifurcation diagram for homogeneous stationary solutions of (5) showing biomass B versus pre-
cipitation rate p in the presence of negative feedback (s = 0.2) for k = 0.01 (a) and k = 0.2 (b). The
dotted lines denote stable equilibria of the spatial and non-spatial model. Continuous lines denote unstable
equilibria for the spatially homogeneous case. The dashed lines denote equilibria which are asymptotically
stable to spatially homogeneous perturbations but unstable to heterogeneous perturbations. The vertical
lines p = p∗ and p = pS delineate the region of a Turing bifurcation; the values of p∗ and pS are given
by Eq. (15). Two non-trivial equilibria (i.e., uniform vegetation) exist for p > p∗. Spatial bistability occurs
when p ≥ pS
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Fig. 9 Bifurcation diagram for homogeneous stationary solutions of (5) showing biomass B versus pre-
cipitation rate p in the absence of negative feedback (s = 0). The dotted lines denote stable equilibria of
the spatial and non-spatial model. The continuous lines denote unstable equilibria for the spatially homo-
geneous case. The dashed lines denote equilibria which are asymptotically stable to spatially homogeneous
perturbations but unstable to heterogeneous perturbations. Spatial bistability occurs when p ≥ pS

with a parameter constraint γ ≥ 4α2λ. This result is identical to that given by Eqs. (4)
and (5) in Kealy and Wollkind (2012). A linear stability analysis suggests that bare-
soil equilibrium point (B0

1 , W 0
1 , T 0

1 ) is stable with respect to homogeneous pertur-
bations; “coexistence” equilibrium points (B0

2 , W 0
2 , T 0

2 ) and (B0
3 , W 0

3 , T 0
3 ) are stable

and unstable (see Fig. 9 and Kealy and Wollkind (2012)), respectively.
The trivial, bare-soil state of (0, λ−1, 0) is unconditionally stable in the range of

ecologically relevant parameter values, but is of limited interest. Likewise, the states
(B3, W3, T3) and (B0

3 , W 0
3 , T 0

3 ) are unstable even to spatially homogeneous perturba-
tions and hence are biologically insignificant (Sherratt et al. 2014). We therefore focus
on the remaining equilibrium points, (B2, W2, T2) and (B0

2 , W 0
2 , T 0

2 ), that are stable

123



2878 A. Marasco et al.

to homogeneous perturbations. The latter equilibrium point has been shown to give
rise to a Turing instability within a certain subspace of the parameter space (Kealy and
Wollkind 2012).

4.2 Linear Stability Under Spatially Inhomogeneous Perturbations

Occurrence of Turing-like instabilities and resulting patterns can be deduced by ana-
lyzing the response of stable homogeneous equilibrium states to inhomogeneous per-
turbations (e.g., Kealy and Wollkind 2012; Sherratt et al. 2014 and references therein).

Toxicity-induced negative feedback (s > 0). Consider solutions of (5) composed of
homogeneous stationary state (B2, W2, T2) and non-uniform infinitesimal perturba-
tions,

B(x, t) = B2 + aB(0)eix·h+νt , W (x, t) = W2 + aW (0)eix·h+νt ,

T (x, t) = T2 + aT (0)eix·h+νt . (13)

Here i = √−1, h = (h1, h2)
� is the perturbation wave vector, ν is the growth rate, and

ak(t) = ak(0) exp(νt) (k = B, W, T ) are perturbation amplitudes. Substituting (13)
into (5) and retaining the first-order terms yield an eigenvalue problem

J(h)a = νa, a(t) = (aB, aW , aT )� (14a)

where h = |h| is the perturbation wave number and

J =
⎛
⎝−α + 2γ BW − βT − h2μ γ B2 −βB

−2γ BW −h2 − γ B2 − λ 0
α + βT 0 βB − 1

⎞
⎠ (14b)

The solution of this eigenvalue problem gives rise to dispersion relations, which pro-
vide information about the stability of homogeneous stationary point (B2, W2, T2)

to heterogenous perturbations. Specifically, a Hopf bifurcation is said to occur if
I m[μ(h)] 
= 0 and Re[μ(h)] = 0 at h = 0, while a Turing bifurcation is characterized
by I m[μ(h)] = 0 and Re[μ(h)] = 0 at h 
= 0. The occurrence of both Hopf and
Turing bifurcations was investigated by solving numerically eigenvalue problem (14).

This analysis revealed that for the set of parameters specified in Table 1, state
(B2, W2, T2) exhibits a Turing bifurcation (and becomes unstable) if precipitation rate
p falls within an interval p∗(k) < p < pS where

p∗(k) =
{

0.692478 for k = 0.01

0.596614 for k = 0.2
, pS(k) =

{
1.14 for k = 0.01

1.13 for k = 0.2
; (15)

otherwise, i.e., if p ≥ pS(k), state (B2, W2, T2) does not exhibit a Turing bifurcation
and remains asymptotically stable (Fig. 8). In both regimes, Hopf conditions are not
satisfied.
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Absence of negative feedback (s = 0). A linear stability analysis of homogeneous
stationary point (B0

2 , W 0
2 , T 0

2 ) revealed a similar behavior: A Turing bifurcation occurs
for the precipitation rates in the range 0.59 < p < 1.19, while (B0

2 , W 0
2 , T 0

2 ) remains
stable for p ≥ 1.19 (Fig. 9). It is worthwhile emphasizing that the Turning patterns
identified in the Kealy and Wollkind (2012) analysis of this system correspond to the
ratio of diffusion coefficients μ ≡ DB/DW that is an order of magnitude smaller than
that used in our study (see Table 1).

5 Discussion

We analyzed a three-equation model in which vegetation patterns emerge as a result of
nonlinear dynamical interactions (“competition”) between biomass, available water,
and plant toxicity. The model allows for pattern formation in both Turing and non-
Turning regimes. In particular, for {s = 0.2, k = 0.2, p = 0.6} and {s = 0.2, k =
0.2, p = 1.2}, stable patterns (spots and gaps, respectively) emerge in non-Turing
regime (15), as also observed by Petrovskii et al. (2001). Depending on environmental
conditions, i.e., for a certain range of parameter values, our model exhibits a bistability
area (Figs. 8, 9) in which two stable and one unstable states coexist for the same
values of infiltration rate p; this behavior is similar to that observed by Rietkerk et
al. (2002) and Hardenberg et al. (2001). Another ecologically feasible region of the
parameter space gives rise to Turing and non-Turing regimes in which vegetation
patterns continuously evolve in space without ever reaching an equilibrium. This
regime represents a strong toxicity-induced negative feedback between the vegetation
and ambient soil, which is absent in two-equation models of vegetation patterns (e.g.,
Klausmeier 1999; Kealy and Wollkind 2012).

Regardless of the parameter subspace, as precipitation rate p decreases the vege-
tation cover shifts from uniform to gaps, labyrinths, spots, and, finally, bare soil. This
behavior is consistent with the simulation results reported in the literature (e.g., Gilad
et al. 2007a; Kéfi et al. 2010; Meron et al. 2004; Meron 2011; Rietkerk et al. 2002).
The effect of significant toxicity-induced negative feedback is to reduce the parame-
ter subspace in which regular vegetation patterns occur (compare Fig. 6a, b). That is
because toxicity enhances plant mortality, so that a larger amount of initial biomass is
needed to prevent the formation of bare soil when precipitation rate is low. At higher
precipitation rates, toxicity has a destabilizing effect that breaks the pattern formation
and leads to homogeneous vegetation covers.

Key differences between the toxicity-induced negative feedback and the classi-
cal positive and negative feedback mechanisms (e.g., Klausmeier 1999; Kealy and
Wollkind 2012) are worthwhile emphasizing. The latter refer to “short-range facilita-
tion” and “long-range inhibition”: plants improve their local growth condition, e.g., by
increasing water availability (a positive feedback); the proliferation of plants reduces
resources, e.g., water, available to each plant (a negative feedback). Such dynamics
are responsible for the emergence of stable patterns when the positive and negative
feedbacks are balanced. By accounting for the local accumulation of toxic compounds
in the soil due to biomass decomposition, our model disturbs this equilibrium. While
low water availability promotes the aggregation of biomass into stable patterns due
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Fig. 10 Comparison of model simulation outputs (spots and labyrinths in rows) with aerial photographs of
real vegetation patterns and image interpretation. Spots and labyrinths refer to California, 26◦48′ N, 11253′
O and Sudan, 11◦08′ N, 27◦50′ E, respectively

to the local facilitation, this aggregation increases local levels of toxicity and exerts a
destabilizing force on the patterns.

If the toxic compounds degrade fast (high values of decay rate k), the toxicity-
induced negative feedback is not sufficient to disrupt the formation of stationary veg-
etation patterns with reduced biomass productivity (Figs. 3 and 6 with k = 0.2). If the
toxic compounds persist locally in the soil (low values of decay rate k), they force the
plants to invade the toxin-free regions, leading to the formation of dynamic vegetation
spots that move in space without reaching a steady state (SPOT_k=0.01_p=0.6.avi and
One-dimensional.avi in Supplementary Material). At higher precipitation rates (p ≥
0.6), the vegetation patterns do attain a stationary configuration, but the biomass dis-
tribution continuously change within the patches (LABYRINTH_k=0.01_p=1.0.avi
and GAP_k=0.01_p=1.1.avi in Supplementary Material).

The toxicity-induced negative feedback also affects the biomass distribution within
individual spots and stripes of vegetation patterns (Fig. 4). In the absence of the negative
feedback, a stable isolated vegetation spot has a symmetric distribution of biomass
with a peak in its center. This is the behavior predicted by a plethora of previous
models (e.g., Rietkerk et al. 2002; Meron et al. 2004; Gilad et al. 2007a, b; Kéfi et al.
2010; Meron 2011). The negative feedback modifies the shape of the biomass curve
within a continuously moving vegetation spot. The degree of asymmetry increases as
toxicity decay rate k decreases. The biomass distribution exhibits a peak shifted in
the direction of the spot’s movement and a tail on the side opposite to the opposite
direction. The length of this tail depends on the persistence of toxicity in the soil: Low
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values of k result in a short biomass tail due to the high toxicity left in the previously
occupied soil, while higher k values degrade the soil toxicity and allow a larger portion
of biomass to persist in the tail.

From an ecological point of view, both the continuous movement and the asym-
metrical shape of the patterns are very relevant phenomena, although their timescale
(years) makes them difficult to be observed and studied with field experiments. Model
parameters used in our simulations resulted in a propagation speed of about 3 m/y
which is slightly faster than observations (Valentin et al. 1999; Leprun 1999). Such
overestimation can be explained by the fact that the model is set up with constant
precipitation rates providing small amounts of water during each time step. This is in
contrast with precipitation patterns in arid environments, which are concentrated in
brief periods of time with most of the water lost to runoff.

In order to test the occurrence in nature of asymmetrical patterns, analysis of aerial
photographs (Fig. 10) was carried out in two sites reported by Deblauwe et al. (2008).
Using specific filters, the aerial photographs (Fig. 10, first column) have been edited
to highlight zones of high (black), medium (dark gray), and low (light gray) biomass
density (Fig. 10, second column), and then are compared to model simulations (Fig. 10,
third column). Such analysis clearly shows a good qualitative correspondence between
real vegetation spots and the ones predicted by model simulations (Fig. 10, first row).
Similarly, labyrinths present a heterogeneous distribution of biomass within the stripes
that was also observed in natural patterns (Fig. 10, second row).

In future work, we will further analyze the conditions for the development of
dynamic patterns and their occurrence in different biological systems.
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